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Abstract

This paper presents a comparative performance study of several Visual Simul-

taneous Localization and Mapping (VSLAM) systems in the context of space en-

vironments. We investigate the hypothesis that terrestrial based systems are not

suited for space environments. These systems range from direct and indirect

methods to deep learning based approaches. We evaluate LDSO, DSM, ORB-

SLAM3, VINS-FUSION, and DROID-SLAM on space relevant datasets such

as the Perseverance Landing, Ingenuity, Perseverance Rover, and the OSIRIS-

Rex mission. These datasets were curated from public NASA mission data

and included monocular images and IMU data if available. Each dataset ex-

hibits unique challenges such as dim illumination, low texture surfaces, and

sparse feature environments. Implementation of each SLAM system was com-

pleted through dockerized environments and ran on a dedicated NVIDIA 4090

GPU. Observational results suggest that terrestrial based systems often fail un-

der the difficult conditions of space. Both the direct (LDSO, DSM) and in-

direct (ORB-SLAM3, VINS-FUSION) systems showed very limited success in

outputting pose estimation and easily lost tracking. However, the deep learn-

ing system, DROID-SLAM, showed potential with consistent pose estimation

across datasets. We conclude that many terrestrial SLAM techniques are inade-

quate for this domain. This can be potentially improved by more relevant deep

vi



learning feature extraction or integration of multi sensor systems.
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Chapter 1
Introduction

1.1 Definition of Problem

Simultaneous Localization and Mapping (SLAM) is a key component in au-

tonomy which enables vehicles to explore and understand unfamiliar environ-

ments without relying on a preexisting map. SLAM allows a robot to construct

or update a map while simultaneously tracking its own position through that

map. In order to do this, the SLAM process requires two critical tasks to happen

at once: Localization and Mapping. Localization determines the robot’s posi-

tion and orientation, or pose, relative to its environment. Mapping constructs

a 2D or 3D environment based on sensor input. In order to complete both of

these tasks, the systems go through a series of steps. SLAM systems first re-

ceive input from a variety of sensor data such as camera images, LiDAR, IMU

measurements, etc [1]. The system then completes a pose estimation by finding

and matching features between data intervals. After, loop closure is performed

to identify where a robot has been previously and correct any error in feature

position. Lastly, it performs bundle adjustment to optimize and refine cam-
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era pose by minimizing the error. Over the last three decades, there have been

many developments to SLAM with a large variety of SLAM approaches, such

as filter based techniques, graph optimizations, and visual algorithms [1]. Yet

despite decades of progress in this field, applying SLAM methods directly to

space based missions is still a challenging topic.

As highlighted by recent studies [2], translating SLAM into space environ-

ments poses several difficulties. Space missions operate in unstructured envi-

ronments with sparse features and limited illumination. The lack of identifiable

visual and structural features prevents SLAM systems from performing consis-

tently in a repeatable manner. Many of the most popular datasets that modern

systems are evaluated on, such as EUROC [3] and KITTI [4], mainly capture

indoor and urban environments which lack the texture variability and lighting

extremes observed in space.

1.2 Importance

Space missions increasingly require onboard autonomy to be able to safely nav-

igate the surrounding terrain. Although ground support has traditionally been

the backbone for many spacecraft operations, communication delays such as

the 26-minute round trip to mars, make real time control infeasible as human

intervention cannot happen quick enough for critical scenarios. Furthermore,

widely used techniques like Stereo Photoclinometry (SCP) which delivers ac-

curate topological information about a small celestial body (SCB), still rely on

human oversight. Meanwhile, methods for autonomous roving applications are

still not advanced enough to traverse extreme terrain surfaces, such as the lunar

poles or high grade surfaces [5]. The drive for spacecraft autonomy is pushed
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by a desire to increase mission accuracy, robustness, and reliability. While there

have been many successful improvements to robotics and autonomy recently,

most techniques are not mature enough to broaden the access to space. These

challenges emphasize the need for real time SLAM solutions to allow a space-

craft to navigate complex environments with minimal to no ground interven-

tion.

In this paper, popular terrestrial SLAM systems were evaluated on newly

created space datasets derived from public NASA mission imagery. Specifically,

several VSLAM systems with different feature extraction techniques were se-

lected. The purpose was to confirm the hypothesis that terrestrial based SLAM

systems do not work in a space environment due to the extreme constraints.

By identifying which systems and feature extraction techniques fail, we pro-

vide insights into which SLAM systems can adapt for future autonomous space

exploration.

1.3 Historical Background

SLAM has evolved much from its original form in the late 1980s. The initial

breakthrough of SLAM established statistical foundations for geometric uncer-

tainty in robotics mapping. Many early SLAM methods used the Extended

Kalman Filter approach, which was the backbone of the probabilistic SLAM ap-

proaches. However, this faced lots of computational challenges since it needed

to maintain and update very large state vectors which included the robots pose

and map [6]. This gave way to more efficient filter based methods and eventu-

ally evolved to visual SLAM. Visual Slam, at the top level, is broken down into

two distinct categories: direct and indirect. Indirect based visual slam extracts
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feature points from textures in a scene. It keeps track of the descriptor points

though a scene and is able to match them in sequential frames. Indirect systems

are computationally expensive but are precise and robust. Direct based systems,

on the other hand, use pixel-level data to estimate the camera motion directly

and build an optimization problem to minimize the overall photometric error.

Direct methods will track a pixel’s brightness, intensity, color, etc. Direct meth-

ods often face large optimization problems and various lighting conditions will

negatively impact the system’s accuracy [7]. Since both of these categories alone

have some disadvantages, other SLAM methods like deep learning have been

developed to mitigate some of these challenges. These deep learning methods

mainly use a CNN architecture to extract difficult features and optimize the

pose. Many of these deep learning systems, however, are difficult to run in real

time and require large processing power due to demanding requirements.

Much of the related work for SLAM in space was completed for small celes-

tial bodies (SCB) and employs a variety of methods. Some work focuses on Rao-

Blackwellized Particle Filter solutions and uses a monocular camera for VSLAM

in order to land on an SCB [8][9]. This work ensures that at least one full rotation

of the SCB is made during descent in order to complete loop closure and min-

imize error. Meanwhile, other systems use the asteroid shape and motion and

apply an expectation conditional-maximization (ECM), improving accuracy for

a landing site selection [10]. Other work uses optimization based SLAM frame-

works that use the spacecraft and asteroid rigid dynamics to create 3D point

clouds for a real time alternative to Stereo Photoclinometry (SPC) [11][12]. Sim-

ilarly, some VSLAM methods strictly use a monocular camera approach and tri-

angulate the surface features to construct a 3D model [13]. For an SCB lacking

identifiable landmarks, a topography model is used to extract landmarks and
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match them with monocular camera images to estimate pose estimation [14].

However, this method requires the topographical map to be pre generated and

does not have the ability to generate a real time model of the SCB. While these

works focus on mapping and landing on an SCB, there are others that focus on

maneuvering around them. A factor-graph SLAM approach was used to incor-

porate sensor measurements, Earth relative positions, and monocular camera

images to navigate around an asteroid [[15]. AstroSLAM extends this by incor-

porating orbital motion constraints to achieve better performance over standard

inertial based methods [16]. Beyond VSLAM setups, some work such as Active

Asteroid-SLAM, integrates LiDAR scans for point cloud matching, enabling the

estimation of a spacecraft’s state while simultaneously building the map [17].

Collectively, these works establish the necessity for on-board, real time SLAM

approaches to support autonomous navigation in space environments.



Chapter 2
Solution

2.1 Dataset Creation and Selection

In order to test the terrestrial SLAM systems, space datasets were created using

publicly available NASA mission data. There were five unique datasets that

were curated. These datasets included the perseverance rover, ingenuity, Mars

perseverance rover landing, OSIRIS-Rex, and the lunar reconnaissance orbiter.

Each dataset was downloaded as a set of .png images along with IMU data

if applicable. Each system was stored in a separate local folder on a local lab

server.

Each SLAM system relies on different data formats and file organization

to run local datasets. To accommodate multiple SLAM systems, all the space

datasets were restructured to match the EUROC standard, which dictates a spe-

cific folder layout and file path format. Most, if not all VSLAM systems are set

up to run EUROC datasets. Since EUROC data encodes the timestamps into

the .png file names and most of the downloaded mission data did not include

raw timestamps, each image’s index was used as the file name. This was done
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to seamlessly run the local datasets on each SLAM system. Next, every dataset

was converted into a robotic operating system (ROS) .bag file. This format is

widely used in SLAM research to combine data like images, IMU data, times-

tamps, and others into a single file. Many SLAM systems accept and use .bag

files to run data.

2.2 SLAM Systems Tested

The VSLAM systems chosen for this project consisted of a mix between indirect,

direct, and deep learning feature extraction methods. The table of the selected

VSLAM systems and their extraction techniques is given below. By choosing at

least one system from each feature category, it helped ensure a balanced analy-

sis.

Table 2.1: Selected VSLAM Systems

VSLAM System Feature Extraction
LDSO Direct
DSM Direct

DROID-SLAM Deep Learning
ORB-SLAM3 Indirect

VINS-FUSION Indirect

ORB-SLAM3 is a popular indirect SLAM system that extracts and tracks key-

points by using ORB (Oriented FAST and Rotated BRIEF) descriptors. It is able

to support monocular, stereo, and visual inertial configurations. ORB-SLAM3

is considered one of the most robust and accurate systems in available literature

[18]. VINS-FUSION is a SLAM system designed for a combination of IMU data

and camera systems. While it is an indirect feature system, its main purpose is

to fuse camera data and inertial measurements into a pose graph optimization
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to allow for more stable tracking [19].

Direct Sparse Odometry with Loop Closure (LDSO) is a direct monocular

SLAM system that can utilize any image pixel that has sufficient intensity gra-

dient. This makes it robust in potentially featureless areas. The system also

reliably completes loop closure which results in overall performance compara-

ble to state of the art feature systems [20]. Direct Spare Mapping (DSM) is also

a direct monocular SLAM system that focuses on minimizing photometric pixel

error by using photometric bundle adjustment (PBA). This system has a persis-

tent map which handles observations [21]. Both of these systems focus on the

image pixels rather than feature descriptors like indirect systems.

DROID-SLAM is a deep learning based SLAM system that iteratively refines

camera poses and depth maps using learned feature extraction. This system

uses a gated recurrent unit (GRU) within a dense bundle adjustment framework

which makes it robust and potentially well suited for spare environments [22].

2.3 Experimental Procedure

Every SLAM system used different versions of linux and dependencies. In

order to get around this, the systems were each put in their own individual

Docker container. This allowed us to prevent any dependency conflicts and

troubleshoot each system where needed. Each SLAM system was downloaded

onto a local lab computer and ran on a dedicated Nvidia rtx 4090 gpu. All sys-

tems ran headless.

Each SLAM system was evaluated by two different metrics for each space

dataset. The first metric was tracking percentage. This metric is used to de-

termine how well the SLAM system is able to keep track of features frame by
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frame. The metric is quantified by looking at the system output results and eval-

uating the pose estimation. Each pose keyframe has an associated timestamp.

If the system did not get through the entire dataset before losing tracking, the

last time stamp in the output is taken and compared with the final timestamp in

the dataset. This gives a tracking percentage and shows how many frames the

system was able to track in the given dataset. The next metric is absolute trajec-

tory error (ATE). This metric is used to compare the accuracy of the output pose

estimation from the system. It is the difference between the estimated trajectory

and the ground truth for each dataset.

2.4 Results and Observations

Due to an unforeseen hard drive corruption on the server that hosted our ex-

perimental outputs, a significant portion of the results was lost. Instead, the

observational data will be summarized and highlighted for each system. Be-

low is a table showing the observational results for LDSO. LDSO showed some

Table 2.2: LDSO Results

Dataset Tracking Observation
Perseverance Landing Minimal

Ingenuity Minimal
Perseverance Rover Minimal

OSIRIS-Rex None

tracking for the mars datasets. However for the asteroid dataset, it showed no

tracking at all and routinely failed to provide any pose estimation data. This is

somewhat expected as the very dim lighting makes it difficult for direct based

systems to perform well.

DSM actually gave no results at all. It did not initialize for some and lost
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Table 2.3: DSM Results

Dataset Tracking Observation
Perseverance Landing None

Ingenuity None
Perseverance Rover None

OSIRIS-Rex None

tracking after 1-2 frames for the rest. This is on par with what we expected for

direct based systems.

Table 2.4: DROID-SLAM Results

Dataset Tracking Observation
Perseverance Landing Good

Ingenuity Good
Perseverance Rover Good

OSIRIS-Rex Good

DROID-SLAM actually completed on all datasets. It was able to successfully

maneuver and produce results for each dataset. This was somewhat expected

as deep learning systems are better at extracting complex features.

Table 2.5: ORB-SLAM3 Results

Dataset Tracking Observation
Perseverance Landing Minimal

Ingenuity Minimal
Perseverance Rover Minimal

OSIRIS-Rex Minimal

ORB-SLAM3 had minimal results for all the datasets. This was an expected

result as the featureless space makes it difficult to produce ORB descriptors. The

Figure below shows SIFT tracking of ORB descriptors between two sequential

images in the Ingenuity dataset. In successful feature tracking, the matched

feature lines would be horizontal across images. However, in Figure 2.1 they
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Figure 2.1: Ingenuity ORB Tracking

are sporadic, showing that the features are being matched incorrectly between

frames. This emphasizes the difficulties in successful feature tracking in space,

even with the most robust terrestrial SLAM systems.

Table 2.6: VINS-FUSION Results

Dataset Tracking Observation
Perseverance Landing Minimal

Ingenuity Minimal
Perseverance Rover Minimal

OSIRIS-Rex Minimal

Lastly, VINS-FUSION also showed minimal results. It also showed minimal

tracking between all the datasets.
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Conclusions

3.1 Summary of Findings

Our analysis of multiple SLAM systems ranging from indirect to direct and

deep learning approaches, revealed noticeable differences between the Mars

and asteroid datasets. It showed that direct based systems struggled in low

light environments and often failed to initialize and maintain tracking beyond

a few frames. DROID-SLAM, a deep learning based system, showed promising

feature tracking after successfully outputting pose estimation for all datasets.

Indirect systems like ORB-SLAM3 and VINS-FUSION demonstrated minimal

tracking success, highlighting the difficulties of a visually sparse environment.

Despite the insights gained from this work, a complete solution still remains

difficult. While it appears that deep learning based systems can improve feature

extraction, there are still questions of real time performance, hardware compat-

ibility, and computational overhead. Furthermore, the application toward even

more extreme environments remains open.



13

3.2 Future Work

Further research is required in order to develop SLAM systems for space en-

vironments. Deep learning systems might benefit from more domain specific

training such as datasets that include the surface of mars or a SCB. Further-

more, more work needs to be done for integrating these deep learning systems

for a low power consumption spacecraft. Understanding how to combine a ten-

sor processing unit with a critical robotics system is essential for deep learning.

Lastly, exploring SLAM systems that integrate sensors like LiDAR or thermal

imaging could potentially overcome the limitations of optical SLAM.
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[14] O. Knuuttila, A. Kestilä, and E. Kallio. Synthetic photometric landmarks
used for absolute navigation near an asteroid. The Aeronautical Journal,
124:1–20, 2020.

[15] M. Dor, K.A. Skinner, P. Tsiotras, and T. Driver. Visual slam for asteroid
relative navigation. In 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pages 2066–2075, 2021.

[16] M. Dor, T. Driver, K.M. Getzandanner, and P. Tsiotras. Astroslam: Au-
tonomous monocular navigation in the vicinity of a celestial small body -
theory and experiments. 2022.

[17] D. Nakath, J. Clemens, and C. Rachuy. Active asteroid-slam. Journal of
Intelligent Robotic Systems, 99:303–333, 2019.

[18] C. Campos, R. Elvira, J.J. Rodrı́guez, J.M.M. Montiel, and J.D. Tardós. Orb-
slam3: An accurate open-source library for visual, visual–inertial, and mul-
timap slam. IEEE Transactions on Robotics, 37:1874–1890, 2020.

[19] T. Qin, J. Pan, S. Cao, and S. Shen. A general optimization-based frame-
work for local odometry estimation with multiple sensors. 2019.

[20] X. Gao, R. Wang, N. Demmel, and D. Cremers. Ldso: Direct sparse odome-
try with loop closure. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2198–2204, 2018.

[21] J.A. Zubizarreta, I. Aguinaga, and J.M. Montiel. Direct sparse mapping.
IEEE Transactions on Robotics, 36:1363–1370, 2019.

[22] Z. Teed and J. Deng. Droid-slam: Deep visual slam for monocular, stereo,
and rgb-d cameras. Neural Information Processing Systems, 2021.


	List of Tables
	List of Figures
	Abstract
	Introduction
	Definition of Problem
	Importance
	Historical Background 

	Solution
	Dataset Creation and Selection
	SLAM Systems Tested
	Experimental Procedure
	Results and Observations

	Conclusions
	Summary of Findings
	Future Work

	Bibliography

