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Abstract . The rise of video platforms such as Youtube, Tiktok and others has

brought the surge of video content which also posted challenges to content moderations.

Hateful content is one target during content moderation. Unlike traditional text-based

hate speech detection, hateful video detection adds layers of complexity due to its multi-

modality nature. In this study, we are exploring the strength and drawbacks of current

state-of-the-art models, evaluating on how well they integrate different modalities to-

gether. We compared the methods from SOTA study on this task with multimodal large

language models excel in video tasks. Our experiment results highlight that while these

advanced models do benefit from multimodal inputs, they fail at utilizing audio info due

to we choose Mel Spectrograms as the feature representation. A closer data reevaluation

showed the most contributing factor is audio points out we need to refine current audio

encoding process, and a better alignment between modalities is crucial for performances

improvements.

Introduction

Since high-speed internet’s widespread availability and the advancement of portable

smartphones, video content has become an important part of the Internet browsing ex-

perience. According to online statistics, more than 500 hours of video are uploaded to

YouTube every minute [1]. When considering other platforms such as TikTok, Vimeo,

and Twitch, an estimate of more than 720000 hours of video content is uploaded on

various platforms everyday [2]. However, not all of this content is in line with platform

standards and mong these, a significant portion was flagged as hateful or harmful.

Hateful videos are videos that express hateful opinions towards specific ethnic or

religious groups. Such content can propogate harmful stereotypes and extreme values.

Furthermore, unlike hate speech which rely on text alone, hateful videos are combinations

of text, audio and visual. Thus, traditional text-based approach will be inadequate for this

task. Algorithmic recommendations, a prevalent feature for video platforms nowadays,

will exacerbate the problem even more since they can form “echo chambers that foster

radicalization among like-minded viewers” [3]. The influences of these videos can lead to

real-life violence and harassment, so detecting hateful videos early-on and accurately is

crucial to reducing the spread of toxic beliefs and ensuring healthy online ecosystems.
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Our motivation is to conduct an exploratory research on this topic. We aim to have

a better understanding of what hateful videos are, find out what can be improved upon

current sota models, have a clearer picture of the main hidden obstacles and challenges

preventing optimal performances, and propose and validate plausible future directions.

Though hateful content detection is hard, we are fortunate enough to see the biggest rise

in Multimodal Large Language Models, models integrating different data types [4]. We

got promising results after adopting the pipeline provided by a study called HateMM on

this topic [5], achieving 79.78% accuracy while combining three unimodal models trained

on three modalities repestively, with several improvement methods. Meanwhile, we also

notice excelling performances of finetuned vision LLMs such as LlaVA and VideoLlaMA.

These models have been tested on video-based vision tasks and have achieved excellent

results. Naturally, it came to our mind that these models might also perform well on

hateul video detection. Being trained on a vast amount of vision data, models such as

VideoLlaMA can describe and caption a video’s content fairly well, then surely it can

handle specific video types such as hateful video easily. However, we found out this is not

the case. Without finetuning to hateul videos, though these vision models can still de-

scribe video content correctly, they apppear to be performing significantly worse than it’s

simpler counterpart (HateMM). Powerful models like Gemini-1.5-pro, LlaVA and Vide-

oLlaMA, all having an average reduced accuracy around 10%. In the following part of

this written piece, we will present and reason some interesting findings that didn’t came

across our mind at early stages.
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Background

As we established the scale and urgency of detecting hateful videos. Now we want to

define the problem quantitatively. We also highlight the key challenges that most signif-

icantly constrain performance. A clearer grasp of these underlying factors will provide

the necessary foundation for our subsequent exploration.

Definition of the Problem

The biggest challenge for hateful video detection is its multimodal nature. Our goal is

to utilize all three modalities in our binary classification. The problem can be described

as follows: given a series of videos {V1, V2, . . . , Vn}, where each video Vi is represented by

three modalities Vi = (Ti, Ai, Fi), corresponding to text, audio, and visual features, our

detection model M is designed to map the multimodal input between two labels:

M : Vi 7→ yi where yi ∈ {hate, non-hate}.

To solve this problem, we also need to acknowledge these issues:

Known Issues

Implicit Hate. Focusing on one modality during hateful video detection could lead

to inaccurate results. For example, captions or subtitles may contain explicit hate speech

yet be inadequately transcribed. Similarly, some human gestures or objects may appear

entirely innocent. After a close observation of the dataset, we find frequent appearences

of the US Confederate flag or a Moon-face man figure. Without proper context, these

could simply be interpreted as a historical US figure and a commercial mascot. However,

when combined with specific text overlays and background audio, these symbols become

hateful. Our research shows that such displays are often employed by extremist groups

to propagate toxic ideologies. This subtle use of symbols and memes to convey hateful

messages is referred to as implicit hate.

Implicit hate adds extra layer of complexity to this task since it avoids overtly violating

video platform policies. In addition to direct hate messages, sarcasm or memes have

become new tools for these opinions. Within the public sphere, what was once simply

difficult, perhaps impossible to notice now goes undetected all too easily. It require careful
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inspection to understand the intentional message behind the video. And the nature of

hateful content is always changing, creators often adapt new symbols or Internet slurs

to bypass detection mechanisms. Moreover, Video platforms often host viral trends that

serve as vehicles for spreading hateful ideologies, frequently disguised as humor [6, ?].

These factors complicate the development of automated detection systems.

Lacking of sufficient datasets. Developing a comprehensive dataset to detect

hateful content is difficult. Hateful content can be expressed in different languages and

cultures and English datasets will be insufficient. Also, annotating such content requires

a balance of inclusion and precision, because the task must be done manually, which

is both time-consuming and prone to prejudice, especially when cultural and language

nuances come into play [7]. The scarcity of publicly available, well-annotated datasets in

several languages hampers the development of effective detection systems.

Furthermore, merely annotating hateful snippet does not allow future use of LLMs

to develop essential reasoning. The dataset must also provide explicit explanations on

why specific content is considered insulting. This involves connecting the textual, visual,

and auditory modalities while allowing LLMs to learn through processes like chain-of-

thought thinking. This type of annotation will help to improve reasoning abilities in

future multimodal systems as well as present detection models.

Detection Model Limitations. Many existing approaches use unimodal analysis

or basic feature fusion, thus lead to high false negative rates [?]. Moreover, advanced

multimodal models require substantial computational resources and an enormous amount

of training data.

To tackle these issues, new methodologies must incorporate powerful multimodal

learning algorithms that examine text, pictures, and audio simultaneously. Robust and

scalable technologies are required for detecting and controlling hateful content before it

spreads, promoting a healthier online ecology.

Related Works

Early text-based approach models used word embeddings such as Word2Vec to iden-

tify hateful keywords. This method achieved moderate success on HateSpeechDataset [8].

Later, transformer-based models were invented, and models such as BERT [9] significantly

5



improved this task by capturing relational information in context. BERT-based methods

have achieved over 85% accuracy on text-only hate speech detection benchmarks. How-

ever, these models struggled with multimodal content where visual or auditory signals

come into play. These additional modalities can complement or contradict textual cues,

presenting a more complex task.

Image-based methods were used to address circumstances in which hate speech is

communicated through visual content. CNN models can recognize hateful images with

up to 82% accuracy on image-focused datasets such as HatefulMemes [10]. Unfortu-

nately, these algorithms fail at handling textual or auditory context, which can lead to

misclassification when nasty imagery is combined with benign content.

The combination of text and visual modalities has been critical in improving multi-

modal hateful content detection. The MMHS150K dataset [11] which contains 150000

tweets with matched text and images, has supported the construction of multimodal

fusion networks. These models use pretrained models like BERT for text and ResNet

for images. Their outputs are then combined using attention-based methods. Gómez et

al. [11] discovered that fusion networks improve F1-scores by 10% compared to unimodal

baselines, emphasizing the significance of cross-modal learning.

Building on these foundations, HateMM takes another huge step by adding audio

signals with text and graphics. It features a dataset containing 43 hours of annotated

video content. Das et al. [5] utilized this dataset to create deep learning models that

analyze text with BERT, graphics with Vision Transformers (ViT), and audio using Mel-

frequency cepstral coefficients (MFCC). Their multimodal fusion model combines features

from all three modalities with cross-modal attention. This model outperformed text-only

and image-only models by 5.7%, with an accuracy of 79.8% and a macro F1-score of

0.790.

The HateMM framework not only provides a strong baseline for multimodal hate

speech detection, but it also emphasizes the importance of combining text, graphics,

and audio for correct classification. Its emphasis on video content is consistent with the

rising multimedia content available on internet video platforms. HateMM serves as the

backbone of our study’s exploration into MLLMs hateful video detection.
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Method

Dataset

The core of this study is the HateMM dataset provided by the HateMM study [5].

This dataset consists of 43 hours of video content, all sourced from an unmoderated video

platform called BitChute. All videos are in English, with some in other languages but

with English subtitles. Each video is labelled with: hate or non hate. The dataset also

includes annotations for the target group and hate snippets, specifying the time spans

of the hateful content within the video. For example, a video labeled as hateful might

include a hate snippet annotation such as ”00:01:30–00:01:45” with the note ”targeted

group: black,” , meaning the content within this segment contains explicit hate symbols,

offensive gestures, or derogatory speech targeting Black individuals. [5]

The dataset integrates three modalities. In our study, we treat each modality as

follows:

• Textual Data: Initially, the transcript generated from the audio was considered as

the textual modality. However, it became apparent that relying solely on the audio

transcript could bypass audio analysis. Though it simplifies the process, it could

lost potential insights. To investigate whether separate analysis of audio and text

can enhance performance, we redefined the textual modality to include all directly

displayed text, such as captions and subtitles, independent of the audio transcript.

• Visual Data: Video frames are processed to capture actions, gestures, and objects.

• Auditory Data: Audio tracks are analyzed to detect tonal cues, speech patterns,

and ambient sounds.

Preprocessing

Baseline. Our baseline approach requires comprehensive preprocessing because it

lacks pretrained encoders to directly process raw videoinputs. While MLLMs are equipped

to extract hierarchical features and align modalities automatically, our baseline depends

on manual feature extraction to transform video frames, tokenized text and converted
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audio signals. In addition, preprocessing ensures alignment between modalities for com-

putational efficiency. This step is essential since it enables effective multimodal analysis

in the absense of pretrained encoders. We used Vosk offline speech recognition to gen-

erate video transcripts for the text modality, and extracted raw audio tracks from the

videos. Visual data was processed by sampling 100 frames per video, ensuring uniform

distribution throughout duration. Padding was performed for shorter videos to maintain

a fixed number of frames for every video.

MLLMs. For multimodal large language models (MLLMs), the preprocessing step

is reduced due to their ability to handle raw or minimally processed inputs. The prepro-

cessing steps for the MLLMs used in this study are as follows:

• Gemini-1.5-pro: No preprocessing is required for this model. Raw video inputs

are directly fed into the model using Google Cloud, as it is equipped to process the

video data end-to-end.

• LLaVA Next, LLaVA OneVision and VideoLLama2: These models are de-

signed for image-text modalities. We sample 30 frames from each video, uniformly

distributed throughout its duration, and feed these frames directly into the models

without additional preprocessing other than resizing.

• VideoLLama2 Audio Visual: This model supports video, audio, and text modal-

ities simultaneously. We use the model processor to handle all modalities. The raw

video, audio, and text inputs are passed through the processor which automatically

extracts the necessary features for each modality and aligns them for downstream

tasks.

Models

Baseline - HateMM.

Feature Engineering.

Text. After obtained from Vosk offline speech recognition tool, the transcripts are

tokenized and fed to a pretrained BERT model. This gave us a contextual embeddings

with dimension of 768 × 1. These embeddings are then passed through two fully con-

nected layers with hidden dimensions of 128, followed by ReLU activation and batch
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normalization for stability. Finally, a dense layer reduces the representation to a 64 × 1

feature vector, which encapsulates the semantic information from the transcripts.

Audio. We used Mel-frequency cepstral coefficients (MFCC) as the audio feature rep-

resentations. Each audio sample is also padded to same duration for a consistent 40-

dimensional shape. We also condense the temporal information into representative fea-

ture vectors by compuing the mean of the coefficients over time. After that, we pass

these 40 x 1 feature vectors through two fully connected layers, each with 128 hidden

units and ReLU activation, followed by batch normalization for stability. Finally, we

obtain another 64 x 1 feature vector, but this time with the audio information.

Visual. Each extracted frame was divided into patches and went through Vision Trans-

former (ViT). ViT embeds these patches sequentially and then passes them through a

series of transformer encoder layers, resulting in a 768 × 100 feature matrix for each video.

This approach extracts complicated spatial relationships and contextual information from

videos. This output feature matrix is then fed through an LSTM network, which handles

the sequential nature of video frames. The LSTM layer creates a sequence representation,

which is combined using an attention mechanism to focus on important frames. The out-

put is processed through a dense layer which reduce the dimension to a 64 × 1. This

final vector captures the most relevant spatial and temporal patterns for hate content

detection.

Fusion and classification

The feature vectors from the three modalities, each with the shape of 64 x 1, are

concatenated to form a fused feature vector of size 192 × 1. What happens here is

basically aligning all the vectors horizontally to form a single vector. This combined

vector will posses all information from text, audio and text. We then passed this fused

feature vector through a fully connected fusion layer with ReLU activation to introduce

non linearity and enhance the model’s ability to learn complex relationships between

modalities. The fusion layer reduces the dimensionality and prepares the integrated

features for classification. The output is then fed into the final classification head, a

dense layer with a softmax activation function, which computes a probability distribution

over the binary classes (hate or non-hate). The softmax ensures that the predicted

probabilities sum to 1, providing interpretable output and helps the model to make

predictions about whether a video is hateful.
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MLLMs.

Another big part of our study is that we made use of advanced MLLMs: open-source

Gemini-1.5-pro as well as closed-source LLaVA-Next-Video, LLaVA-OneVision and Vide-

oLlama2. LLaVA-Next and LLaVA-OneVision are specifically designed for image-text

processing; meanwhile both Gemini-1.5-pro and VideoLlama2–audio-visual come with

additional audio modality making them perfect for the video tasks. We sampled 30

frames for each video and used them as inputs for all models. We choose these mod-

els because thet are the most cutting-edge ones, as LLaVA-Next and LLaVA-OneVision

excellent in image-text reasoning tasks, such as video captioning comprehension, and

Gemini-1.5-pro and VideoLlama2-audio-visual are both good at audio-visual tasks like

video classification and content moderation.

Experiments

We trained the baseline model on the HateMM dataset, split into training, validation

and testing set with a ratio of 8:1:1, for 20 epochs and a learning rate of 1 × 10−4

with the Adam optimizer. We also employed a strategy called k-fold cross-validation to

ensure the robustness of our results. On the ohter hand, the MLLMs were evaluated

in their pretrained state without any additional finetuning. All models were assessed

under consistent input conditions, and their performance was evaluated using accuracy,

precision, recall, and F1 score.

For the baseline models, each modality was trained and evaluated separately. These

feature vectors were then fed into neural network models trained using cross-entropy loss.

Late fusion was performed in multimodal models by concatenating the outputs from each

unimodality, followed by a classification head. In addition, improvement methods were

investigated for potential performance gains. Accuracy and F1 scores were utilized to

evaluate baseline models. We also tested on different modality combinations, from uni-

modality to combination of two, and then to all three combined. We aim to discover if

this gradual addition of modality will result increase in performance.

MLLMs were tested using a standard setup of 30 frames per video. Audio inputs

were only used in models that support audio-visual modalities (Gemini-1.5-pro and

VideoLlama2-audio-visual). We used the general prompt: ”Is there any hateful con-
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tent in this video?” Answer ’Yes’ or ’No’ and explain why”, to generate model response

for all models. Positive and negative predictions were obtained by parsing the generated

responses for the keywords ’yes’ and ’no.’ The results were then evaluated based on

accuracy, precision, recall, and F1 scores.

Evaluation

Evaluation Metrics

The evaluation metrics used for both baseline and MLLMs are defined as follows:

• Accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN

Where TP (true positives) and TN (true negatives) are accurately predicted in-

stances of ”hate” and ”non-hate”, while FP (false positives) and FN (false nega-

tives) are the inaccurate predictions.

• Precision:

Precision =
TP

TP + FP

Precision is the proportion of accurately predicted ”hate” instances among all that

are predicted as ”hate.”

• Recall:

Recall =
TP

TP + FN

Recall reflects the proportion of instances with true label ‘hate’ that were correctly

identified by the model.

• F1 Score:

F1 Score = 2 · Precision · Recall
Precision + Recall

The F1 Score is the harmonic mean of precision and recall.

• Macro-F1 Score:

Macro-F1 =
1

C

C∑
i=1

F1 Scorei
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where C is the number of classes (in this case, two: ”hate” and ”non-hate”). This

metric distributes equal weight to both groups, making it robust to class imbalance.

Results

The performance of the baseline models and MLLMs is summarized in Tables 1 and 2.

Table 1: Baseline Results (Accuracy and Macro-F1 Score)

Modality Baseline Reduce LR Xavier Init. Linear Complexity Residual Blocks

MFCC
71.28
70.04

70.82
69.77

67.40
66.27

71.09
70.14

71.38
70.39

ViT
70.91
69.41

70.91
69.41

74.95
72.67

72.85
71.03

73.96
72.45

BERT
76.91
75.48

76.91
75.48

74.42
73.13

71.46
72.48

74.24
72.78

BERT+MFCC
76.45
75.49

78.48
77.09

78.48
77.02

77.47
76.32

78.12
76.77

BERT+ViT+MFCC
78.21
76.39

79.22
78.01

78.66
77.49

77.65
76.52

79.78
78.56

Table 2: MLLM Results (Accuracy, Precision, Recall, and F1 Score)

Model Accuracy Precision Recall F1 Score

Gemini-1.5-pro 64.38% 42.74% 94.64% 58.89%

VideoLlama2 62.44% 54.81% 30.54% 39.22%

VideoLlama2-Audio Visual 47.16% 40.21% 75.62% 52.50%

LLaVA-Next-Video 55.86% 46.25% 67.28% 54.80%

LLaVA-OneVision 65.83% 80.19% 18.79% 30.45%

These results provide some unexpected findings. From the Baseline column in Ta-

ble 1, it’s clear that utilizing multi-modalities is consistently improving the performance

of the model. However, combining text with audio (BERT + MFCC) yields no substan-

tial gains in performance. The model with text input alone (BERT) can achieve 76.91%

accuracy whereas the additional audio feature caused it’s accuracy to drop for 0.5%. We

speculate the model is only matching raw audio features to labels without using audio

as a complementary source of information, specifically semantic information. As a re-

sult, the potential benefits of audio–text fusion remain largely unrealized. The second

interesting finding is: despite the use of several improvement methods, the overall per-

formance of the baseline model did not improve much. For example, including residual

blocks in the baseline model only increased accuracy and F1 scores. We see the highest
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state our model can achieve with improvement methods is with residual block, but still

gaining only 1.5% in accuracy. The change isn’t minor but we are still bound below the

80% threshold, meaning one out of every five videos will be falsely predicted and results

in many hateful videos being overlooked. The advances did not produce a meaningful

breakthrough we desire. This suggests that in order to improve the overall performance of

hateful content detection in general, we need to review the feature extraction and fusion

approaches rather than minor modifications to the current architecture.

For the pretrained MLLMs results in Table 2, the overall worse performances is quite

shocking. Despite being trained on exponentially more data, none of these models out-

perform the baseline. It’s understandable that LLaVA-OneVision outperformer LLaVA-

Next-Video as the former is a more finetuned version. The close performance between

Gemini-1.5-pro and LLaVA-OneVision also suggests that success in hateful video de-

tection might not necessarily rely on using a larger or more complex model. However,

VideoLlama2-AV’s poor performance is the nost intriguing part. Gemini-1.5-Pro and

VideoLlama2-AV are the only two models in our selection capable of processing audio,

but neither of them can surpasses the baseline model’s performance. After a closer

investigation, we found out that Gemini-1.5-Pro extracts the transcripts from audio dur-

ing processing with speech recognition systems [12]. Whereas VideoLlama2-AV process

audio with an audio encoder that convert audio signals into mel spectrogram representa-

tion [13]. Both methods have its own strengths and limitations. Gemini-1.5-Pro benefits

from speech recognition which integrates semantic meaning but may lose tonal audio fea-

tures. VideoLlama2-AV reserve the raw audio features since it process the audio signals

directly, but this will result in semantic meaning loss. We revisited the model responses

and found VideoLlama2-AV has a tendency to identify unseen videos as hateful. This

raises awareness of current audio processing approaches in MLLMs. Most audio encoders

in MLLMs use processor similar to Mel Spectrograms encoders, which record the inten-

sity and tone of audio signals but do not preserve semantic information, whereas hateful

content is typically represented in subtle semantic distinctions in spoken language. Audio

signals are simply not enough to win this task and can even act as noise during this task.

Which is proven by the better performances of LLaVA-OneVision and LLaVA-Next-Video

which omit the use of audio.

A possible reason both models fail to outperform the baseline lies in their insufficient
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understanding of the alignment between modalities. Multimodal learning requires the

model to establish meaningful correspondences between modalities. Gemini-1.5-Pro’s re-

liance on text transcription might reduce the contextual relationship between audio and

visual data. Similarly, VideoLlama2-AV’s mel spectrogram-based audio processing fail

to capture semantic relationships between audio, text, and video modalities. Another

important conclusion we can think of, is that the baseline model’s overall better perfor-

mance is likely due to task-specific optimization. The baseline model’s additional and

precise training phase help to achieve a better modality alignment and feature integration

ability. In comparison, Gemini-1.5-Pro and VideoLlama2-AV, both are general-purpose

pretrained models, lack the fine-tuned alignment ability for this case. Research suggests

that inadequate multimodal alignment is a significant barrier to improving performance

in such models [14]. Moreover, pretrained models often suffer from modality collapse

in which certain modalities dominate the learned representations, reducing cross-modal

integration overall [15].

These findings indicate that we need better audio encoders that can bridge the gap

between raw audio features and the semantic meaning obtained from audio transcripts.

Potential methods include using pretrained speech recognition models to translate audio

into semantically meaningful representations. Such as Wav2Vec2. Furthermore, combin-

ing these semantic-rich features with visual and text modalities may result in a more

comprehensive approach to multimodal hate detection.

In conclusion, while baseline improvements and MLLMs have various degrees of suc-

cess, results suggest that considerable advancements in hateful video identification need

innovations in audio processing and alternative cross-modal fusion techniques. Solving

these problems would not only increase MLLM performance, but also make it easier to

detect subtle and hidden hateful text.

Data reevaluation

In order to validate our analysis from the test results, we performed a reevaluation

of the HateMM dataset. The goal was to enhance the dataset with richer information

that can help us to understand the factors behind MLLMs’ underperformances. From the

original HateMM dataset, we randomly selected 200 hate videos and re-annotated them

based on the specific modalities contributing to the hateful content. For example, hate
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videos that used audio and text to express their message were tagged with two Xs for au-

dio and text modalities respectively. In addition, we completely reviewed all of the videos,

providing detailed explanations for why each video is hateful. This included identifying

specific audio segments, critical phrases in the text, and identifying objects that indicated

as hateful. We believe that this expanded knowledge will help MLLMs improve their rea-

soning abilities during future fine-tuning. We also adjusted all hate-snippet annotations

to reflect the correct spatial span of hateful content. Statistics from the re-annotated

videos show that of the 200 hateful videos, 77 have hateful visual elements, 185 have

hateful audio, and 67 have hateful text. We assessed the MLLMs on unimodality of these

videos and found that all models performed well on the text modality alone, with accuracy

ranging from 90% to 97%. However, audio modality performance was consistently poor

across all models, backingup our conclusion on the significant weakness of current audio

encoders in MLLMs. These audio encoders lose important semantic information. If we

use an early-fusion strategy to align and concatenate modalities before feeding them into

the model, allowing the model to use cross-modality interactions. May make sure that

the semantic context provided by text and visual modalities supports audio perception

and performance.

Conclusion

Based on the HateMM study, we took a step further by evaluating SOTA MLLMs for

recognizing hateful videos. Even though the HateMM dataset provided useful insights

into multimodality, certain MLLMs are still having trouble with capturing semantic com-

plexities in spoken language. This is because modern audio encoders rely heavily on basic

acoustic properties such as Mel Spectrograms. To investigate these gaps, we undertook

a targeted re-annotation of chosen videos, adding more granular labels for hate snippets

and tying them to probable hostile cues in text and images. This strategy identified

instances where our models misread background audio cues that arrived intermittently.

In the future, we plan to implement an early-fusion method that aligns transcripts,

audio tracks, and visual objects based on hate snippet annotations. We will also utilize

semantic audio encoders instead of intensity-only representations of audio, which pre-

serves more information about spoken meaning and context. We want to create a more
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complete detection method by synchronizing semantically driven audio embeddings with

precisely calculated hate snippet timestamps and relevant video frames. This separates

hateful elements as they appear. We believe that by focusing on alignment, we will be

able to enhance overall classification accuracy while also enabling clearer interpretability

and more efficient moderation procedures, so building on HateMM’s strong foundation.
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