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Abstract

The shortage of skilled radiologists and growing demand for radiology reports necessitate

innovative solutions to improve diagnostic accuracy and efficiency. This thesis presents a

novel method for automated radiology report generation by combining fine-grained local

anatomical segmentation with global image features using Graph Convolutional Networks

(GCNs) and large language models (LLMs).

Our approach segments anatomical regions in chest X-rays to produce detailed feature

maps, which are then integrated with global X-ray features through GCNs. This method

merges localized and global information, providing a comprehensive image representation.

GCNs are particularly effective for handling variable-sized inputs and enhancing feature

localization and globalization.

Empirical results indicate that integrating fine-grained anatomical features with global

X-ray features significantly improves report accuracy and completeness. The use of LLMs

further refines report quality, meeting clinical standards. Our evaluations show that this inte-

grated approach achieves competitive BLEU-4, METEOR, and ROUGE-L scores compared

to the current state-of-the-art models. We also review recent trends in automated report

generation, such as Retrieval-Augmented Generation (RAG) and LLM-only architectures,

and analyze the trade-offs between larger and domain knowledge-driven models.

This research advances medical imaging by offering a robust tool for automated radiology

report generation, enhancing patient diagnosis and treatment outcomes while reducing ra-

diologist workload. It also provides insights into current research directions and emphasizes

the importance of integrating advanced AI technologies into clinical practice.
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Chapter1

Introduction

1.1 What is a Chest X-ray Radiology Report?

A radiology report is a critical medical document that provides an interpretation of findings

from radiological images, such as chest X-rays. This report is integral to the diagnostic pro-

cess, as it translates complex image data into actionable medical information. Radiologists

examine these images to identify abnormalities, determine the presence of diseases, and as-

sess the progression or resolution of conditions. The report typically includes a description

of the findings, an assessment of their clinical significance, and recommendations for further

diagnostic tests or treatments [1].

The report’s content is structured to ensure clarity and comprehensiveness. It begins with

a summary of the imaging procedure, followed by detailed observations of the anatomical

structures examined. Findings are often categorized based on their severity and potential

impact on patient health. For instance, a report may highlight significant findings such as

tumors or fractures while noting less critical observations that may require monitoring. The

radiology report is crucial not only for diagnosing and monitoring conditions but also for

guiding subsequent clinical decisions and treatment plans [2]. In this work, we often use the

terms Radiology report or Chest X-ray report interchangeably but they both refer to the

same problem.

1



INTRODUCTION 2

Figure 1.1: An example of a chest x-ray image and its corresponding radiology
report generated by a Radiologist or a Radiology Report Generation (RRG) model.

1.2 Why Automate The Chest X-ray Report Genera-

tion ?

Figure 1.2: Increase in Articles related to radiology report gen-
eration. Figure taken from [3].

The automation of chest X-ray report generation is becoming increasingly urgent
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due to the overwhelming demand for radiological services. In the UK, for example, 97% of

imaging departments report being unable to keep up with the growing volume of imaging

requests [3]. This imbalance between demand and capacity often leads to reporting delays,

which can adversely affect patient care. Clinicians may be forced to make critical decisions

based on preliminary or incomplete information, potentially compromising patient outcomes.

Automation has the potential to address these challenges by streamlining the report gen-

eration process. Automated systems can process large volumes of images more rapidly than

human radiologists, reducing wait times and alleviating the burden on radiology depart-

ments. Moreover, by providing timely and consistent reports, automation can ensure that

clinicians have access to reliable diagnostic information when making decisions, thereby im-

proving patient management and treatment planning. Figure 1.2 shows the growing interest

in automated report generation.

1.3 Challenges In Radiology Report Generation (RRG)

For Chest X-ray

In addressing the complexities of chest X-ray report generation, several challenges must be

overcome. This section explores the key obstacles, including data scarcity, interpretability

issues, and the specialized knowledge required for effective reporting.

Data Scarcity: One of the primary challenges in automatic radiology report generation

is the scarcity of high-quality, labeled datasets. Due to the sensitive nature of medical data

and the complexity of image interpretation, acquiring large, annotated datasets for training

AI models is difficult. The MIMIC-CXR [4] dataset, while the largest publicly available

radiology dataset for chest X-rays, still has limitations in terms of data diversity and quality.

This scarcity hampers the development of robust AI models capable of generating accurate

and reliable reports.

Interpretability: Another significant challenge is the ”black box” nature of many AI



INTRODUCTION 4

models [5]. These models often provide outputs without transparent explanations, making it

difficult for radiologists to trust and understand the generated reports. In the medical field,

the rationale behind diagnostic decisions is crucial for acceptance and clinical integration.

Without clear interpretability, the adoption of automated reporting systems may be limited,

as radiologists need to be confident in the AI’s decision-making process.

Specialized Knowledge Required for Chest X-ray Reporting: Generating accu-

rate reports for chest X-rays involves not only the identification of anatomical structures but

also an understanding of their various attributes and potential pathologies. The human chest

X-ray contains numerous anatomical objects, such as the lungs, heart, and ribs, each with

multiple attributes that must be considered. For example, detecting and describing a lung

nodule involves assessing its size, shape, and position relative to other structures. Automated

systems must be capable of accounting for these complexities to produce comprehensive and

clinically useful reports.

Additionally, effective reporting requires integrating detailed anatomical knowledge with

clinical context. Automated systems must be designed to recognize and interpret subtle

variations in anatomical features and their implications for diagnosis and treatment. This

necessitates advanced algorithms that can mimic the nuanced understanding of experienced

radiologists, who combine technical expertise with clinical judgment to generate meaningful

and actionable reports [6].

Integration with Clinical Workflows: Even if an system generates accurate reports,

integrating it into clinical workflows presents another challenge. The system needs to work

seamlessly with existing healthcare infrastructure, such as electronic health records (EHRs),

PACS (Picture Archiving and Communication Systems), and hospital information systems.

Moreover, the system should assist rather than hinder radiologists, augmenting their capa-

bilities without overwhelming them with false positives or irrelevant suggestions.

Ethical and Legal Concerns: The deployment of report generation systems in health-

care raises important ethical and legal concerns. Issues such as patient privacy, data security,
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liability in the case of errors, and the potential for bias in AI algorithms all need to be care-

fully addressed. There are also concerns about over-reliance on AI systems, which could lead

to deskilling of radiologists or a lack of oversight in critical cases.

Figure 1.3: Example of the anatomical regions like lungs, heart, bone and its related at-
tributes. Figure taken from [6].



Chapter2

Related Work

Radiology report generation (RRG) generally follows a cross-modal generation framework

since it is similar to image captioning, though it differs in the length and complexity of

the generated text [7] [8] [9] [10] [11] [12]. The goal is to generate a corresponding radiology

reportR from a given radiology image I by extracting essential semantic information from the

image and producing an accurate and descriptive report. Most existing methods utilize an

encoder-decoder architecture, where a visual encoder fv extracts high-level semantics—such

as latent representations, medical terms, or semantic graphs—from the image, represented

as Hv. A text decoder ft then transforms Hv into the descriptive text of the report R. This

process can be summarized as:

R = ft(Hv), Hv = fv(I). (2.1)

The current literature on radiology report generation encompasses five broad techniques

discussed below. These techniques are not mutually exclusive but are distinguished by the

core focus and methodology of each work.

6



RELATED WORK 7

2.1 Using Whole Chest X-ray Image For Global Fea-

tures

One common approach in radiology report generation is treating the entire chest X-ray image

as a single entity for feature extraction. Vision transformers (ViTs) [13] have emerged as a

popular architecture in this domain, leveraging the ability to process global information from

the full image without explicit localization of anatomical regions. Unlike traditional convo-

lutional neural networks (CNNs), which operate on local receptive fields, vision transformers

divide the image into patches and apply self-attention mechanisms to capture long-range de-

pendencies across the entire image. This allows the model to holistically analyze the global

structure of the X-ray, making it suitable for extracting complex patterns that span the

whole image. However, this method may struggle to capture fine-grained details in specific

anatomical regions, which could impact the accuracy of the generated report in certain clin-

ical scenarios. Despite this limitation, treating the chest X-ray as a whole entity remains a

prominent direction in the field of radiology report generation, particularly for large-scale

datasets where generalization across diverse pathology is important. These studies [6] [14] [7]

[15] [16] [17] [18] [19] [20] [21] harness the representational capabilities of transformers, aug-

mented by domain-specific knowledge, to demonstrate that utilizing the entire chest X-ray

image can yield strong performance in the task of radiology report generation (RRG).

2.2 Extracting Local Anatomical Visual Features

Another prominent approach in RRG focuses on extracting visual features from specific

anatomical regions within the chest X-ray, such as the left lung, right lung, and heart.

This method begins with segmenting these regions of interest (ROIs) to capture localized

information. By isolating each anatomical structure, the model can generate region-specific
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Figure 2.1: A generic architectures representing global visual
features based models [22].

feature representations that more accurately reflect localized pathologies, which are often

missed when treating the entire image as a single entity.

Once the features are extracted for each region, they are used to generate region-specific

portions of the radiology report. This allows for more targeted descriptions of abnormalities

in different parts of the chest, which is crucial in clinical practice where certain conditions

are localized. After the generation of individual reports for each anatomical region, these

descriptions are combined to form a cohesive and comprehensive radiology report. This

modular approach improves interpretability and allows radiologists to focus on specific areas

of concern, aligning the generated reports with clinical expectations and practices. Studies

like [23] [24] [25] [26] [27] showcase the advantages of using these local features for RRG.
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Figure 2.2: A generic architectures representing local visual fea-
tures based models [22].

2.3 Fusion of Global And Local Features

A more advanced approach in Cheat X-ray radiology report generation (RRG) involves the

fusion of global and local features to create a more comprehensive understanding of the chest

X-ray image. This method combines the strengths of both global feature extraction, which

captures overall patterns and structures across the entire image, and local feature extraction,

which focuses on specific anatomical regions such as the lungs, heart, and diaphragm. By

integrating these two levels of information, models can generate more accurate and detailed

radiology reports.

The fusion of global and local features allows the model to balance the contextual in-

formation that spans the entire image with the precise details found in localized regions.

For example, global features may help detect generalized patterns such as bilateral opaci-

ties, while local features can provide detailed descriptions of focal abnormalities like nodules

or consolidations in specific regions. This holistic approach helps the model generate re-
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ports that are not only more coherent but also more clinically relevant, as they take into

account both the broader context and the finer details of the radiological findings. Tech-

niques such as Graph Neural Networks (GNNs) and attention-based mechanisms are often

employed to effectively integrate global and local information, enhancing the overall qual-

ity and completeness of the generated reports. Recent studies like [28] [29] [30] [31] [32]

[33] have demonstrated that the fusion of global and local features effectively addresses the

limitations inherent in relying solely on either approach. By integrating these two levels of

feature representation, these works highlight the potential for improved diagnostic accuracy

and more comprehensive radiology report generation.

Figure 2.3: A generic architectures representing the global-local fusion based models [22].

2.4 Large Medical Domain LLMs

In recent advancements in Chest X-ray radiology report generation (RRG), large language

models (LLMs) pre-trained on medical domain data have been employed with prompt en-

gineering [34] [35] or task-specific fine tuning techniques [36] to enhance the quality and

relevance of generated reports. Models such as those with up to 84 billion parameters lever-
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age extensive training on medical texts to provide high expressive power and contextual

understanding specific to radiology. This pre-training allows these LLMs to utilize informa-

tion from diverse medical datasets, enhancing their ability to generate accurate and coherent

radiology reports by drawing on a broad spectrum of medical knowledge.

The use of these large-scale LLMs offers several advantages. Their substantial capacity

allows them to capture and integrate complex medical concepts, resulting in reports that

are both comprehensive and contextually appropriate. Additionally, their training on exten-

sive medical datasets enables them to provide relevant insights and details that improve the

quality of the generated reports. However, there are notable challenges associated with these

models. Issues such as hallucination, where the model generates plausible but incorrect or

misleading information, can undermine the reliability of the generated reports. Furthermore,

the substantial size of these LLMs poses significant drawbacks, including high memory foot-

print, reduced interpretability, and increased inference time. These factors can complicate

the deployment and practical use of such models in clinical settings. Studies like [37] [38]

[39] are some of the other studies that leverage LLMs for the radiology report generation

and also showcase the problems of LLMs like hallucinations. The current state-of-the-art for

Automated Radiology report generation [40] uses fine-tuned LLMs that can generate reports

based on multiple inputs like frontal view, lateral view and previous reports.

2.5 Retrieval Augmented Generation (RAG)

In recent years, Retrieval-Augmented Generation (RAG) [41] has gained significant popular-

ity in various generation tasks, including RRG. The core idea of RAG is to enhance generative

models by incorporating external knowledge through retrieval mechanisms. Instead of re-

lying solely on pre-trained language models, RAG systems retrieve relevant documents or

information from external databases during the generation process, thereby grounding the

output in real-world data and improving factual accuracy.
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RAG addresses several key challenges inherent in large language models (LLMs), partic-

ularly the issue of hallucination—where the model generates content that is plausible but

factually incorrect [42]. By retrieving and incorporating relevant external knowledge, RAG

can mitigate this problem, ensuring that the generated reports are both accurate and re-

liable. This approach is especially valuable in the medical domain, where the correctness

of generated information is critical. When applied to chest X-ray report generation, RAG

can retrieve pertinent medical literature, case studies, or similar X-ray reports, providing a

robust foundation for generating precise and contextually appropriate radiology reports.

In the context of chest X-ray report generation, RAG has the potential to significantly

improve the quality and reliability of the generated reports. By leveraging a retrieval mech-

anism, RAG models can access relevant external data, such as previous radiology reports or

clinical guidelines, which can help in generating more detailed and accurate reports. This

integration of retrieval with generation offers a promising avenue for overcoming some of the

limitations of traditional LLM-based approaches in RRG, particularly in ensuring that the

generated content aligns with real-world medical knowledge. Recently [43] has show that

RAG coupled with LLMs are a powerful tool for Radiology Report generation. Additionally

studies [44] [45] has showcases the use of RAG.



Chapter3

Methodology

3.1 Overview

In this methodology, we propose a multi-stage approach for automated radiology report

generation. First, 29 anatomical regions are detected in frontal chest X-rays using a Faster-

RCNN model, which extracts feature representations for each region. These features are

then filtered using a binary classifier, referred to as the Region Significance Classifier, to

retain only S number of features relevant to report generation.

Simultaneously, global image features are extracted using a CLIP model. These global

features are concatenated with the filtered local features, combining both levels of infor-

mation. The concatenated feature set is passed through three graph convolution layers,

facilitating information sharing between regions and further integrating global and local

feature representations.

Finally, the enriched feature vectors are decoded using the Llama LLM. Each representa-

tion is fed into the LLM one at a time after project from 1024 dimension to 4096 dimension

due to Llama’s token representation vector size, which generates sentences autoregressively,

one word at a time. A pseudo self-attention mechanism is employed in the first layer of the

LLM to integrate region-specific features during the report generation process.

13
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Figure 3.1: An overview of the proposed architecture.

3.2 Modules

3.2.1 Anatomical Region Detection and local feature extraction

For anatomical region detection, we employ the Faster R-CNN [46] model with a ResNet-50

backbone, pre-trained by [23] then fine-tuned by us for our objective function. The Faster

R-CNN framework includes a Region Proposal Network (RPN), which generates object pro-

posals—bounding boxes that potentially contain anatomical regions—based on feature maps

extracted by the ResNet-50 backbone from the input chest X-ray image. A Region of In-

terest (RoI) pooling layer then maps each object proposal onto the backbone feature maps,

extracting uniform-sized feature maps for each proposal. These RoI feature maps are clas-

sified into one of 30 classes, 29 anatomical region classes and 1 background in accordance

with the standard Faster R-CNN procedure.

To extract the visual features of the 29 anatomical regions, we identify the “top” object

proposal for each class. The top object proposal for a given region class is determined by

selecting the proposal with the highest class probability score among all proposals. If a

region class does not achieve the highest score in any proposal, it is considered undetected

and is excluded by the region selection module. The visual features of the selected regions,
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represented as a matrix of size R29×1024, are derived from the 29 RoI pooling layer feature

maps R29×2048×H×W . The spatial dimensions are reduced through 2D average pooling, and

the dimension of the feature maps is reduced from 2048 to 1024 via a linear transformation.

Figure 3.2 is a broad overview of a Faster R-CNN workings.

Figure 3.2: The Anatomical Region detection module that uses Faster-RCNN.

3.2.2 Global Feature Extraction

The Global Feature Extraction module processes the entire Chest X-ray image by passing it

through a CLIP [47] model, which was initially pre-trained on the MIMIC-CXR dataset by

[48] and subsequently fine-tuned by us for our specific objective. CLIP has gained popularity

due to its effectiveness in extracting robust image features and its seamless alignment with
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textual information, making it a strong candidate for image to text tasks.

The output of the global feature extraction process is a feature vector of size R1024. This

global feature vector serves as a contextual representation of the entire image and is sub-

sequently used to provide each anatomical region’s local features with a broader contextual

understanding of the global image. By incorporating this global context, the model can

generate more coherent and accurate radiology reports.

Figure 3.3: Pre-training of CLIP model for Chest X-ray images and corresponding text
reports [47].

3.2.3 Graph Convolution Network

Graph Convolution Networks (GCNs) [49] extend the concept of convolution to graph struc-

tures, allowing us to operate on non-Euclidean data. Unlike traditional 2D convolution,

where a weighted sum is computed over a fixed spatial neighborhood of pixels, graph con-

volution defines neighborhoods based on the graph structure. This flexibility allows us to

define arbitrary neighborhoods, enabling GCNs to adapt to various data types, including

those with irregular or complex relationships between nodes. Figure 3.4 shows the difference
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between the structure of a 2D convolution and a Graph convolution. Figure 3.5 explains the

graph convolution operation.

In our framework, after extracting local anatomical features, we append the global feature

vector to form a set of S + 1 feature vectors, where S represents the number of anatomical

regions. Each of these S+1 feature vectors is treated as a node in a graph. The connectivity

of this graph is defined such that each node is connected to four other nodes: the global

feature node and its three nearest neighboring nodes. The nearest neighbors are determined

based on the top-3 most frequently co-occurring regions in our training dataset.

This graph is then processed through three layers of graph convolution, where each layer

performs convolution operations on the graph nodes based on the defined neighborhood

structure. These graph convolution operations propagate information across nodes, enabling

the fusion of global and local features in a more structured manner, thereby enhancing the

overall representation for generating accurate and coherent radiology reports. Figure 3.6

shows the general structure of a Graph convolution network. After the Graph Convolution,

each regional feature has some information shared from other features, making them robust

and context-aware.

Figure 3.4: Difference between the structure of a Image with 2D
convolution and a Graph convolution on a graph [50].
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Figure 3.5: The Graph Convolution operator, f is the feature
vector and the output of Graph convolution on node A with its
neighbours B, C, D is a weighted sum of the features of A, B, C
& D [51].

Figure 3.6: The Graph Convolution network, Each of the S+1 feature vectors is considered
a node in the Graph and the X is the neighbours list for the graph [50].
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3.2.4 Large Language Model

For the language modeling component, we utilize the 8-billion-parameter Llama3 LLM model

[39]. Llama3 operates as an autoregressive neural network based on self-attention mecha-

nisms, where the generation of each token is conditioned on the preceding tokens in the

sequence. We pass each of the output feature vectors from the GCNs to a Dense network

for projecting to 4096 dimension representation one at a time then to the LLM for decoding

till end-of-sentence token is generated. The self-attention mechanism can be formulated as:

SA(Y ) = softmax
(
(YWq)(YWk)

⊤) (YWv), (3.1)

where Y denotes the token embedding, and Wq, Wk, and Wv are the projection matrices

for queries, keys, and values, respectively.

To integrate region visual features into the language model, we adapt the approach of

pseudo self-attention , as outlined by . This technique involves incorporating the region

visual features directly into the self-attention mechanism of the model. We only modify the

first attention layer of the LLM The modified pseudo self-attention can be expressed as:

PSA(X, Y ) = softmax

(YWq)

XUk

YWk


⊤

XUv

YWv

 , (3.2)

where X represents the region visual features, and Uk and Uv are newly initialized pro-

jection parameters for keys and values, respectively. Y represents the token from previous

auto-regression step. This approach allows the model to generate text based on both the

preceding tokens and the visual features of the regions.

The projection from a 1024-dimensional feature space to a 4096-dimensional space poses

a significant computational bottleneck in our current model architecture. To address this
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challenge, future research should explore more efficient methods for dimensional expansion.

This could involve leveraging advanced projection techniques that optimize the transforma-

tion process, ensuring that essential feature information is retained while reducing computa-

tional overhead. Alternatively, a promising avenue could be the distillation of large language

models (LLMs), wherein the model’s representational capacity is compressed from 4096 di-

mensions back to 1024. Model distillation offers dual advantages: it can significantly decrease

the number of parameters in the model, which in turn reduces both memory footprint and

inference time. Importantly, this approach aims to maintain, if not enhance, the model’s

performance by retaining critical learned knowledge during the compression process. There-

fore, future work should focus on integrating LLM distillation strategies to balance model

efficiency with high-quality output in medical report generation tasks.

Figure 3.7: The workflow of decoding the fea-
ture vectors into natural language text using
Llama3. Each feature vector is decoded one at
a time.
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3.3 Training

The training process for the model is executed in three distinct phases. Initially, only the

Anatomical Region Detector is trained. In the second phase, this detector is integrated with

the Region Significance Binary Classifiers and trained together. Finally, the complete end-

to-end model, with all parameters trainable, is trained. During the training of the language

model, only the region visual features associated with reference sentences are utilized, under

the assumption that the region selection module will accurately identify these regions during

testing. For instances where multiple sentences correspond to a region, these sentences are

concatenated to enable the model to learn how to generate multiple sentences in such cases.

The following is the Loss function with which the whole model is trained:

L = λobj · Lobj + λsig · Lsig + λlanguage · Llanguage (3.3)

The loss function used in this model comprises three components: the anatomical region

detection loss (Lobj), the region significance classification loss (Lsig), and the language gen-

eration loss (Llanguage). The anatomical region detection loss focuses on regressing bounding

boxes and applying Binary Cross Entropy (BCE) for detecting anatomical regions, while

also incorporating dynamic class sensitivity weighting to account for varying class impor-

tance [52]. The region significance classification loss is computed using BCE, aiming to

accurately identify significant regions that contribute to the final report generation. Finally,

the language generation loss is handled by Cross Entropy, which ensures the model gener-

ates coherent and relevant text for the radiology reports. These three loss components are

balanced by their respective weights, λobj, λsig, and λlanguage, during the model’s training

process.

We use effective batch size of 64, max epochs as 40, Learning rate as 5e-05 with a learning

rate scheduler, Number of beans for beam search as 4, a BERT similarity score of 0.9 for
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removing similar sentences and NVIDIA H100 GPUs for training our model.

3.4 Inference

The final radiology reports are assembled by combining the generated sentences from the

identified anatomical regions. In cases where certain pathologies extend across multiple

regions or when anatomically similar areas (e.g., left and right lung) are free from abnor-

malities, the generated text may include repetitive or identical sentences. To address this

redundancy, BERTScore [53] is employed to measure the similarity between sentences. When

duplicates are detected, the shorter sentence is discarded in favor of the longer one, as the

latter typically contains a more comprehensive and clinically valuable description.
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Experiments and Ablation Study

4.1 Dataset and Pre-processing

We utilize the Chest ImaGenome v1.0.0 [54] dataset to train and assess our model. This

dataset is derived from the MIMIC-CXR [4] collection, which includes chest X-ray images

along with their associated free-text radiology reports. The Chest ImaGenome dataset offers

automatically generated scene graphs for the MIMIC-CXR images. These scene graphs

provide detailed descriptions of individual frontal chest X-ray images, including bounding

box coordinates for 29 distinct anatomical regions in the chest. Additionally, they include

sentences corresponding to these regions, extracted from the linked radiology reports when

available. We adopt the official dataset split, resulting in 166,512 images for training, 23,952

for validation, and 47,389 for testing.

All images are resized to 512x512 pixels, maintaining the original aspect ratio, with

padding applied if necessary. They are normalized to have zero mean and unit standard

deviation. During training, data augmentation techniques such as color jitter, Gaussian

noise, and affine transformations are employed to enhance the robustness of the model. For

the textual data, redundant whitespaces (e.g., line breaks) are removed. In line with previous

research, the findings section of the radiology reports from the MIMIC-CXR dataset is used

as the reference for the report generation task. This section encompasses the radiologist’s

observations. Reports with empty findings sections are excluded, leaving approximately

149,000 images and reports for training, approximately 28,000 test images with corresponding

23
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reference reports and approximately 14000 for validation. No additional processing is applied

to these extracted reports, unlike in other studies.

4.2 Evaluation Metrics

We assess the model using widely recognized natural language generation (NLG) metrics,

including BLEU [55], METEOR [56] and ROUGE-L [57]. These metrics evaluate the sim-

ilarity between the generated and reference reports by identifying matching n-grams (i.e.,

overlapping words). For sentence-level evaluation, we primarily use METEOR, which is

suitable for both sentence- and report-level assessments, unlike metrics such as BLEU. How-

ever, traditional NLG metrics do not effectively capture the clinical correctness of generated

reports. Therefore, we also report clinical efficacy (CE) metrics as seen in previous work

[23]. These CE metrics evaluate the generated and reference reports based on the presence

or absence of key clinical observations, providing a measure of diagnostic accuracy.

4.3 Ablation Study

4.3.1 Global and Local Features Significance

The model’s performance was evaluated using global features (GF) alone, local features (LF)

alone, and a fusion of both. The use of global features yielded sub-optimal performance due

to the simplicity of the CLIP model. Local features, while demonstrating good performance

independently, achieved the best results when fused with global features. Consequently,

the final architecture incorporates this fusion approach to optimize performance. Table 4.1

shows the performance.



EXPERIMENTS AND ABLATION STUDY 25

4.3.2 Effect of different global feature extractors

We experimented with a basic ResNet50 as a global feature extractor and a fine-tuned

ResNet50 backbone from CXR-CLIP. The CXR-CLIP variant demonstrated superior per-

formance compared to the basic ResNet50. Table 4.2 shows that CXR-CLIP performance

better hence used in the final architecture.

4.3.3 Effect of Dynamic Class Sensitivity (DCS) in loss function

for local anatomical feature extraction

Certain anatomical regions are more challenging to detect than others. To address this,

we incorporate dynamic class sensitivity into the loss function, penalizing the model more

heavily when it fails to identify regions from classes with the lowest detection accuracy in the

previous validation cycle. Class weights are determined dynamically based on their accuracy

[52]. Table 4.3 shows that DCS gives better performance hence used in the final architecture.

4.3.4 Effect of different number of GCN layers

The number of GCN layers is a hyperparameter that must be empirically determined. Our

experiments indicate that, for this specific problem, using three GCN layers yields the optimal

performance. Table 4.4 shows the performance of each setup with different number of layers.

4.3.5 Effect of different LLMs

We evaluated the performance of different-sized language models by using a smaller GPT-2

Medium and a more recent and bigger LLaMA model with 8 billion parameters to generate

natural language reports from features. As anticipated, the Llama 8B model significantly

outperformed the GPT-2 Medium. Table 4.5 shows the performance of both the LLMs.
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Table 4.1: Effect of using only Global features (GF), only Local Features (LF) and using
both.

Experiment Using only GF Using only LF Using GF + LF

BLUE-1 0.163 0.369 0.381

BLUE-2 0.128 0.249 0.255

BLUE-3 0.127 0.175 0.177

BLUE-4 0.112 0.121 0.127

METEOR 0.149 0.168 0.172

ROUGE-L 0.221 0.264 0.280

Table 4.2: Effect of using simple image encoder vs CLIP-CXR encoder.

Experiment Using simple Image encoder Using CLIP-CXR

BLUE-1 0.373 0.381

BLUE-2 0.249 0.255

BLUE-3 0.175 0.177

BLUE-4 0.126 0.127

METEOR 0.168 0.172

ROUGE-L 0.264 0.280

Table 4.3: Effect of Dynamic Class Sensitivity (DCS) for local features.

Experiment No DCS With DCS

BLUE-1 0.373 0.381

BLUE-2 0.249 0.255

BLUE-3 0.175 0.177

BLUE-4 0.126 0.127

METEOR 0.168 0.172

ROUGE-L 0.264 0.280
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Table 4.4: Effect of using different number of GCN layers.

Experiments 2-layers 3-layers 4-layers

BLUE-1 0.373 0.381 0.380

BLUE-2 0.249 0.255 0.255

BLUE-3 0.175 0.177 0.176

BLUE-4 0.126 0.127 0.125

METEOR 0.168 0.172 0.169

ROUGE-L 0.264 0.280 0.270

Table 4.5: Effect of using different LLMs.

Experiment GPT2-Medium Llama-3

BLUE-1 0.371 0.381

BLUE-2 0.245 0.255

BLUE-3 0.176 0.177

BLUE-4 0.127 0.127

METEOR 0.170 0.172

ROUGE-L 0.267 0.280
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4.4 Experiments With RAG

Retrieval-Augmented Generation (RAG) has recently gained prominence for reducing hallu-

cinations in LLMs, prompting us to explore its application in radiology report generation,

as seen in similar studies. Study [58] use a conventional RAG approach with global image

features, but our experiments show that incorporating local features significantly improves

report quality. We propose an advanced RAG framework that extracts and utilizes region-

specific features, enhancing radiology report generation.

For our experiments, we constructed a subset of 1,000 data points from the training

dataset to create a database consisting of region-wise image features and corresponding

radiology report phrases. The process begins by passing an input chest X-ray image through

an anatomical region detector. The segmented images are then processed using CXR-CLIP

to obtain feature vectors. These feature vectors are matched based on cosine similarity

scores greater than 0.95, allowing us to retrieve relevant phrases for each anatomical region

from the database. The retrieved phrases are fed to a fine-tuned LLM, like ChatGPT-4 or

LLaMA, which synthesizes common pathological findings and generates coherent sentences

for each region, creating the final radiology report. Figure 4.1 illustrates the proof-of-concept

architecture for this RAG approach. We use 5 sample input images and take 5 regions out

of the 29 to calculate the scores for our proof of concept. Table 4.6 shows that out approach

has a high meteor score which means the meaning of the generated report and actual report

is close.

Example: Ground truth phrase : ”A minimal left pleural effusion is also present. Mild

cardiomegaly with mild pulmonary edema. No pneumothorax.” and the findings based on

similar features with cosine similarity of greater than 0.95 is ”There are mild to moderate

bilateral pleural effusions and bibasilar atelectasis, particularly in the retrocardiac regions.

Mild to moderate pulmonary edema is noted with stable cardiomegaly. No pneumothorax

is seen.”. As we can see, the pathologies are correctly identified using the approach. A full
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scale architecture with extensive experiments will we done in the future.

Figure 4.1: An overview of the proof of concept for RAG as a viable way for Radiology
report generation.

Table 4.6: NLG scores for our RAG approach over a small sample test set of 10 input images
with 5 regions each.

Experiment Scores

BLUE-1 0.221

BLUE-2 0.137

BLUE-3 0.089

BLUE-4 0.049

METEOR 0.329

ROUGE-L 0.242
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Results

5.1 Sample Outputs

Figure 5.1: Different colors font shows similar sentences in generated and reference
report, abnormalities are detected and report accurately, there is one spurious sen-
tence that does not belong.

5.2 Evaluation

Our model demonstrates competitive performance in radiology report generation relative to

state-of-the-art (SOTA) methods. While it does not surpass the SOTA, it achieves com-

parable scores in Natural Language Generation (NLG) and Clinical Efficacy (CE) metrics

30
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Figure 5.2: Green sentences are seen in generated as well as reference report. Red sentences
not present in reference report, could be hallucinations by LLMs. This example highlights
the hallucination problem of the LLMs where it generated a highly plausible but inaccurate
sentence.

with significantly fewer model parameters. The METEOR score is particularly relevant for

evaluating NLG, as it considers the semantic meaning of sentences. BLEU and ROUGE-L

scores are utilized to assess the fluency and semantic accuracy of the generated reports. It

is important to note that the current SOTA model, MAIRA-2, incorporates additional in-

puts such as frontal and lateral views, as well as previous reports, which contribute to its

enhanced performance. Table 5.1 presents a comparison of NLG performance with other

radiology report generation approaches.

Clinical Efficacy (CE) is another crucial evaluation metric for radiology report generation,

emphasizing the accurate identification and reporting of abnormalities and pathologies. We

compare our results with two previously established SOTA models, using similar experimen-

tal setups for fair comparison. Reports are evaluated based on 14 different pathologies, with

precision, recall, and F1 score calculated against labeled ground truth, using ChestXbert for

labeling. Table 5.2 indicates that our model achieves competitive CE scores.

Additional qualitative metrics to consider include data efficiency, interpretability, mem-

ory footprint, inference time, and representational power for NLG. Experiments indicate

that combining medical domain-driven heuristics, such as anatomical region detection, with

the expressive capabilities of large language models (LLMs) can enhance radiology report

generation. Table 5.3 shows the qualitative metrics for different types of model architectures.
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Table 5.1: Natural Language generation evaluation and comparison with SOTA, the scores
are taken from the respective works. CMN [17], RGRG [23], Bootstrap-LLM [43], MAIRA-2
[40].

NLG Evaluation CMN RGRG Bootstrap-
LLM

MAIRA-
2

Proposed

BLUE-1(↑) 0.353 0.373 0.402 0.479 0.381

BLUE-2 (↑) 0.218 0.249 0.262 - 0.255

BLUE-3 (↑) 0.148 0.175 0.180 - 0.177

BLUE-4 (↑) 0.106 0.126 0.128 0.243 0.127

METEOR(↑) 0.142 0.168 0.175 0.430 0.172

ROUGE-L (↑) 0.278 0.264 0.291 0.391 0.280

No. of parame-
ters

300M 400M 14.2B 13B 8B

Table 5.2: Clinical Efficacy Evaluation compared to studies with similar experimental setup.
Scores taken from respective studies. RGRG [23], Bootstrap-LLM [43].

CE evaluation P(↑) R(↑) F1(↑)

RGRG 0.461 0.475 0.447

Bootstrap-LLM 0.465 0.482 0.473

Proposed 0.462 0.477 0.469

Table 5.3: Qualitative metrics to be taken into account when deciding the performance of a
model.

Metric Knowledge-driven LLMs based Combined

Memory Footprint Low High Moderate

Inference time Low High Moderate

Data efficiency High Low Moderate

Interpretability High Low Moderate

NLG capability Low High Moderate



Chapter6

Conclusion & Future Work

6.1 Conclusion

• Radiology Report Generation (RRG) presents significant challenges due to the com-

plexity of the task and various underlying difficulties.

• This study demonstrates that integrating domain-specific knowledge with the expres-

sive capabilities of large language models (LLMs) yields superior outcomes compared

to using either approach in isolation. This integration effectively addresses challenges

such as data scarcity and interpretability.

• The fusion of multiple features, including global and local anatomical features, en-

hances both Natural Language Generation (NLG) and Clinical Efficacy metrics, re-

sulting in improved overall model performance.

• Our approach achieves competitive results relative to state-of-the-art (SOTA) methods,

even with the use of only frontal chest X-ray images and a comparatively smaller

number of model parameters.

6.2 Future Work

• Explore integrating RAG with feature fusion techniques to mitigate the issue of hal-

lucinations in large language models (LLMs). This could help ensure that generated

reports are more accurate and grounded in relevant medical knowledge.

33
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• Investigate the impact of incorporating lateral chest X-ray views and previous radi-

ology reports alongside current frontal view images as additional inputs. This could

provide richer representations and improve both report generation accuracy and Clin-

ical Efficacy metrics.

• Experiment with various methods of feature fusion, such as attention-based mecha-

nisms or weighted combinations, to identify the most effective approach for enhancing

model performance and balancing global and local feature contributions.

• Research the potential of knowledge distillation techniques to transfer the knowledge

of large language models (LLMs) into smaller, more efficient models. This could help

reduce the model’s computational requirements while maintaining competitive perfor-

mance.
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