
USB HID Interface and Host Application Design
for the Tiva C Series LaunchPad Evaluation Board

Jennifer Tsang
State University of New York at Buffalo

jtsang3@buffalo.edu
Advised by Dr. Kris Schindler

State University of New York at Buffalo
kds@buffalo.edu

Abstract—USB human interface devices (HID) can be used
to provide user input to embedded systems applications. As a
result, microcontrollers may need to be able to interface with
different HID device types. The purpose of this project was to
explore the process of configuring a microcontroller for USB host
connectivity, implementing interfaces for USB HID devices, and
developing USB host applications for embedded systems.

Using the TivaWare USB library, a host gamepad interface
was developed for an ARM Cortex-M4-based microcontroller,
allowing the microcontroller to enumerate a Logitech F710
wireless gamepad and receive and parse HID report data from
the gamepad. This gamepad interface and a HID mouse device
interface provided through the TivaWare USB library were then
used to develop applications for controlling an RC car built with
the ARM Cortex-M4 microcontroller.

The results of this project can serve as a framework for
developing interfaces for other USB HID devices. This report
outlines the steps taken to configure an ARM Cortex-M4-based
microcontroller for USB host functionality and to develop a host
device interface for a USB HID gamepad.

I. INTRODUCTION

Human Interface Devices (HID) are peripheral devices that
allow humans to interact with computers. HID devices can be
used to provide user input to embedded systems. However, not
all microcontrollers provide native USB drivers or USB host
interfaces for many HID device types.

One example of this is the Tiva C Series LaunchPad Evalu-
ation Board, an evaluation kit for ARM Cortex-M4-based mi-
crocontrollers. The TM4C123GH6PM microcontroller in the
LaunchPad includes a USB controller, offering USB device,
host, and OTG capability. Additionally, the TM4C123GH6PM
microcontroller is compatible with the Texas Instruments
TivaWare USB library, a collection of C data types and func-
tions for developing USB applications. However, the TivaWare
USB library only provides interfaces for USB HID mouse
and keyboard devices. In order to interface other HID device
types with the TM4C123GH6PM microcontroller, new device
interfaces must be implemented.

This project details the configuration of the Tiva C Series
LaunchPad for USB host functionality, development of a host
interface for a USB HID gamepad, and the utilization of HID
device interfaces to develop USB host applications for an
embedded system.

II. GAMEPAD INTERFACE DEVELOPMENT

A. Analysis of Gamepad Enumeration and Report Structure
The gamepad utilized in this project was the Logitech F710

wireless gamepad, used in DirectInput mode. Wireshark and
the USBPcap USB sniffer tool were used to examine the
enumeration process of the gamepad on a laptop and to analyze
the report descriptors of the gamepad in order to gain a better
understanding of the gamepad’s HID report structure.

Fig. 1. The HID report descriptor of the gamepad shown in Wireshark.

Fig. 2. Example of a gamepad HID report. Both joysticks are in neutral
position and button 6 on the gamepad is being pressed.

Based on the HID report descriptor, the gamepad’s HID
reports encoded three input types - joysticks, a hat switch,
and buttons.



The two joystick inputs were each represented as 2 axes,
with the gamepad providing 4 total input axes (X, Y, Z, Rz).
Each axis was represented by one byte in the HID report with
values ranging from 0 to 255 corresponding to how far the
joystick was pushed in each direction.

Additionally, the 12 buttons on the gamepad were repre-
sented by one bit, which was a 0 or a 1 depending on whether
or not the button was being pressed.

Inputs from the hat switch were represented in the report by
4 bits. However, inputs from the hat switch were not parsed
or utilized in this project.

B. Hardware Modification
As part of USB host operation, the LaunchPad needed

to supply power to any connected USB devices. This was
accomplished by soldering a jumper to the H18 test point on
the board. The H18 test point connects to USB VBUS, the
power line for the USB connector. By connecting this jumper
to an external 5V power source, connected USB devices
could be powered from the LaunchPad’s USB connector. This
connection was also used to power the internal LaunchPad
circuit by putting the Power Select switch in the Device
position to select USB VBUS as the board’s power source.

Fig. 3. The LaunchPad with a jumper soldered to the H18 test point.

C. Host Gamepad Interface Software Implementation
To implement the host gamepad interface, functions pro-

vided through the host controller driver and HID class driver
layers of the TivaWare USB library were used for lower-
level details of USB configuration and communication, such as
initializing the USB host controller and retrieving descriptor
information and HID reports from the gamepad. When new
data from the gamepad is available, the host interface reads
in the HID report data and parses the report to determine if
any button or joystick inputs have changed. Any inputs that
have changed are passed up to the USB application layer via
an event-driven callback for application-specific processing.

Fig. 4. Schematic for the LaunchPad power source.

Fig. 5. Schematic for the LaunchPad USB connector.

III. RC CAR EMBEDDED SYSTEM WITH HID DEVICE
CONTROL

Two applications were developed for the LaunchPad to drive
an RC car using HID devices. One application allowed for user
input from a HID mouse, and was developed using the HID
mouse device interface provided through the TivaWare USB
library. The second application used the previously developed
gamepad interface to take user input from the Logitech F710
gamepad.

A. System Overview

The car was built using a 7.2V NiMH battery pack, 2 DC
gearbox motors, and an L298N motor driver for motor direc-
tion and speed control. To generate control signals for the mo-
tor driver, GPIO and PWM drivers for the TM4C123GH6PM
microcontroller were implemented using ARM assembly.

Both applications begin by initializing the necessary hard-
ware peripherals and the USB host stack, as well as opening
the desired device interface.

Device connections and removals are handled by the
TivaWare library’s USB Events Driver, which allows an ap-
plication to receive non-device class specific events. When a
valid HID device is connected or removed, an application-
level callback function is called. This function updates the
application state so that device initialization and application
reconfiguration can occur as needed.

When input is received from a HID device, the device
interface parses the HID report to extract the updated joystick



Fig. 6. Schematic for the RC car.

and button states. The updated input states are passed to the
application, where they are saved for use in the main program.

B. Mouse-based Control

The left mouse button, right mouse button, and middle
mouse button are used to drive the car. Pressing the middle
mouse button toggles the car’s direction between forward
and backward. The left and right mouse buttons individually
control the left and right motors, respectively. Pressing these
buttons drives the corresponding motor at full speed.

C. Gamepad-based Control

Two gamepad-based control schemes for the car were
implemented.

First, the bumper and trigger buttons can be used to drive
the car at full speed. The left trigger and bumper drive the left
motor forward and backward, respectively. The right trigger
and bumper control the right motor similarly.

Alternatively, the joysticks can be used for analog control
of the motors. Pushing the left joystick forward or backward
drives the left motor forward or backward, respectively, with
motor speed changing proportionally to the displacement of
the joystick. The right joystick controls the right motor in a
similar fashion.

IV. CONCLUSION

The LaunchPad was successfully configured for USB host
functionality and a host device interface for a USB HID
gamepad was developed. This interface was then used in the
implementation of an RC car embedded system, allowing
for gamepad-based user input. The steps taken to configure
the LaunchPad and develop a gamepad device interface can
serve as a framework for development of other USB HID
device interfaces, so that more HID device types can be
used in embedded applications utilizing the TM4C123GH6PM
microcontroller.

V. FUTURE WORK

Some suggestions for future work include:
• Implementation of USB host interfaces for other USB

HID device types.
• Development of a USB host application supporting mul-

tiple device types. Currently, only one device interface
can be opened at a time within an application using
the TivaWare library, so applications cannot interface
with multiple device types. Addressing this may involve
modifying the TivaWare library to add multi-interface
support.

• Configuration of the LaunchPad for USB device or OTG
functionality. For USB OTG configuration, additional
hardware modifications must be made in order to allow
the USB controller to control the USB ID and USB
VBUS signals of the USB connector.

REFERENCES

[1] Texas Instruments. Tiva C Series TM4C123G LaunchPad Evaluation
Kit User’s Manual. (2013). [Online]. Available:
https://www.ti.com/lit/ug/spmu296/spmu296.pdf?ts=1734889760629

[2] Texas Instruments. TivaWare™ USB Library for C Series User’s Guide
(Rev. E). (2020). [Online]. Available:
https://www.ti.com/lit/ug/spmu297e/spmu297e.pdf?ts=1734883024814

[3] Texas Instruments. Tiva™ C Series TM4C123GH6PM Microcontroller
Data Sheet (Rev. E). (2014). [Online]. Available:
https://www.ti.com/lit/ds/spms376e/spms376e.pdf?ts=1734923071071&
ref url=https%253%252F%252Fwww.ti.com%252Ftool%252FEK-
TM4C123GXL

[4] C. Tsai, “Using USB Host Mode on the EK-TM4C123GXL
LaunchPad.” ti.com.
https://www.ti.com/lit/an/spna243/spna243.pdf?ts=1734923106614&
ref url=https%253A%252F%252Fwww.ti.com%252Ftool%252FEK-
TM4C123GXL

[5] “USB Human Interface Devices.” OSDev.org.
https://wiki.osdev.org/USB Human Interface Devices

[6] “Introduction to HID report descriptors.” docs.kernel.org.
https://docs.kernel.org/hid/hidintro.html


