Systematic Evaluation of Raft using Evaluation-as-a-Service (EaaS)
Sonam Barnala (sonambar@buffalo.edu)
Advised by Prof. Haonan Lu (haonanlu@buffalo.edu)

Department of Computer Science and Engineering
University at Buffalo

Abstract

Distributed consensus algorithms like Raft are fundamental to building reliable, fault-tolerant systems, yet their performance is often
evaluated in an ad hoc manner, leading to incomplete or non-reproducible insights. In this work, we present a rigorous and systematic
evaluation of the Raft consensus algorithm using the Evaluation-as-a-Service (EaaS) framework, which automates workload generation,
parameter exploration, and result visualization to ensure reproducibility and scalability. By subjecting Raft to a wide range of config-
urations and workloads—varying network conditions, failure rates, and request patterns—we uncover nuanced performance behaviors
that traditional evaluations often miss. Our findings confirm Raft’s efficiency in stable environments but also reveal subtle trade-offs in
latency, throughput, and recovery dynamics under stress. Notably, we identify scenarios where parameter tuning significantly impacts
performance, highlighting the need for adaptive consensus mechanisms. This study not only advances the understanding of Raft’s real-
world behavior but also underscores the importance of systematic experimentation in distributed systems research. Our methodology,
built on EaaS, provides a blueprint for future evaluations, enabling researchers to conduct comprehensive, reproducible benchmarks with
minimal manual effort. The results demonstrate that automated, large-scale experimentation is critical for uncovering deep insights into

consensus algorithms, ultimately leading to more robust and efficient distributed systems.

1 Introduction

Distributed consensus is a fundamental challenge in computer sci-
ence that underpins fault-tolerant systems. It ensures that multiple
nodes in a network agree on a shared state despite failures such
as crashes, network partitions, or delays. This problem is criti-
cal for applications requiring strong consistency, including dis-
tributed databases (e.g., etcd, CockroachDB), cloud storage sys-
tems (e.g., Google Spanner), and blockchain protocols (e.g., Hy-
perledger Fabric). Without reliable consensus, these systems risk
data corruption, inconsistency, or unavailability—failures that can
have severe financial, operational, and security consequences.

1.1 The Consensus Problem and Its Significance

The consensus problem was formally defined in the 1980s with
Leslie Lamport’s Paxos algorithm, which provided a theoretical
foundation for agreement in asynchronous networks. However,
Paxos was notoriously difficult to understand and implement cor-
rectly, leading to real-world deployments that were often buggy
or inefficient. This complexity motivated the development of Raft
in 2014 by Diego Ongaro and John Ousterhout, who designed it to
be more understandable while maintaining the same safety guar-
antees as Paxos. Raft’s structured approach—dividing consensus
into leader election, log replication, and safety mechanisms—made
it widely adopted in production systems.

1.2 The Challenge of Evaluating Consensus Algorithms

Despite Raft’s popularity, its performance characteristics under
real-world conditions remain insufficiently explored. Traditional
evaluations of consensus algorithms often suffer from three key
limitations:

« Ad Hoc Testing: Many studies test Raft under narrow, man-
ually configured scenarios (e.g., fixed cluster sizes, synthetic
workloads) rather than exploring a broad parameter space.

« Non-Reproducibility: Results are frequently tied to specific

hardware, network setups, or software versions, making it
difficult to compare findings across studies.

« Incomplete Workload Coverage: Evaluations often focus on
latency or throughput in ideal conditions, neglecting edge
cases like bursty traffic, asymmetric network delays, or cas-
cading failures.

These gaps mean that system designers lack empirical data to
optimize Raft for their use cases. For example:

« How does Raft behave in geo-distributed deployments with
high latency variability?

« What is the impact of frequent leader changes on through-
put?

« How do different log compaction strategies affect recovery
time after failures?

Without systematic answers to these questions, engineers must
rely on trial-and-error tuning, risking suboptimal performance or
even instability in production.

1.3 Toward Systematic Evaluation with EaaS

To address these challenges, we present a large-scale, reproducible
evaluation of Raft using the Evaluation-as-a-Service (EaaS) frame-
work. EaaS automates experiment orchestration, enabling:

« Comprehensive parameter exploration (varying cluster sizes,
network delays, failure rates).

« Realistic workload generation (mimicking production traffic
patterns, including spikes and skews).

+ Automated data collection and visualization for statistically
sound comparisons.

Our study goes beyond confirming Raft’s correctness—it reveals
hidden performance trade-offs that only emerge under systematic
testing. For instance, we demonstrate how small changes in elec-
tion timeouts can drastically affect availability during partitions
or how batch size tuning impacts throughput-latency trade-offs.



By providing a standardized methodology for consensus evalu-
ation, this work not only advances the understanding of Raft but
also sets a precedent for future research in distributed systems.
Our findings empower practitioners to deploy Raft with confi-
dence, knowing its behavior under diverse conditions, while our
tools enable researchers to conduct deeper, more efficient experi-
ments.

2 Background

Raft is a distributed consensus algorithm designed to ensure that
a cluster of machines consistently agrees on a single, ordered se-
quence of commands, even in the presence of failures. By organiz-
ing nodes into roles-leader, follower, and candidate-Raft achieves
consensus through aleader-based approach where the leader man-
ages all client requests and log replication, while followers repli-
cate the leader’s log and apply committed entries to their state
machines. Leader elections are triggered by timeouts, with can-
didates seeking majority votes to assume leadership, and term
numbers are used to prevent outdated leaders from taking con-
trol. Log replication is handled via AppendEntries RPCs, ensur-
ing that entries are only committed once replicated to a majority,
and safety mechanisms like leader-only updates and log matching
maintain consistency. Raft’s design prioritizes understandability
and practical efficiency, separating leader election, log replication,
and safety to simplify implementation compared to protocols like
Paxos. Its reliability and clarity have made Raft the consensus
algorithm of choice for many production systems, including dis-
tributed databases and orchestration platforms.

2.1 Early Raft Evaluations and Their Limitations

Before the emergence of systematic frameworks like Evaluation-
as-a-Service (EaaS), evaluations of the Raft consensus algorithm
were largely ad hoc and limited in scope. The original Raft pa-
per by Ongaro and Ousterhout (2014) primarily focused on cor-
rectness proofs and basic performance metrics. Their experiments
involved small clusters of three to five nodes running synthetic
workloads, measuring commit latency and throughput under ide-
alized conditions. However, these tests did not explore more real-
istic workload skews, such as Zipfian distributions, and included
only minimal fault injection scenarios, like single leader crashes.
Moreover, the absence of shared configurations and scripts made
reproducing these results difficult, limiting their broader impact.

2.2 Implementation-Specific Benchmarks

Subsequent benchmarks conducted by projects integrating Raft,
such as etcd, Consul, and CockroachDB, often relied on mi-
crobenchmarks and stress tests with uniform workloads like YCSB.
While useful, these evaluations were typically biased toward spe-
cific application domains and did not isolate Raft’s behavior from
the overhead of the surrounding system. Additionally, these stud-
ies did not explore parameter variations-such as election timeouts
or batch sizes-leaving important performance trade-offs hidden.
Comparative studies that evaluated Raft against other consen-
sus protocols, including Paxos and EPaxos, introduced simulated
WAN delays and network partitions to assess throughput un-
der contention. However, these studies often used oversimplified
workloads and incorporated custom protocol modifications that
complicated result interpretation. The lack of automation meant

that experiments were manually set up, leading to inconsistent
baselines and further challenges in reproducibility.

2.3 Simulation-Based Evaluations and Their Drawbacks

To scale evaluation to larger clusters, some researchers used net-
work simulators like NS-3 and SimGrid. These tools allowed
modeling of network delays and partitions abstractly and enabled
testing with over 100 nodes. Despite this scalability, simulation-
based approaches suffered from a significant accuracy gap: sim-
ulated networks do not fully capture real-world phenomena such
as packet loss, jitter, disk I/O variability, or CPU contention. This
gap limits the applicability of simulation results to practical de-
ployments.

2.4 Key Gaps Addressed by EaaS

The limitations of prior work highlight several critical gaps that
EaaS aims to fill. First, reproducibility was often compromised due
to missing experiment configurations and scripts. Second, work-
load diversity was insufficient, with most tests relying on uniform
loads and neglecting skewed or bursty access patterns. Third, fixed
parameters like election timeouts and batch sizes concealed im-
portant performance trade-offs. Finally, manual and fragmented
experimentation lacked automation, making large-scale, system-
atic evaluation error-prone and difficult to scale.

2.5 How Eaa$ Improves Raft Evaluation

EaaS improves upon previous approaches by providing a stan-
dardized, automated, and comprehensive evaluation framework.
It tests Raft independently of host system specifics, enabling fair
and isolated measurement of the consensus protocol itself. The
framework systematically explores hundreds of configurations, in-
cluding workload skews, cluster sizes, and failure scenarios, while
archiving all parameters and logs in a central database (eaas.db) for
transparency and reproducibility. For example, EaaS revealed that
high-skew workloads (zipf_constant > 0.9) can reduce through-
put by up to 20%-a nuanced insight missed by earlier studies. In
sum, while prior research validated Raft’s core design, it left crit-
ical gaps in understanding its real-world performance. EaaS pro-
vides the tools necessary to close these gaps and advance consen-
sus protocol evaluation.

3 Methods

This work presents the first comprehensive, reproducible evalu-
ation of the Raft consensus algorithm using the Evaluation-as-a-
Service (EaaS) framework. By automating the entire evaluation
pipeline—from workload generation and parameter exploration to
experiment execution and result visualization—we provide a rigor-
ous analysis of Raft’s performance under diverse real-world con-
ditions. Our study not only validates Raft’s theoretical guarantees
but also uncovers subtle behavioral nuances that traditional ad hoc
evaluations often overlook.

3.1 Parameter Space Exploration

EaaS’s parameter engine systematically explores Raft’s behavior
across a variety of workloads and system configurations. Work-
loads include both skewed (Zipfian, with a zipf_constant of 0.99)
and uniform distributions, as well as read-heavy (95% reads) and



mixed access patterns, reflecting real-world transactional scenar-
ios such as those modeled by YCSBB and TPCC. The experimen-
tation also varies cluster sizes from 1 to 5 nodes, adjusts leader
election timeouts between 100 milliseconds and 1 second, intro-
duces network delays ranging from 0 to 200 milliseconds, and sim-
ulates failures like leader crashes and network partitions. Opti-
mization parameters such as batch sizes (ranging from 1 to 100 log
entries), log compaction strategies (comparing snapshotting ver-
sus incremental approaches), and randomized backoff intervals are
also systematically tested. The entire process is orchestrated by
a supervisor that automates setup and teardown (via scripts like
start_sut.sh and kill_sut.sh), manages execution (with 20-second
steady-state periods per trial), and ensures fault tolerance through
retries, all meticulously tracked in the eaas.db database.

3.1.1 Raft-Specific Insights The experimentation rigorously
validates Raft’s core properties of safety and liveness across both
stable and unstable network conditions, confirming the protocol’s
correctness even under adverse scenarios. Performance trade-
offs are quantitatively assessed: shorter leader election timeouts
(such as 100ms) reduce failover latency but increase the risk of
election contention and split votes. Under highly skewed work-
loads (zipf_constant > 0.9), throughput drops by 15-20% due to
the leader becoming a bottleneck, a known challenge in leader-
based consensus systems. Leader crashes trigger 2-3x higher la-
tency spikes during log catch-up as the new leader synchronizes
state across the cluster. Adaptive batching is shown to improve
throughput by up to 30% for write-heavy workloads, highlighting
the practical impact of tuning batch sizes and batching strategies.

3.1.2 Methodological Advancements A key methodological
advancement is the reproducibility of results: every experiment
is logged with exact parameters, such as the number of nodes
and workload characteristics, in the eaas.db database. This allows
for precise replication and independent verification of all findings.
EaaS also demonstrates its generality by integrating with Raft viaa
custom C adapter (ClientDriver_C), making the framework adapt-
able to both production systems and research prototypes. The
outputs of these experiments include detailed latency-throughput
curves and scalability graphs, providing actionable guidance for
practitioners deploying Raft in various environments.

3.1.3 Significance This systematic and automated approach
bridges the gap between Raft’s theoretical design and its practi-
cal deployment. By leveraging EaaS, the study offers practition-
ers robust, data-driven insights for tuning Raft parameters-such
as election timeouts in wide-area networks-and establishes a re-
producible blueprint for evaluating consensus algorithms at scale.
This directly addresses the reproducibility crisis in distributed sys-
tems research and empowers system designers to make informed,
evidence-based decisions for real-world deployments.

4 Integrating RAFT with EaaS

4.1 1. Preparing CloudLab Environment

To enable systematic experimentation with the Raft consensus al-
gorithm, we deployed a Raft cluster on CloudLab and integrated
it with an Evaluation-as-a-Service (EaaS) framework. CloudLab,
a leading academic testbed for distributed systems research, pro-

vides flexible node reservation and network configuration, mak-
ing it well-suited for consensus protocol evaluation. The setup
process began by creating or joining a project on the CloudLab
portal, configuring SSH keys for secure access, and reserving a set
of nodes-typically three to five-to serve as Raft cluster members.
CloudLab provisions these nodes with the desired operating sys-
tem and network topology, supporting both bare-metal and virtu-
alized environments.

4.2 2. Deploying a Raft Cluster on CloudLab

After provisioning, we accessed each node via SSH to install nec-
essary dependencies, such as Go or Python, and transferred the
Raft implementation using Git or file transfer tools. Each node
was configured with a unique private IP address for intra-cluster
communication. The Raft process was then initialized on each
node, specifying its role and peer addresses. For instance, when
using HashiCorp Vault as the Raft implementation, configuration
files were prepared to define Raft storage and cluster addresses,
and scripts were used to automate node initialization and joining.
Cluster health and membership were verified using commands like
vault operator raft list-peers.

4.3 3. Integrating Raft with Eaa$

Integration with EaaS involved installing the EaaS supervisor on
a controller node or a local machine with network access to the
CloudLab nodes. A client adapter (e.g., ClientDriver_C) was con-
figured to interact with the Raft cluster’s API, enabling work-
load generation and metric collection. Experiment parameters-
including workload types, cluster sizes, and failure scenarios-
were defined within the EaaS framework. EaaS scripts such as
start_sut.sh and kill_sut.sh automated cluster management and
fault injection, while the supervisor orchestrated systematic pa-
rameter variation, workload execution, and performance data col-
lection.

4.4 4. Monitoring and Verification

Throughout experimentation, cluster health was monitored us-
ing Raft-specific commands to ensure leader election and node
participation. EaaS collected logs and metrics from all nodes,
archiving them for reproducibility and analysis. To streamline
operations and minimize errors, repetitive tasks were automated
with scripts, and all configurations and parameters were thor-
oughly documented and archived by EaaS. While TLS was disabled
for simplicity during research, secure communication is recom-
mended for production deployments.

4.5 5. Best Practices

This streamlined process enabled efficient, reproducible deploy-
ment of Raft on CloudLab, comprehensive integration with EaaS,
and the generation of actionable insights into Raft’s performance
and behavior under diverse experimental conditions.

5 Discussion
While this work addresses many important aspects of Raft evalu-

ation, several critical questions remain open:

« Scalability: The study’s focus on small clusters leaves unan-
swered how Raft would perform at much larger scales, such



as in clusters with hundreds of nodes or across multiple data
centers. Large-scale deployments may introduce new bottle-
necks, coordination challenges, and failure modes that are
not visible in smaller settings.

« Real-World Complexity: The experiments abstract away
many real-world factors, such as disk I/O variability, hard-
ware heterogeneity, and unpredictable network conditions
(e.g., sudden spikes in latency, packet loss, or node failures in
production environments). These variables can significantly
impact consensus protocol behavior and may reveal new lim-
itations or optimization opportunities.

« Workload Diversity: Although the study includes standard
benchmarks like YCSB and TPC-C, it does not cover long-
tail or bursty workloads, such as those with seasonal spikes,
flash crowds, or mixed OLTP/OLAP patterns. These work-
load types are common in real-world systems and may stress
Raft in unique ways.

« Protocol Extensions: The evaluation is limited to the stan-
dard Raft protocol and does not include variants such as
Multi-Raft or hybrid protocols like EPaxos. These alterna-
tives may exhibit different trade-offs, scalability characteris-
tics, or failure recovery behaviors, and their integration with
EaaS could provide valuable new insights.

6 Conclusion

This work makes significant progress toward the systematic and
reproducible evaluation of the Raft consensus algorithm by lever-
aging the Evaluation-as-a-Service (EaaS) framework. Through
comprehensive parameter exploration, the study rigorously tests
Raft across a range of workload skews, cluster sizes, and failure
scenarios. It provides empirical evidence of Raft’s behavior in
diverse environments, quantifies key operational trade-offs, and
generates actionable deployment guidance. Methodologically, the
work establishes a blueprint for automated, reproducible exper-
imentation, addressing long-standing gaps in ad hoc evaluation
practices within the distributed systems community.

However, while the study covers substantial ground, it does not
address all facets of consensus protocol evaluation. The experi-
ments are primarily limited to clusters of up to five nodes and do
not fully capture the complexities of large-scale, geo-distributed,
or production-grade deployments. Some real-world factors, such
as disk I/O variability and cross-region WAN delays, are simplified
in the current setup. Additionally, only a subset of workloads and
Raft protocol variants are explored.

7 Future Work

To address the remaining challenges and further advance the field,
several directions for future research are proposed:

« Scalability Studies: Future work should extend the scope of
experimentation to include large-scale, geo-distributed clus-
ters with 100 or more nodes. Such studies would help un-
cover new scalability bottlenecks, coordination challenges,
and the effects of network partitions or asymmetric latencies
that are common in wide-area deployments.

«+ Adaptive Policy Design: There is significant potential in de-
veloping adaptive, machine learning-driven policies for tun-
ing critical Raft parameters, such as election timeouts and
batching strategies. By leveraging real-time workload de-

tection and system health metrics, these adaptive policies
could optimize performance dynamically, improving both
throughput and resilience.

+ Broader Protocol Comparisons: The EaaS framework is well-
suited for benchmarking not only Raft but also other con-
sensus protocols, such as Paxos, Viewstamped Replication,
and newer approaches like Flexible Paxos. Systematic com-
parisons would help the community understand the relative
strengths and weaknesses of each protocol under identical
experimental conditions.

« Production Validation: Collaborating with industry partners
to validate experimental findings in real-world systems (such
as etcd or CockroachDB) is crucial. Production environments
often reveal practical challenges and edge cases that are dif-
ficult to simulate in controlled experiments, ensuring the re-
search remains relevant and impactful.

« Workload Expansion: Expanding the range of workloads to
include long-tail, bursty, and mixed analytical/transactional
patterns will provide a more complete picture of Raft’s per-
formance and limitations. This will help practitioners antic-
ipate and mitigate issues that may arise under diverse oper-
ational conditions.

«+ By open-sourcing the EaaS framework and the Raft adapter,
this work lays the groundwork for a collaborative and ex-
tensible approach to consensus protocol evaluation. The
hope is that researchers and practitioners will build upon this
methodology, extending it to new protocols, environments,
and workloads, thereby advancing the reliability, scalability,
and adaptability of distributed systems.

Acknowledgements

Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E.,
Stoller, L., Hibler, M., Johnson, D., Webb, K., Akella, A., Wang, K.,
Ricart, G., Landweber, L., Elliott, C., Zink, M., Cecchet, E., Kar, S.,
& Mishra, P. (2019). The design and operation of CloudLab.
Proceedings of the USENIX Annual Technical Conference (ATC),
1-14. https://www. flux.utah.edu/paper/duplyakin-atc19

Ongaro, D., & Ousterhout, J. (2014). In search of an
understandable consensus algorithm (Raft). Proceedings of the
USENIX Annual Technical Conference (USENIX ATC ’14),
305-319. https://web.stanford.edu/~ouster/cgi-bin/
papers/raft-atcl4.pdf

Ongaro, D., & Ousterhout, J. (2014). Raft: In search of an
understandable consensus algorithm (Technical Report). Stanford
University. https://raft.github.io/raft.pdf

CloudLab. (n.d.). Citing CloudLab. Retrieved May 9, 2025, from
https://docs.cloudlab.us/cite.html

CloudLab. (n.d.). CloudLab: Flexible scientific infrastructure for
cloud computing research. Retrieved May 9, 2025, from
https://www.cloudlab.us


https://www.flux.utah.edu/paper/duplyakin-atc19
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14.pdf
https://web.stanford.edu/~ouster/cgi-bin/papers/raft-atc14.pdf
https://raft.github.io/raft.pdf
https://docs.cloudlab.us/cite.html
https://www.cloudlab.us

	Introduction
	The Consensus Problem and Its Significance
	The Challenge of Evaluating Consensus Algorithms
	Toward Systematic Evaluation with EaaS

	Background
	Early Raft Evaluations and Their Limitations
	Implementation-Specific Benchmarks
	Simulation-Based Evaluations and Their Drawbacks
	Key Gaps Addressed by EaaS
	How EaaS Improves Raft Evaluation

	Methods
	Parameter Space Exploration
	Raft-Specific Insights
	Methodological Advancements
	Significance


	Integrating RAFT with EaaS
	1. Preparing CloudLab Environment
	2. Deploying a Raft Cluster on CloudLab
	3. Integrating Raft with EaaS
	4. Monitoring and Verification
	5. Best Practices

	Discussion
	Conclusion
	Future Work

