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Abstract

Speaker diarization is a Multi-output classification problem on audio answering
the question "Who spoke when?". Recently, End-to-end models have replaced
traditional diarization models which use clustering-based approaches and solve
issues such as dealing with overlapping speech. I have implemented an end-to-end
diarization model based on the existing End-to-end Mask to Former (EEND-M2F)
architecture, where in I have augmented the backbone with embeddings trained
using multi-view contrastive learning. The crux of the work involved augmenting
the backbone and replicating the model as described in [1] and training the model
on publicly available data sets.

1 Introduction

The EEND-M2F framework reimagines speaker diarization as a segmentation problem over the
temporal domain of audio. Much like object segmentation in images, where each object is identified
and separated in 2D space, EEND-M2F treats the 1D audio signal as a space where each speaker
constitutes a distinct "object” to be detected and segmented over time. The model outputs a sequence
of binary masks—one per speaker—indicating the presence or absence of each speaker at each time
frame. This formulation directly addresses the core diarization question: who spoke when, and does
so without requiring traditional clustering or heuristic-based steps.

This project aims to improve speaker discrimination within this framework by enhancing the encoder
backbone’s representation capacity. To do this, I integrate speaker-aware embeddings derived
through multi-view contrastive learning, a self-supervised technique that learns to project different
augmentations or "views" of the same speaker’s audio into a shared embedding space, while pushing
apart representations of different speakers.

These embeddings are trained separately using speaker recognition models where each view corre-
sponds to a distinct transformation of a given speech segment. The model learns to recognize that
these transformed views belong to the same speaker, while maintaining separation from others. This
multi-view setting helps capture more robust, invariant speaker characteristics.

Once trained, these embeddings are incorporated into the EEND-M2F model using an early fusion
strategy—that is, they are concatenated or combined with the input features before being passed into
the mask module of the diarization model. This early integration allows the model to use both raw
acoustic cues and speaker-discriminative information simultaneously during learning. The hypothesis
is that this additional speaker-aware information will help the improve the model’s accuracy.
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1.1 Multiview-PairwiseCL

Multiview Pairwise Contrastive Learning (Multiview-PairwiseCL) is a self-supervised learning
framework designed to learn discriminative and robust feature representations in the absence of
sufficient annotated data. Unlike traditional supervised approaches that rely heavily on labeled
datasets, Multiview-PairwiseCL operates by constructing positive and negative sample pairs from
multiple augmented views of the same input data, enabling the model to learn invariances and
semantic structures inherent in the data distribution.

Formally, given an input audio segment, multiple augmentations are applied to generate different
"views" of the same underlying content. For each anchor view, a corresponding positive view is
selected from the same source segment, while negative views are drawn from different segments
within a batch. The objective is to minimize the distance between embeddings of positive pairs while
maximizing the distance between embeddings of negative pairs.
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In my framework, I leverage Multiview Pairwise Contrastive Learning (Multiview-PairwiseCL) to
learn high-quality, speaker-specific latent representations from speech data within a supervised train-
ing regime. Unlike its typical application in self-supervised contexts, I adapt Multiview-PairwiseCL
to utilize ground-truth speaker labels to explicitly construct positive and negative sample pairs.
Specifically, speech segments originating from the same speaker are treated as positive pairs, while
segments from different speakers form negative pairs. These curated pairwise relationships guide the
model to optimize a contrastive objective that minimizes the embedding distance between utterances
of the same speaker while maximizing the separation between those of different speakers in the latent
representation space. By integrating supervision into the contrastive learning pipeline, I ensure that
the learned representations are not only invariant to superficial acoustic variations but are also highly
discriminative with respect to speaker identity—thus enabling more effective downstream tasks.
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1.2 EEND-M2F

My work builds on EEND-M2F, a state-of-the-art neural diarization architecture that generalizes the
Mask2Former framework, originally proposed for semantic segmentation in the image domain to one-
dimensional temporal audio sequences. Recognizing the domain agnostic design of Mask2Former,
EEND-M2F repurposes these capabilities for speaker diarization.

In my implementation, I adhere to the architectural principles described in [1], with modifications to
accommodate the model on the gpus to which I have access.

The core of my system is built on the integration of Multiview PairwiseCL and EEND-M2F. The
multiview pairwiseCL embeddings are then fused into EEND-M2F, which extends advanced segmen-
tation strategies to the audio domain. Together, these components form a cohesive framework for
scalable, accurate, and interpretable speaker diarization.

2 Method

I generated the embeddings using a multi-view contrastive self-supervised learning (SSL) pre-training
technique, Pairwise-CL. Pairwise-CL leverages the NT-Xent loss to align representations across



diverse audio views, fostering invariant and discriminative embeddings. The approach incorporates
pre-trained Resnet TDNN and ECAPA-TDNN as initial views.

The embeddings are produced using two speaker recognition systems. The first system is a ResNet-
TDNN model, which combines residual network layers with a time-delay neural network (TDNN) [4].
It is trained with Additive Margin Softmax Loss, and speaker verification is performed by calculating
cosine distance between the extracted embeddings. The second system is an ECAPA-TDNN model,
which integrates convolutional and residual blocks, using attentive statistical pooling for embedding
extraction. This model is also trained using Additive Margin Softmax Loss and employs cosine
distance for speaker verification.

Speaker embeddings in my system are extracted using two state-of-the-art speaker recognition
architectures. The first model is a hybrid ResNet-TDNN architecture, which integrates residual
convolutional layers for deep feature extraction with time-delay neural network (TDNN) layers to
capture temporal dependencies in the speech signal [4]. This model is optimized using the Additive
Margin Softmax (AM-Softmax) loss, which enhances inter-class separability in the embedding space.
For speaker verification, the similarity between embeddings is quantified using cosine distance.

Pairwise-CL aligns the embeddings from these two models, by combining complementary features
and enforcing alignment across views, the proposed methodology ensures the embeddings are
invariant to noise and discriminative for speaker-specific characteristics.

The Loss function is computed according to the following equations:
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We compute losses between all pairs of views:
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The proposed loss function aims to maximize the similarities for multi-view representations for to the
same instance.

After this pretraining, I use these embeddings in the encoder backbone of the EEND-M2F and further
train the model for the speaker diarization downstream task.

2.1 Encoder Backbone

The input sequence X gets downsampled via convolutional layers to a 1/10th the resolution, after
which it passes through Conformer layers to produce the low-resolution latent sequence.

& = Conformer(ConvDown(X)) 4)

2.2 Mask module

The mask module combines the latent space embedding with queries to generate probabilities for
each query.

MaskModule(Q, £) := £ - MLP(Q)” )

Y = o(MaskModule(Q, &)) (6)



2.3 Query Module

The query module processes a set of input queries Q(©) alongside the latent acoustic representation
£, producing an updated set of queries Q1) that maintains the original shape of Q). Initially,
masked cross-attention is computed between Q(e) and &, where the attention mask is derived from
intermediate diarization logits defined as M(¥) = MaskModule(Q'?), £). The resulting masked
attention outputs are then propagated through a stack of Transformer blocks comprising multi-head
self-attention and feed-forward sublayers, ultimately yielding the refined queries. Formally:

Q' =LN(MHA(QY + P,£,&MY) + Q) ™
Q" =LN(MHA(Q' + P,Q' + P,Q) + Q') ®)
QUHY = LN(FF(Q") + Q") ©)

2.4 Query classification module

I employed a simple classification layer to decide which columns to from Y.

p = o(Linear(Q)) (10)
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Figure 1: The Model

2.5 Loss function

I employed Permutation invariant training, wrapping Binary cross entropy loss for p , Binary cross

entropy loss for Y and Dice loss. The loss is the sum of these three losses during training. Permutation
invariant training uses a hungarian matching step to find the optimal permuation of predictions that

minimizes the Binary cross entropy loss of Y.

3 Results

The training of the embeddings using Pairwise-CL yielded promising results. As depicted in the
Figure below, the loss recorded during the training phase shows a steady decline over 200 iterations
for all three datasets. This consistent reduction in loss indicates that the network is effectively learning
to cluster embeddings based on speaker similarity, a critical step toward robust speaker diarization.
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Figure 2: Contrastive Learning loss on datasets AMI, ICSI, and Voxconverse
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Figure 3: Model Loss
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Figure 4: Model Accuracy

I trained the model using the aforementioned architectural principles. I added 6 layers of transformer
decoders, as mentioned in [1]. I compressed the raw audio by a factor of 100. The results presented
below pertain to this model configuration. The plots show the average loss and average accuracy per
sample. We see a steady increase in accuracy and decrease in loss for 50 training samples after which
this model plateaus. I believe this might be caused by the severe compression of the raw audio and
the query dimensions in the transformer decoder layers.
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