

A Comparison of Shared and Distributed Memory Implementations for Global
Sequence Alignment

by

Maxwell Farrington

Advised by Dr. Russ Miller

December 2024

A project write-up submitted to the
faculty of the Graduate School of

the University at Buffalo, The State University of New York
in partial fulfillment of the requirements for the

degree of

Master of Science
Department of Computer Science and Engineering

ii

Copyright
Maxwell Farrington

2024
All Rights Reserved

iii

Abstract

Sequence alignment algorithms like the Needleman-Wunsch algorithm have a key role in

areas such as bioinformatics for the calculation of the degree of similarity of nucleotides between

genetic sequences. This project involved the implementation of sequential and parallelized

versions of the Needleman-Wunsch algorithm using a shared memory system with OpenMP as

well as a distributed memory system with MPI with the goal of comparing the scalability of the

algorithms and learning more about the different overheads that one must consider for both

systems. During this process, the benchmarks were run using SLURM batch scripts at the

University at Buffalo Center for Computational Research (CCR) in order to reserve multiple

nodes on similar hardware. From the benchmarks, it was found that while the OpenMP

implementation had improved scaling over the MPI version relative to a sequential solution, the

MPI version had better runtimes for similarly sized problems. While this could have been for a

myriad of factors, it is hypothesized that the reason for this is because the Needleman-Wunsch

algorithm is very parallelizable, such that the communication overhead for the distributed

memory algorithm is significantly lower than the cost of thread synchronization on the shared

memory version.

iv

TABLE OF CONTENTS

A Comparison of Shared and Distributed Memory Implementations for Global Sequence

Alignment .. i

Abstract .. iii

Introduction ... 5

Problem Solution .. 6

Distributed Memory Algorithm .. 7

Shared Memory Algorithm ... 8

Results ... 10

Distributed Memory Algorithm .. 10

Shared Memory Algorithm ... 11

Conclusions ... 13

Works Cited .. 14

5

Introduction

Sequence alignment is a task that is often done in the bioinformatics field to find the

similarities when comparing protein and nucleotide sequences. The sequences are represented as

strings with the characters representing different amino acids. Related sequences will contain

portions of shared characters with differences coming in the form of the insertion, removal, or

skipping of characters, often thought of as the mutations which related sequences can undergo as

they evolve [1]. The Needleman-Wunsch algorithm is a dynamic programming algorithm which

focuses on global alignment, which involves aligning two sequences in their entirety. This is

done by finding a score which is the aggregate based on the number of matches and mismatches

of characters, as well as insertions and deletions required to align the two sequences. The

algorithm can be broken down into multiple components with the work split amongst processors

to reduce running time. When this is done, extra consideration must be made to determine the

scalability of the parallel implementation; the two most commonly used benchmarks being

strong and weak scaling. Strong scaling determines how well a problem can be parallelized while

keeping the problem sized fixed and increasing the number of processors while determining the

speedup. An algorithm that exhibits good strong scaling will continue to become faster at

roughly the rate you are increasing the number of processors. Weak scaling determines how well

a problem scales when increasing the problem size alongside the number of processors by

calculating the efficiency. This is done to determine if parallelization allows one to compute

larger and larger problem sizes without a drop in performance. An algorithm which exhibits

6

good weak scaling will remain efficient as you increase the problem size and number of

processors [4].

Problem Solution

Both the shared and distributed memory algorithms are based on the Needleman-Wunsch

algorithm. The vanilla version of this algorithm involves the comparison of two sequences with

assigning a score system that includes penalties for gaps such as insertions/deletions (indel) as

well as a value for a match and mismatch. This score system can vary depending on the use case.

Often, an affine gap penalty is preferred such that the opening of a gap is assigned some value g,

and the extension of that gap adds another value, h where 𝑔  ≥  ℎ since consecutive gaps tend to

relate to a single insertion/deletion whereas man scattered indels are likely separate occurrences

[3]. This project focused on a linear scoring system for the sake of simplicity. After a scoring

system is decided a scoring matrix of size (𝑚 + 1)  ×  (𝑛  +  1), where m is the length of

sequence A, and n is the length of sequence B is filled following that system. Row and column 0

represent if an indel were selected for each element in the row/column. Each element 𝑚[𝑖][𝑗] of

that matrix representing the maximum value depending on whether the characters in 𝐴[𝑖 − 1] and

𝐵[𝑗 − 1] are matched, mismatched, or should be considered an indel. If the maximum value

corresponds to an indel, you look to the value to the left or top of the current element if it exists,

𝑚[𝑖  − 1][𝑗] or 𝑚[𝑖][𝑗 − 1] respectively, and add the associated penalty. Otherwise, you look to

the top left value to the current element, 𝑚[𝑖  − 1][𝑗 − 1] and add the associated value depending

on whether the characters are matched or mismatched according to your scoring system. In the

7

vanilla version of the algorithm, you can then loop through the rows, columns, or anti-diagonals

of the matrix to fill it and then retrieve the maximum score [2].

Distributed Memory Algorithm

The parallel algorithm for the distributed memory portion of the project was based on an

algorithm by Aluru et. all [1] with modifications to support a fixed gap penalty. This algorithm is

specifically designed to fill the matrix row-wise or column-wise. This is so the number of

processors being used and work per processor remains constant. Starting from element 𝑚[1][1]

the calculation of each element of the score matrix is split into two parts. For each element you

first calculate two values, 𝑤[𝑗] and 𝑥[𝑗] which follow figures 1 and 2 respectively. 𝑤[𝑗]

represents the maximum of the values to the top and top left of the current element being

computed while adding the corresponding values for indels or a match/mismatch just like in the

vanilla algorithm. These are able to be calculated independently in parallel within each processor

because the row above any given row has already been computed. Then the value 𝑥[𝑗] represents

taking the maximum of 𝑤[𝑗]and the value of 𝑥[𝑗 − 1] from the element to the left of the current

element being computed. When calculating 𝑥[0], the value of 𝑥[𝑗 − 1] can be substituted with

−∞ . The reason that this value needs to be separated is because the sequences are split between

processors, and each processor is unaware of the values from processors of lower rank. To get

these values, there is a parallel prefix communication step with the maximum operator where the

processors send their local maximums for 𝑥[𝑗]. After this step, each processor will have the

running maximum of x and can finish their computations by doing another round of maximum

operations, and each element in the row will have their final value.

8

Figure 1. equation for w[j]

Figure 2. equation for x[j]

The algorithm was implemented using MPI in C++ since the standard includes all the

communication patterns required by this algorithm. The algorithm was then able to be

benchmarked using resources from CCR. This involved writing a SLURM batch script and

submitting jobs to the queue in order to reserve the resources needed to test the scalability.

Shared Memory Algorithm

The implementation of the shared memory version of the Needleman-Wunsch algorithm did not

require any changing of the core part of the algorithm such as the distributed memory version.

The implementation for this portion of the project was an anti-diagonal implementation of

Needleman-Wunsch with added OpenMP pragmas to distribute the work to multiple cores in a

shared memory machine. Implementing the anti-diagonal algorithm is especially useful in this

case because of the lack of data dependencies and data races between cores. When computing a

given element in the scoring matrix, you need the value to the left, top, and top left of the

9

element being calculated. As such, these values can all be obtained by the two previous

diagonals which are guaranteed to have already been calculated as seen in figure 3. This property

gets rid of any potential data races when splitting the work along the antidiagonal, but the

downside of the anti-diagonal method is that the amount of work as you fill the matrix and will

lead to an inefficient balancing of work scheduling among processing units [1]. This algorithm

was implemented using OpenMP and C++ and was benchmarked similarly to the distributed

memory algorithm.

Figure 3. Example of the anti-diagonal method for Needleman-Wunsch [5]

10

Results

Distributed Memory Algorithm

Figure 4. Runtime of MPI implementation for each processor orientation and problem size with 1
processor per node.

Figure 5. Speedup of MPI implementation for each processor orientation and problem size
relative to p = 1 with 1 processor per node.

11

Figure 6. Efficiency of MPI implementation for each processor orientation and problem size
relative to p = 1 with 1 processor per node.

Shared Memory Algorithm

Figure 7. Runtime of OpenMP implementation for each processor orientation and problem size.

12

Figure 8. Speedup of OpenMP implementation for each processor orientation and problem size
relative to p = 1.

Figure 9. Efficiency of OpenMP implementation for each processor orientation and problem size
relative to p = 1.

13

Conclusions

The results showed that while scaling for the shared memory implementation of the Needleman-

Wunsch algorithm was better than that of the distributed memory version, the runtimes were still

significantly better for the distributed memory implementation. For strong scaling, the

distributed memory implementation hardly showed speedups on-par with the increases in

number of processors as per Figure 5. For weak scaling, the only times the distributed memory

implementation exhibited an efficiency above 0.75 was for select problem sizes with two

processors as shown by Figure 6. One of the reasons this could be the case is because the

benchmarks were run with 1 process per node to ensure the parallelism was being shown via

actual communication instead of any simulated on-chip parallelism (i.e running a job with 1 node

and 32 processes per node with MPI). Further testing fully utilizing on-chip parallelism would

likely give better results in terms of runtime and scaling while also simulating conditions closer

to what would be done in real world benchmarks. The shared memory algorithm showed clear

strong and weak scaling up to 16 processors for almost all sequence lengths from 100000 to

20000 with OpenMP. Strong and weak scaling began to fall off around 32 processes likely due to

the overhead of additional processor scheduling. Further testing on larger problem sizes for the

shared and distributed memory algorithm could also be useful to test how these algorithms

perform when needing to retrieve information from disk. In the real world, these biological

sequences are often millions of characters long, and more creativity is necessary in optimizing

the data retrieval for the filling of the score matrix.

14

Works Cited

[1] Srinivas Aluru, Natsuhiko Futamura, Kishan Mehrotra, Parallel biological sequence

comparison using prefix computations, Journal of Parallel and Distributed

Computing, Volume 63, Issue 3, 2003, Pages 264-272, ISSN 0743-7315

[2] Saul B. Needleman, Christian D. Wunsch, A general method applicable to the search

for similarities in the amino acid sequence of two proteins, Journal of Molecular

Biology, Volume 48, Issue 3, 1970, Pages 443-453,

[3] Aluru, S. (Ed.). (2005). Handbook of Computational Molecular Biology (1st ed.).

Chapman and Hall/CRC. https://doi.org/10.1201/9781420036275

[4] Scaling - HPC Wiki, https://hpc-wiki.info/hpc/Scaling

[5] https://www.researchgate.net/figure/Anti-diagonal-method-and-dependency-of-the-

cells_fig11_222408669

