
  
 

  
 

A Comparison of Shared and Distributed Memory Implementations for Global 
Sequence Alignment 

 
 
 
 
 
 
 
 

by 
 

Maxwell Farrington 
 

Advised by Dr. Russ Miller 
 

December 2024 
 
 
 
 
 
 
 

A project write-up submitted to the  
faculty of the Graduate School of  

the University at Buffalo, The State University of New York  
in partial fulfillment of the requirements for the  

degree of 
 

Master of Science 
Department of Computer Science and Engineering 

 
 
 
 
 
 
 
 
 
 
 
 



  
 

ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright  
Maxwell Farrington 

2024 
All Rights Reserved 

 



  
 

iii 

Abstract 

Sequence alignment algorithms like the Needleman-Wunsch algorithm have a key role in 

areas such as bioinformatics for the calculation of the degree of similarity of nucleotides between 

genetic sequences. This project involved the implementation of sequential and parallelized 

versions of the Needleman-Wunsch algorithm using a shared memory system with OpenMP as 

well as a distributed memory system with MPI with the goal of comparing the scalability of the 

algorithms and learning more about the different overheads that one must consider for both 

systems. During this process, the benchmarks were run using SLURM batch scripts at the 

University at Buffalo Center for Computational Research (CCR) in order to reserve multiple 

nodes on similar hardware. From the benchmarks, it was found that while the OpenMP 

implementation had improved scaling over the MPI version relative to a sequential solution, the 

MPI version had better runtimes for similarly sized problems. While this could have been for a 

myriad of factors, it is hypothesized that the reason for this is because the Needleman-Wunsch 

algorithm is very parallelizable, such that the communication overhead for the distributed 

memory algorithm is significantly lower than the cost of thread synchronization on the shared 

memory version. 
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Introduction 

Sequence alignment is a task that is often done in the bioinformatics field to find the 

similarities when comparing protein and nucleotide sequences. The sequences are represented as 

strings with the characters representing different amino acids. Related sequences will contain 

portions of shared characters with differences coming in the form of the insertion, removal, or 

skipping of characters, often thought of as the mutations which related sequences can undergo as 

they evolve [1]. The Needleman-Wunsch algorithm is a dynamic programming algorithm which 

focuses on global alignment, which involves aligning two sequences in their entirety. This is 

done by finding a score which is the aggregate based on the number of matches and mismatches 

of characters, as well as insertions and deletions required to align the two sequences. The 

algorithm can be broken down into multiple components with the work split amongst processors 

to reduce running time. When this is done, extra consideration must be made to determine the 

scalability of the parallel implementation; the two most commonly used benchmarks being 

strong and weak scaling. Strong scaling determines how well a problem can be parallelized while 

keeping the problem sized fixed and increasing the number of processors while determining the 

speedup. An algorithm that exhibits good strong scaling will continue to become faster at 

roughly the rate you are increasing the number of processors. Weak scaling determines how well 

a problem scales when increasing the problem size alongside the number of processors by 

calculating the efficiency. This is done to determine if parallelization allows one to compute 

larger and larger problem sizes without a drop in performance. An algorithm which exhibits 
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good weak scaling will remain efficient as you increase the problem size and number of 

processors [4]. 

 

Problem Solution 

Both the shared and distributed memory algorithms are based on the Needleman-Wunsch 

algorithm. The vanilla version of this algorithm involves the comparison of two sequences with 

assigning a score system that includes penalties for gaps such as insertions/deletions (indel) as 

well as a value for a match and mismatch. This score system can vary depending on the use case. 

Often, an affine gap penalty is preferred such that the opening of a gap is assigned some value g, 

and the extension of that gap adds another value, h where 𝑔  ≥  ℎ since consecutive gaps tend to 

relate to a single insertion/deletion whereas man scattered indels are likely separate occurrences 

[3]. This project focused on a linear scoring system for the sake of simplicity. After a scoring 

system is decided a scoring matrix of size (𝑚 + 1)  ×  (𝑛  +  1), where m is the length of 

sequence A, and n is the length of sequence B is filled following that system. Row and column 0 

represent if an indel were selected for each element in the row/column. Each element 𝑚[𝑖][𝑗] of 

that matrix representing the maximum value depending on whether the characters in 𝐴[𝑖 − 1] and 

𝐵[𝑗 − 1] are matched, mismatched, or should be considered an indel. If the maximum value 

corresponds to an indel, you look to the value to the left or top of the current element if it exists, 

𝑚[𝑖  − 1][𝑗] or 𝑚[𝑖][𝑗 − 1] respectively, and add the associated penalty. Otherwise, you look to 

the top left value to the current element, 𝑚[𝑖  − 1][𝑗 − 1] and add the associated value depending 

on whether the characters are matched or mismatched according to your scoring system. In the 
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vanilla version of the algorithm, you can then loop through the rows, columns, or anti-diagonals 

of the matrix to fill it and then retrieve the maximum score [2]. 

Distributed Memory Algorithm 

The parallel algorithm for the distributed memory portion of the project was based on an 

algorithm by Aluru et. all [1] with modifications to support a fixed gap penalty. This algorithm is 

specifically designed to fill the matrix row-wise or column-wise. This is so the number of 

processors being used and work per processor remains constant. Starting from element 𝑚[1][1] 

the calculation of each element of the score matrix is split into two parts. For each element you 

first calculate two values, 𝑤[𝑗] and 𝑥[𝑗] which follow figures 1 and 2 respectively. 𝑤[𝑗] 

represents the maximum of the values to the top and top left of the current element being 

computed while adding the corresponding values for indels or a match/mismatch just like in the 

vanilla algorithm. These are able to be calculated independently in parallel within each processor 

because the row above any given row has already been computed. Then the value 𝑥[𝑗] represents 

taking the maximum of 𝑤[𝑗]and the value of 𝑥[𝑗 − 1] from the element to the left of the current 

element being computed. When calculating  𝑥[0],  the value of 𝑥[𝑗 − 1] can be substituted with 

−∞ . The reason that this value needs to be separated is because the sequences are split between 

processors, and each processor is unaware of the values from processors of lower rank. To get 

these values, there is a parallel prefix communication step with the maximum operator where the 

processors send their local maximums for 𝑥[𝑗]. After this step, each processor will have the 

running maximum of x and can finish their computations by doing another round of maximum 

operations, and each element in the row will have their final value.  
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Figure 1. equation for w[j] 

 

 

Figure 2. equation for x[j] 

 

The algorithm was implemented using MPI in C++ since the standard includes all the 

communication patterns required by this algorithm. The algorithm was then able to be 

benchmarked using resources from CCR. This involved writing a SLURM batch script and 

submitting jobs to the queue in order to reserve the resources needed to test the scalability. 

 

Shared Memory Algorithm 

The implementation of the shared memory version of the Needleman-Wunsch algorithm did not 

require any changing of the core part of the algorithm such as the distributed memory version. 

The implementation for this portion of the project was an anti-diagonal implementation of 

Needleman-Wunsch with added OpenMP pragmas to distribute the work to multiple cores in a 

shared memory machine. Implementing the anti-diagonal algorithm is especially useful in this 

case because of the lack of data dependencies and data races between cores. When computing a 

given element in the scoring matrix, you need the value to the left, top, and top left of the 
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element being calculated. As such, these values can all be obtained by the two previous 

diagonals which are guaranteed to have already been calculated as seen in figure 3. This property 

gets rid of any potential data races when splitting the work along the antidiagonal, but the 

downside of the anti-diagonal method is that the amount of work as you fill the matrix and will 

lead to an inefficient balancing of work scheduling among processing units [1]. This algorithm 

was implemented using OpenMP and C++ and was benchmarked similarly to the distributed 

memory algorithm. 

 

 

 

Figure 3. Example of the anti-diagonal method for Needleman-Wunsch [5] 
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Results 

Distributed Memory Algorithm 

 

Figure 4. Runtime of MPI implementation for each processor orientation and problem size with 1 
processor per node. 

 

 

Figure 5. Speedup of MPI implementation for each processor orientation and problem size 
relative to p = 1 with 1 processor per node. 
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Figure 6. Efficiency of MPI implementation for each processor orientation and problem size 
relative to p = 1 with 1 processor per node. 

 

Shared Memory Algorithm 

 

Figure 7. Runtime of OpenMP implementation for each processor orientation and problem size. 
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Figure 8. Speedup of OpenMP implementation for each processor orientation and problem size 
relative to p = 1. 

 

 

Figure 9. Efficiency of OpenMP implementation for each processor orientation and problem size 
relative to p = 1. 
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Conclusions 

The results showed that while scaling for the shared memory implementation of the Needleman-

Wunsch algorithm was better than that of the distributed memory version, the runtimes were still 

significantly better for the distributed memory implementation. For strong scaling, the 

distributed memory implementation hardly showed speedups on-par with the increases in 

number of processors as per Figure 5. For weak scaling, the only times the distributed memory 

implementation exhibited an efficiency above 0.75 was for select problem sizes with two 

processors as shown by Figure 6. One of the reasons this could be the case is because the 

benchmarks were run with 1 process per node to ensure the parallelism was being shown via 

actual communication instead of any simulated on-chip parallelism (i.e running a job with 1 node 

and 32 processes per node with MPI). Further testing fully utilizing on-chip parallelism would 

likely give better results in terms of runtime and scaling while also simulating conditions closer 

to what would be done in real world benchmarks. The shared memory algorithm showed clear 

strong and weak scaling up to 16 processors for almost all sequence lengths from 100000 to 

20000 with OpenMP. Strong and weak scaling began to fall off around 32 processes likely due to 

the overhead of additional processor scheduling. Further testing on larger problem sizes for the 

shared and distributed memory algorithm could also be useful to test how these algorithms 

perform when needing to retrieve information from disk. In the real world, these biological 

sequences are often millions of characters long, and more creativity is necessary in optimizing 

the data retrieval for the filling of the score matrix. 
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