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Abstract—Road accidents persist as a significant global concern
despite ongoing enhancements in vehicular safety technologies,
including Advanced Driver Assistance Systems (ADAS). A sig-
nificant fraction of these accidents arise from driver distraction
activities that divert attention away from the task of driving.
According to the National Highway Traffic Safety Administration
(NHTSA), driver distraction accounts for roughly one-tenth of
road accidents in the United States, contributing to more than
3,000 fatalities annually. This paper introduces HOG-LPNet, a
novel distracted driver detection model that balances classifi-
cation accuracy with computational efficiency. Our approach
utilizes a lightweight Histogram of Oriented Gradients (HOG)
pre-processing technique, which is chosen for its rapid image
conversion but at the expense of producing feature maps that are
somewhat less distinctive. To mitigate this, we integrate contrast-
limited adaptive histogram equalization (CLAHE) for contrast
enhancement. We propose a Learnable Pooling Attention Module,
adapted from the convolutional block attention module (CBAM)
and streamlined to exclude spatial attention. This attention
module leverages learnable and global max pooling alongside
SiLU-activated fully connected layers to selectively amplify subtle
yet discriminative channels in the HOG-transformed feature
maps. On the State Farm Dataset, HOG-LPNet achieves 99.52%
accuracy, situating it competitively among current pioneering
approaches. By coupling fast, edge-oriented pre-processing with
a targeted Learnable Pooling Attention strategy, HOG-LPNet
offers a robust, near-real-time solution for mitigating driver
distraction, ultimately bolstering vehicular safety and reducing
accident rates.

Index Terms—Distracted Driver Detection, HOG-LPNet, Con-
volutional Neural Network (CNN), Histogram of Oriented Gradi-
ents (HOG), Contrast Limited Adaptive Histogram Equalization
(CLAHE), Learnable Pooling Attention Module , Deep Learning,
Road Safety

I. INTRODUCTION

Distracted driving is defined as any activity that diverts
attention from the primary task of driving [15]. This includes
activities like using a phone for texting or calls, interacting
with in-car systems, grooming, eating or drinking, reaching
for objects, or talking to passengers. It poses a significant
risk to both drivers and non-occupants and has become a
critical issue in road safety. Distracted driving has significantly
contributed to the rise in traffic accidents in the United States
[1][2]. Among the many distractions, texting while driving is
particularly concerning, as it takes a driver’s eyes off the road
for an average of five seconds. This is equivalent to driving the
length of a football field at 55 mph with closed eyes [3][16].
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The impact of distracted driving is reflected in troubling
statistics. In 2022 alone, 3,308 people lost their lives in crashes
involving distracted drivers, and 289,310 more were injured
[3]. Distraction-affected crashes accounted for 8% of fatal
crashes, 12% of injury crashes, and 11% of all police-reported
traffic accidents [3][17]. Texting while driving increases the
risk of a crash by 23 times compared to driving without dis-
tractions [2][3][18]. Young drivers aged 15–24 are particularly
affected, representing the highest proportion of distraction-
related crashes. In the same year, 621 non-occupants, including
pedestrians and cyclists, were killed in such incidents [3].

The economic cost of distracted driving is substantial,
covering medical expenses, infrastructure repairs, and property
damage. Approximately 14% of these damages are linked to
mobile phone use while driving [3]. These challenges highlight
the need to develop more effective methods to detect distracted
driving behaviors.

Recent advancements in computer vision and deep learn-
ing have led to significant transformations across industries,
including automotive safety. These advancements have been
key in developing more efficient models to make vehicles
safer and smarter [4]–[8]. Deep learning models, especially
Convolutional Neural Networks (CNNs), have become the
preferred approach for image classification tasks due to their
superior accuracy compared to traditional machine learning
methods. Researchers have explored advanced CNN models
such as AlexNet [4], VGG [5], GoogleNet [6], ResNet [7], and
InceptionResNetV2 [8]. Despite their success, these models
often require significant computational resources, which can
limit their use in real-time driver monitoring systems.

This paper focuses on lightweight and efficient methods for
detecting driver distraction, aiming to address the challenges
of real-world applicability and resource constraints.

II. RELATED WORK

III. DATASET

The dataset consists of HOG-transformed grayscale images
resized to 400×400 pixels from the original 640×480 images.
These pictures, taken inside a vehicle, show different driver
activities shown in Fig. 1. Each image falls into one of ten
categories: safe driving, texting with the right hand, talking
on the phone with the right hand, texting with the left hand,
talking on the phone with the left hand, operating the radio,
drinking, reaching behind, doing hair and makeup, or talking



Fig. 1: Examples of images from every class fo the State Farm Dataset.

to a passenger. The distribution of HOG-transformed images
across these classes is shown in Table I:

TABLE I: Image Distribution Across Driver Behavior Classes

Class (c1-c10) Actions Number of Images
c1 Safe Driving 2,372
c2 Texting with Right Hand 2,209
c3 Talking on the Phone with Right Hand 2,228
c4 Texting with Left Hand 2,255
c5 Talking on the Phone with Left Hand 2,255
c6 Operating the Radio 2,250
c7 Drinking 2,242
c8 Reaching Behind 1,998
c9 Engaging in Hair and Makeup 1,911
c10 Talking to a Passenger 2,108

The dataset shows slight differences in the number of
images per class, but it is generally balanced, ensuring a fair
representation of driver activities. It also includes 79,728 unla-
beled images for testing, which helps evaluate the model fairly
in conditions similar to real-world scenarios. All metadata,
such as timestamps, was removed to focus solely on visual
information, ensuring that the task remains within the scope
of computer vision. The dataset was split into training and
test sets based on drivers to eliminate the possibility of data
leakage, ensuring that no driver appears in both sets. This split
helps test the models on new driver patterns, making them
more reliable. The images were taken in a controlled environ-
ment where participants performed activities in a stationary
car being towed. This setup ensured safe and consistent data
collection. However, real-world driving may bring additional
challenges, such as movement, changing light, and different
camera angles. The dataset, with its HOG-transformed images
and balanced class distribution, is a valuable resource for
developing models to detect distracted driving behaviors. It
comes from the Kaggle competition, State Farm Distracted

Driver Detection, a well-known benchmark for studying driver
behavior.

IV. TECHNICAL APPROACH

A. Idea Behind the Approach

To effectively detect driver distractions while addressing the
computational challenges associated with real-time processing
due to its high parameter count, the design of HOG-LPNet is
based on two key principles:

1) Eliminating Background Noise and Focusing on Driver
Posture:
The model concentrates solely on the driver’s body out-
line and posture by removing unnecessary background
elements such as clothing colors and lighting variations.
Histogram of Oriented Gradients (HOG) is used to
preprocess driver images, emphasizing edges and shapes
to isolate the driver’s posture. This reduction in input
complexity allows the Convolutional Neural Network
(CNN) to learn more discriminative features, enhancing
classification accuracy [28].

2) Enhancing Feature Selection with Channel Attention:
After HOG preprocessing, the extracted features are
processed by a CNN integrated with Learnable Pooling
Attention Module. The attention module highlights the
most critical feature channels, allowing the model to
focus on key parts of the driver’s posture and actions.
This focused approach makes the model more accurate
by giving more importance to relevant features and less
to unimportant ones while also keeping the computations
efficient. The Learnable Pooling Attention compensates
for the lightweight nature of HOG preprocessing, en-
suring essential features are highlighted without adding
significant computational overhead.



Fig. 2: Original image (above) vs. HOG-preprocessed image
(below), highlighting structural edges and driver posture

3) Optimizing for Real-Time Deployment:
Although HOG-LPNet has approximately 82.64 million
parameters, more than some lightweight models, this de-
sign choice is intentional to achieve high accuracy. Real-
time deployment with such many parameters can be
challenging on resource-constrained hardware. However,
the model can be optimized by reducing the number of
output channels in convolutional layers. This adjustment
decreases the parameter count and speeds up inference
without significantly lowering accuracy. Additionally,
techniques like model pruning or quantization can fur-
ther reduce the number of parameters and enhance
inference speed without substantially compromising per-
formance [29].

B. HOG Pre-processing

Histogram of Oriented Gradients (HOG) is designed to
work with grayscale images. It focuses on capturing edge and
gradient information effectively represented through intensity
variations, as shown in Fig. 2. Each color image is first
converted to grayscale to perform HOG feature extraction.
This conversion eliminates color distractions and emphasizes
the structural outlines of the driver’s posture and movements,
simplifying the data for more effective feature extraction [30].
Once converted, HOG parameters are set to 12 orientations;
each cell-sized at 6×6 pixels and blocks comprising 2×2 cells.
This setup balances capturing essential details and keeping the
process efficient. The HOG method is applied to the grayscale
images to create gradient-based visuals that clearly outline

the driver’s posture and movements. To make these features
stand out, Contrast Limited Adaptive Histogram Equalization
(CLAHE) is used to improve contrast and emphasize key
details. This pre-processing step reduces input complexity by
isolating critical features, allowing the Convolutional Neural
Network (CNN) to focus on the most relevant aspects for
accurate driver distraction detection.

C. HOG-LPNet Model Architecture

The proposed CNN architecture seen in Fig. 3, comprises
four convolutional blocks designed to extract hierarchical fea-
tures efficiently while maintaining computational simplicity.
Each convolutional block uses a consistent 3×3 kernel size
with a stride of 1 and padding of 1 to preserve spatial dimen-
sions. The number of filters increases progressively, starting
with 32 in the first block and doubling in each subsequent
block, reaching 256 filters in the fourth. Batch normalization
is applied after the convolutional layers in the first and
third blocks to stabilize training and enhance convergence.
Additionally, a Learnable Pooling Attention Module follows
each convolutional block to dynamically prioritize the most
informative feature channels dynamically, improving feature
representation while keeping computational costs manageable.
After the convolutional layers, the network employs max
pooling with a kernel size of 2×2 to downsample the fea-
ture maps, reducing their spatial dimensions while retaining
critical information. The feature maps output by the fourth
convolutional block are flattened into a one-dimensional vector
to prepare them for classification. The flattened vector passes
through a series of fully connected layers, starting with 512
neurons and progressively reducing dimensionality to 256
neurons. Dropout regularization with a rate of 0.2 is applied
between the fully connected layers to prevent overfitting and
improve generalization. The final output layer uses a fully
connected layer to classify the processed features into the 10
target classes. This design prioritizes accuracy and efficiency
by combining convolutional layers for feature extraction with
channel attention modules. The increasing number of filters
across the layers allows the network to capture simple and
complex features. At the same time, the channel attention
modules ensure that the most critical parts of the input data
are emphasized.

D. Learnable Pooling Attention Module (LPAM) Architecture

The Learnable Pooling Attention Module (LPAM) in HOG-
LPNet is crafted to amplify the network’s focus on crucial
features while minimizing less relevant ones, thereby im-
proving the overall feature representation and classification
performance. The module operates on the grayscale input
feature map X ∈ RC×H×W , where C is the number of
channels, and H and W denote spatial dimensions, Fig. 4.
It employs three distinct pathways: global max pooling and
two learnable 1× 1 convolutional pooling layers.

Global max pooling is represented as:

Mmax = MaxPool(X), (1)



Fig. 3: Architecture of the HOG-LPNet Model

where Mmax ∈ RC×1×1 summarizes the maximum acti-
vation values in each channel. Alongside this, the learnable
pooling layers process the feature map using 1 × 1 convolu-
tions:

L1 = Conv1×1(X), L2 = Conv1×1(X), (2)

producing feature maps L1, L2 ∈ RC×H×W . These path-
ways enable adaptive refinement of the most relevant features.

The outputs from these pathways are transformed through
fully connected layers, where the channel dimensionality is
reduced by a factor of r = 8, leading to a reduced dimension
C ′ = C

r . This is expressed as:

F1 = σ(Conv1×1(L1)),

F2 = σ(Conv1×1(L2)),

Fmax = σ(Conv1×1(Mmax)),

(3)

where F1, F2, Fmax ∈ RC′×1×1, and σ denotes the SiLU ac-
tivation function. The SiLU activation introduces non-linearity,
improving gradient flow and helping prevent overfitting during
training.

The three outputs, F1, F2, and Fmax, are summed ele-
mentwise, and a final fully connected layer with a sigmoid
activation generates the channel attention map Achannel:

Achannel = σ(Conv1×1(F1 + F2 + Fmax)), (4)

where Achannel ∈ RC×1×1 dynamically weighs each channel
by its relevance.

Finally, the recalibrated feature map X ′ is computed by
applying the attention map to the original input feature map
using element-wise multiplication:

X ′ = X ⊙Achannel, (5)

where X ′ ∈ RC×H×W represents the refined feature map
with enhanced attention on the most important channels.

By integrating LPAM after each convolutional block, HOG-
LPNet ensures a robust and efficient mechanism for fea-
ture prioritization at every stage of processing. This balance
between computational simplicity and feature enhancement
makes HOG-LPNet well-suited for real-time applications, such
as detecting driver distractions in resource-constrained envi-
ronments.



Fig. 4: Learnable Pooling Attention Module Architecture

V. EXPERIMENTATION AND RESULTS

In this section, we describe the experiments conducted to
evaluate the performance of HOG-LPNet in detecting dis-
tracted driving behaviors. The dataset, comprising ten distinct
driver activity classes, was split into training and testing
sets, with 25% of the data reserved for testing. Notably, the
architecture of HOG-LPNet does not employ global average
pooling in the fully connected layers. Instead, a flattened
feature map of size 256×25×25 is directly used as the input
to the fully connected layer.

The choice not to use global average pooling was made
after initial experiments showed that it caused the loss of
critical spatial details needed for accurate classification. This
loss of information resulted in much lower accuracy and
caused the model to overfit the training data. Therefore, the
feature maps were flattened directly, keeping their spatial
dimensions intact. This approach allowed the network to retain
critical information about the structure and position of features,
which helped the model generalize better and achieve higher
accuracy.

During experimentation, we encountered problems with
the overfitting of training data. Shallow architectures with
a limited number of convolutional layers failed to capture
sufficient hierarchical features, leading to reduced accuracy
in training and validation data. Deeper architectures signifi-
cantly increased the number of parameters without improving
performance, making them less efficient.

The chosen medium-depth architecture provided a good
balance by effectively extracting key features while keeping
the computation manageable. To address overfitting, dropout
layers were added to the fully connected layers, reducing
reliance on specific neurons. Batch Normalization was applied
after alternate convolutional layers to stabilize training and
improve generalization. These changes made the model more
reliable and less prone to overfitting.

The Learnable Pooling Attention Module (LPAM) played
a vital role in refining the feature selection. It highlighted
the most important details in the input, enabling the network
to focus on essential elements at every processing stage.
Placing LPAM after each convolutional block helped the
model produce a more accurate and efficient representation
of the input features, enhancing its ability to detect driver
distractions effectively. The experiments conducted to evaluate
the model’s performance are detailed below.

A. Experiment 1

In the first experiment, the CNN baseline model was trained
with minimal augmentation, applying only random rotations
to add slight variability to the image orientation. Training was
carried out for 30 epochs with a batch size of 1 and a learning
rate of 0.001, taking 7 hours and 9 minutes to complete.
The model achieved an average accuracy of 98.16% and a
maximum accuracy of 99.52%. The classification results per
class, as shown in Fig. 5. (a), demonstrated good performance
across all categories. However, classes like ”Engaging in



Hair and Makeup” and ”Talking to a Passenger” showed
slightly higher misclassification rates than others. This could
be due to similarities in posture or hand movements with
other activities. The training and validation graphs in Fig.
5. (b), (c) demonstrate effective model performance, with a
steady decrease in loss indicating successful convergence and
minimal overfitting, and a rapid rise in accuracy during early
epochs stabilizing near 100%, showcasing robust learning and
generalization.

(a)

(b)

(c)

Fig. 5: Experiment 1: a) Classification results, b)training and
validation accuracy, and c) training and validation loss plots.

B. Experiment 2

The results of Experiment 2 show improved model per-
formance across most classes, with high accuracy and only
a few misclassifications. Some classes, like ”Texting with
Right Hand,” were classified ideally, showing the benefits
of the improved preprocessing and augmentation methods.
However, there were still a few errors in classes like ”Talking
to a Passenger” and ”Engaging in Hair and Makeup” as
shown in Fig.6. (a). Normalization, with a mean of 0.5 and

a standard deviation of 0.5, helped keep pixel values consis-
tent and made the training process more stable. The model
performed well overall; however, subtle activities remained
more challenging, indicating areas that could still be improved.
The model achieved an average accuracy of 97.93% and a
maximum accuracy of 99.49%, with a batch size of 10, a
learning rate of 0.01, and training conducted for 30 epochs.
This experiment also highlighted the balance between training
speed and accuracy. Training took 3 hours and 34 minutes,
faster than the baseline experiment, but it slightly dropped
average accuracy. The training and validation loss graph in
Fig. 6.(b), (c) shows a more consistent decrease compared to
the previous graphs, indicating improved stability in model
training. Similarly, the training and validation accuracy graph
reflects faster convergence and reduced fluctuations, highlight-
ing better generalization and overall performance compared to
earlier experiments.

(a)

(b)

(c)

Fig. 6: Experiment 2: a) Classification results, b) training and
validation accuracy, and c) training and validation loss plots.



C. Experiment 3

(a)

(b)

(c)

Fig. 7: Experiment 3: a) Classification results, b) training and
validation accuracy, and c) training and validation loss plots.

In this experiment, the preprocessing and augmentation
steps from Experiment 2 were kept the same, including random
rotations and normalization of pixel values with a mean of
0.5 and a standard deviation of 0.5. The number of epochs
was increased to 60 to study the impact of more extended
training. The model was trained with a batch size of 10
and a reduced learning rate of 0.001 to ensure stable weight
updates. The training took 7 hours and 45 minutes. The model
achieved an average accuracy of 98.47% and a maximum
accuracy of 99.49%. Extending the training period helped
the model learn better, improving its overall performance
compared to Experiments 1 and 2. Specifically, the average ac-
curacy achieved in this experiment was the highest among the
three, demonstrating the advantages of longer and more stable
training. The reduced learning rate ensured steady progress
during training and improved the model’s performance on
unseen data. This setup effectively balanced accuracy and

training duration for extended sessions. The classification
results in Fig. 7. (a), showed high accuracy across most classes,
with only a few mistakes in challenging categories such as
”Talking to a Passenger” and ”Engaging in Hair and Makeup.”
Similar to the earlier experiments, these errors were likely
caused by similarities in movements and features between
some activities.

D. Comparison with other models

TABLE II: Comparison of Models for Driver Distraction
Detection

Model Name Parameters (in Millions) Accuracy (%)

AlexNet + TripletLoss 63.2 98.6

VGG-GAP 140 98.7

Vanilla CNN with data augmentation 26.05 97.05

InceptionV3 + Xception-50 + Xception 214.3 97.0

+ VGG-19

HOG-LPNet 82.64 99.52

The comparison of models in Table II, highlights a balance
between accuracy, size, and complexity. AlexNet + TripletLoss
is a straightforward model with 63.2 million parameters and
achieves 98.6% accuracy. It is efficient and works well for
systems with moderate processing power. VGG-GAP, on the
other hand, improves accuracy slightly to 98.7%, but it comes
with a much larger size of 140 million parameters, which
makes it less practical for lightweight systems. The Vanilla
CNN with Data Augmentation is the most miniature model,
with only 26.05 million parameters, and achieves 97.05%
accuracy. This makes it a good choice for environments where
resources are limited, though it doesn’t perform as well as the
more advanced models. The ensemble model, which combines
InceptionV3, Xception-50, Xception, and VGG-19, uses a
vast 214.3 million parameters to achieve 97.0% accuracy.
Despite its complexity, its accuracy is slightly better than the
Vanilla CNN, which shows that adding more layers or models
doesn’t always guarantee significantly better results. The most
effective model is the proposed HOG-LPNet, which achieves
the highest accuracy of 99.52% while keeping the parameter
count at 82.64 million. It achieves a good balance between
performance and efficiency by using HOG preprocessing and
a Learnable Pooling Attention Module. This makes it an
excellent choice for real-time systems like detecting driver
distractions, where both speed and accuracy are critical. In
summary, simpler models like Vanilla CNN are useful for
low-resource situations, but HOG-LPNet stands out as the best
option for high-accuracy tasks without overwhelming resource
requirements. It strikes the right balance between being fast,
efficient, and accurate.

CONCLUSION

This article introduced the HOG-LPNet model, a balanced
neural network designed to classify driver activities and de-
tect distracted driving. The model uses techniques like the



Learnable Pooling Attention Module (LPAM), dropout lay-
ers, and batch normalization to strengthen feature selection,
reduce overfitting, and maintain stable training. Experiments
were conducted on a dataset with ten different driver activity
classes to study the effects of preprocessing, augmentation,
and hyperparameter tuning on the model’s performance. The
model achieved a maximum accuracy of 99.52%, the best
average accuracy of 98.47%, and the lowest average loss of
0.0586 with extended training. These results show that HOG-
LPNet provides both high accuracy and efficient performance.
The findings confirm the design of HOG-LPNet, especially
its ability to handle subtle and complex activities. This work
makes roads safer by offering a practical, real-time driver
monitoring solution. Future studies can focus on expanding
the dataset, testing the model in diverse driving conditions,
and exploring improved architectures to further enhance its
capabilities.
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[30] Mefteh, S., Kaâniche, MB., Ksantini, R., Bouhoula, A. (2023). Learn-
ing Human Postures Using Lab-Depth HOG Descriptors. In: Nguyen,
N.T., et al. Computational Collective Intelligence. ICCCI 2023. Lecture
Notes in Computer Science(), vol 14162. Springer, Cham. Available:
https://dl.acm.org/doi/10.1007/978-3-031-41456-5 42


	Introduction
	Related Work
	Dataset
	Technical Approach
	Idea Behind the Approach
	HOG Pre-processing
	HOG-LPNet Model Architecture
	Learnable Pooling Attention Module (LPAM) Architecture

	Experimentation and Results
	Experiment 1
	Experiment 2
	Experiment 3
	Comparison with other models

	References

