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Abstract

MediLink is a multi-agent conversational chatbot developed to provide preliminary medical diagnosis support
through interactive symptom gathering and evidence-based reasoning, without aiming to replace human
medical professionals. Unlike traditional symptom checkers or basic symptom-to-disease mapping systems,
MediLink actively engages users in iterative dialogue, dynamically refining its diagnostic predictions with
each interaction and in a more nuanced diagnosis. It operates in two distinct modes: a dedicated clinical
Q&A mode for symptom assessment and diagnosis, and a casual chat mode for general conversations with
the user. Its core diagnostic engine combines semantic search and AI-generated predictive models, with the
generative approach (using MedAlpaca-7B with QLora) achieving approximately 95.4% prediction accuracy
during internal evaluations while training and testing. To ensure more robust predictions, MediLink uses
Retrieval Aggregated Generation (RAG), encoding user-reported symptoms as vectors to retrieve accurate
disease information from trusted medical knowledge bases instead of relying solely on the internal knowledge
of a language model. As users respond, the system iteratively updates disease confidence scores and employs
a symptom co-occurrence matrix to identify critical follow-up questions, systematically reducing diagnostic
ambiguity. Once MediLink’s confidence exceeds a predefined threshold that is 90%, the chatbot shifts into
a comprehensive evidence-based reasoning phase. Here, it uses not only the demographics of the patient,
which we collect at the start of the session, but also the cumulative set of symptoms extracted throughout
the conversation with the user, as well as the most likely predicted disease, to obtain relevant and up-to-date
medical literature from PubMed. By segmenting these recovered articles into manageable chunks, MediLink
performs chain-of-thought (CoT) reasoning, explicitly explaining its diagnosis, suggesting precautions, and
transparently detailing its rationale. Recognizing that current online symptom searches typically force
users to sift through numerous disconnected articles, often missing critical context or detail, MediLink
provides structured, coherent preliminary guidance. Although its predictions might be constrained by the
limitations of the underlying knowledge graph, the system offers users a valuable starting point, laying a
foundation for further clinical evaluation and potentially serving as a stepping-stone in a broader diagnostic
chain. Future enhancements, such as integrating symptom severity (mild, high, acute, chronic) and patient
medical history, could substantially boost accuracy, although current datasets lack such detailed temporal
and historical dimensions. Ultimately, MediLink exemplifies how intelligent conversational AI can surpass
generic search-based queries or simplistic chatbot responses, paving the way for more personalized, context-
aware preliminary medical assessments.
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Introduction

Artificial intelligence is increasingly being used to assist in medical diagnosis, leveraging large language
models (LLMs) for their strong reasoning and conversational abilities. However, purely generative LLM-
based approaches can suffer from issues such as hallucinations and a lack of interpretability and transparency
in decision making [10]. Ensuring precision and clarity in a user-facing diagnostic system is critical, as clinical
decisions demand correct outcomes and understandable justifications. Traditional symptom-checker systems
rely on predefined decision trees or probabilistic models, which may lack flexibility and conversational ability.
Newer approaches explore LLMs for differential diagnosis, but integrating them effectively into an interactive
tool remains challenging.

MediLink is proposed as a multi-agent conversational diagnostic chatbot that combines generation accu-
racy with retrieved and generative explainability for interactive medical consultations. The system engages
users (patients or clinicians) in a dialog, asking relevant follow-up questions, and ultimately providing a
diagnostic suggestion with reasoning. MediLink’s design prioritizes both technical depth in reasoning and
a clear user experience: it can operate in a formal clinical mode for healthcare professionals and a casual
chat mode for laypersons, adapting its language and detail accordingly. The system employs a hybrid of
methods, including Retrieval-Augmented Generation (RAG) for up-to-date medical knowledge based on a
knowledge graph database, LLM-based reasoning for differential diagnosis, and a symptom co-occurrence
matrix to design better follow-up questions.

In summary, MediLink offers the following key features and contributions:

• Multi-Agent Architecture: MediLink uses a network of specialized modular agents (or modules)
that work together, a disease prediction engine with a generative dialogue engine for interactive diag-
nosis.

• Standardized Medical Knowledge: The system maps user-described symptoms and suspected
diseases to standard identifiers (ICD-10 codes for diagnoses and UMLS concepts for symptoms) to
ensure consistency and enable integration with medical ontologies and terminologies.

• Dynamic Dialogue with Dual Modes: It supports both a clinical mode (prioritizing medical
terminology and concise communication) and a casual mode (providing patient-friendly explanations
and empathetic tone), improving adaptability to different end-users.

• Retrieval-Augmented Reasoning: MediLink incorporates external medical literature by querying
PubMed via NCBI Entrez APIs. The relevant articles recovered are used to support the final diagnostic
reasoning, ground the chatbot’s conclusions in up-to-date evidence, and mitigate hallucinations related
to LLM [11].

• High Accuracy and Interpretability: A fine-tuned diagnostic engine (MedAlpaca-7B [1]) achieves
approximately 95.4% accuracy on internal validation cases, and the system’s reasoning process is
interpretable. It produces a confidence-ranked list of possible conditions and justifies its final recom-
mendation with traceable logic and external references.

The following sections detail the design of MediLink and situate it in the context of related work. We
describe the system architecture and methodology, present initial evaluation results, and discuss conclusions
and future directions.

Related Work

Early computer-aided diagnosis systems, such as MYCIN and later symptom-checker applications, relied
on rule-based inference or Bayesian networks to suggest diagnoses given patient inputs. These systems
required manual knowledge engineering and often lacked conversational interfaces. More recent symptom
checker platforms employ statistical learning on symptom-disease databases, but they typically follow a fixed
questioning script and do not leverage the rich language understanding of modern LLMs.
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The use of large language models like GPT-3/GPT-4 has increased interest in AI that can perform
differential diagnosis through dialogue (With Conversational Capabilities). For example, researchers have
demonstrated that GPT-4 can generate plausible diagnostic lists from patient descriptions, but concerns
remain about accuracy, transparency, and the potential for incorrect but confident answers (i.e., hallucina-
tions). To address these issues, one emerging trend is retrieval-augmented generation (RAG): incorporating
external knowledge sources or databases into the LLM’s reasoning process. Recent studies emphasize aug-
menting LLMs with medical knowledge graphs or clinical databases to improve diagnostic accuracy and
trustworthiness of the system. This has led to systems that can retrieve relevant clinical guidelines or
research articles associated with the model’s predictions, thus providing evidence for the AI’s conclusions.

Another line of research focuses on making the diagnostic reasoning of LLMs more interpretable and
stepwise. Chen et al. introduced the Chain-of-Diagnosis (CoD) approach [10], which transforms the di-
agnostic process into a transparent sequence of reasoning steps, analogous to a physician’s thought process.
In their CoD framework, the LLM explicitly outputs a chain of reasoning with identified symptoms, inter-
mediate conclusions, and a confidence distribution over possible diseases. This method helps explain why
certain diagnoses are considered or ruled out and identifies which additional symptom inquiries could most
reduce uncertainty (using entropy reduction of the confidence distribution). The CoD-based system (Diag-
nosisGPT) is reported to cover 9,604 diseases and showed superior performance on diagnostic benchmarks
[1], highlighting the power of tailored reasoning strategies in medical AI.

MediLink shares the goal of interactive and interpretable diagnosis with these systems, but takes a dis-
tinct multi-agent approach. Unlike CoD’s single-LLM chain-of-thought method, MediLink delegates tasks
to specialized components: one component focuses on symptom/disease identification and confidence esti-
mation, while another handles dialogue generation and inquiry. This design allows MediLink to integrate
the retrieval of external information more directly and to tailor its interaction style to the user. Our use
of standard medical codes (ICD-10 [8], UMLS [7]) also connects to efforts in medical NLP to ground con-
cepts in controlled vocabularies for consistency and integration with electronic health records. In contrast
to end-to-end LLM solutions, MediLink’s modular architecture provides a balance between the structured
reliability of a knowledge-driven system and the flexibility of a generative model. To our knowledge, few ex-
isting diagnostic chatbots combine classification, generative dialogue, and retrieval as explicitly as MediLink
does. In the next section, we detail this architecture and how it operates, and how it can respond with more
transparency.

Dataset

The dataset utilized for developing and evaluating MediLink comprises associated symptoms and diseases,
employed from Huggingface [5]. Initially sourced as raw symptom-disease pairs, the dataset underwent
rigorous preprocessing and enrichment to ensure clinical accuracy and interoperability:

Data Preprocessing

The initial dataset was extensively cleaned by removing conversational artifacts, overly lengthy or ambiguous
entries, and irrelevant data. Entries were restricted to clearly defined medical conditions, each characterized
by concise disease names (a maximum of three words) to ensure clinical clarity and ease of reference.

ICD-10 Code Integration

Accurate disease categorization and clinical interoperability were achieved by integrating ICD-10 codes us-
ing the World Health Organization’s (WHO) ICD API. An OAuth2-based authentication mechanism was
implemented to securely interact with the WHO ICD-10 API, systematically mapping each disease entry
to its corresponding ICD-10 code. This mapping process included error handling and retry mechanisms to
ensure comprehensive coverage and all the diseases are mapped correctly.
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SNOMED-CT Symptom Mapping

Symptoms extracted were standardized by mapping them to the Systematized Nomenclature of Medicine
Clinical Terms (SNOMED-CT). A medical Named Entity Recognition (NER) model (en ner bc5cdr md)
from SciSpacy was employed to accurately identify and link each symptom to standardized SNOMED-CT
terms to handle ambiguity. The final dataset structure differentiates raw symptom descriptions from their
standardized SNOMED-CT representations, ensuring consistency and clinical utility.

UMLS Metadata Enrichment

To further enhance clinical relevance and facilitate deeper semantic understanding, additional metadata
from the Unified Medical Language System (UMLS) was integrated into the dataset. It was not used in any
training, but to have rich metadata for the dataset, we enhanced the dataset from normal SNOMED-CT
names to rich metadata. This enrichment involved:

• Fetching concept identifiers (CUIs) for each symptom from the UMLS API, implementing rate limiting
and error handling to manage API interactions.

• Extracting detailed semantic information, including semantic types, preferred terms, synonyms (atoms),
severity, temporality, and anatomical context.

• Employing advanced natural language processing techniques, including severity and temporality de-
tection, and anatomical context extraction using specialized SciSpacy models.

The resulting enriched dataset encapsulates comprehensive medical information structured to directly
support diagnostic modeling, symptom co-occurrence analysis, and clinical reasoning tasks within MediLink.
This robust preprocessing and enrichment approach not only enhances the diagnostic accuracy of the system
but also lays a solid foundation for potential future integrations with electronic health records and other
multimodal clinical datasets.

RAG Model Dataset

A supplementary dataset was employed from huggingface [6] specifically for Retrieval-Augmented Generation
(RAG) purposes. This dataset, sourced from the FreedomIntelligence Disease Database, contains detailed
entries of diseases, common symptoms, and treatments. The preprocessing steps for this dataset included:

• Extraction and cleaning of symptoms from raw descriptions to ensure clarity and standardization.

• Mapping diseases to corresponding ICD-10 codes using the WHO ICD API, similarly implementing
secure OAuth2 authentication and robust error handling.

• Standardizing symptoms using the UMLS API to acquire detailed metadata, including CUIs, semantic
types, synonyms, and standardized terminology.

• Further enhancing data interoperability and retrieval effectiveness by generating embeddings using
SentenceTransformer models and uploading these embeddings to Pinecone for efficient semantic re-
trieval.

The integration of this secondary dataset facilitates accurate semantic search capabilities, enriching the
MediLink diagnostic process through ensemble scoring methods that improve confidence and diagnostic
accuracy.

Ensemble Confidence Scoring

To improve diagnostic robustness, MediLink incorporates ensemble confidence scoring by combining predic-
tions from generation and retrieval-based models. Top-1 and Top-5 predictions from generation models are
aggregated with retrieved cosine similarity scores from the RAG module, which are used to validate and
rerank final scores. This multi-pronged approach ensures better reliability, particularly for rare diseases and
ambiguous inputs.
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Table 1: Comparison of Datasets Used
Aspect Training Dataset RAG Dataset
Source Custom-labeled symptom-disease dataset FreedomIntelligence Disease DB
Symptom Mapping SNOMED-CT + UMLS Standardization UMLS Metadata, SNOMED-CT
Disease Codes ICD-10 via WHO API ICD-10 via WHO API
Purpose Prediction Retrieval
Vector Store Not applicable Pinecone Semantic Index
Format [Symptoms] → [Disease Label] [Symptoms, Disease, Treatment] Entries

Training and Evaluation

The MediLink system leverages only generation-based architectures, but the task is classification-based; we
tested with both approaches to build a robust disease prediction engine. Fine-tuning was carried out using
both causal language modeling (CAUSAL LM) and sequence classification objectives, allowing comparative
analysis across multiple model families and configurations.

Model Architectures and Training Modes

We employed MedAlpaca-7B [1] and LLaMA-3.2 [2] series (1B and 3B) models using LoRA-based [3]
parameter-efficient fine-tuning. Training was performed using DeepSpeed (Stage 2 ZeRO optimization)
on multiple GPUs with bfloat16 precision. Two modes of training were implemented:

• Generation (Causal LM): Prompts were formatted as “### Symptoms: <symptom list> \n\n###
Diagnosis:” with the target disease name used as completion. This allowed open-ended disease
generation and ranking via similarity and confidence scores.

• Classification: Input prompts were tokenized as in generation, but the models were trained to predict
class labels from a fixed disease vocabulary. Class imbalance was handled by deduplication and minimal
sample augmentation (min 6 examples per class).

Training Configuration

Most hyperparameters remained consistent across experiments to ensure fair comparison. Key parameters
are detailed below:

Table 2: Training Hyperparameters
Parameter Causal LM (Generation) Sequence Classification
Model MedAlpaca-7B, LLaMA-3.2 (1B/3B) LLaMA-3.2-3B
LoRA Rank ($r$) 16 16
LoRA $α$ 32 32
Per-GPU Batch Size 8 8
Learning Rate $2 ×10−5$ $2 ×10−5$
Epochs 10 10
Deepspeed ZeRO Stage 2 2
Evaluation Strategy epoch epoch

Performance Metrics

Models were evaluated using Top-1 and Top-5 Accuracy, BLEU, ROUGE-L, and generation/classification
loss on training and test subsets.

Results are aggregated below:
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Train Loss Eval Loss

Top-1 Accuracy Top-5 Accuracy

ROUGE-L BLEU Score

Figure 1: Training and evaluation metrics across model variants
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Table 3: Final Performance Comparison
Model Variant Top-1 Acc. Top-5 Acc. BLEU ROUGE-L Eval Loss
MedAlpaca-7B (w/ rare) 0.954 0.993 0.599 0.608 0.28
MedAlpaca-7B (no rare) 0.948 0.992 0.595 0.607 0.30
LLaMA-3.2-3B (Gen) 0.808 0.958 0.584 0.590 0.46
LLaMA-3.2-3B (Cls) 0.421 0.543 - - 2.59

Observations

• MedAlpaca-7B with rare disease augmentation outperformed all other variants across
metrics, validating the importance of rare disease representation.

• Classification-only models (LLaMA-3.2-3B Cls) showed significantly lower performance due to
fixed vocabulary constraints and lack of generation flexibility.

• We selected MedAlpaca-7B as the final model based on its superior Top-1 and Top-5 accuracy
on the test set, achieving over 95% accuracy even with rare diseases included.

• BLEU and ROUGE-L scores correlated strongly with Top-1 accuracy in generation tasks, validating
their utility as surrogate measures for correctness.

Training loss, evaluation loss, and accuracy curves are visualized in the figures above to highlight con-
vergence dynamics and performance plateaus.

Methodology (System Architecture)

MediLink uses a sophisticated, multi-layered architecture designed for detailed processing of user inputs,
systematic diagnostic hypothesis generation and refinement, and comprehensive evidence-based medical rea-
soning. Figure 2 clearly illustrates the interactions and data flow between the four primary layers: User
Interaction, Core Diagnostic Loop, Knowledge and Evidence Retrieval, and Reasoning.

User Interaction Layer

The user interaction is managed via an intuitive conversational chatbot interface, implemented using the
Gradio interface. This interface accepts both text and speech inputs from a user, enhancing usability across
diverse user groups, Currently, it handles English text and speech. Upon initial engagement, the user
inputs their symptoms freely in raw text, after which the system checks and collects necessary demographic
details if missing, such as age, sex, weight, and height—through structured prompts managed by a dedicated
Session Orchestrator. The orchestrator maintains conversational state, ensuring seamless transitions between
diagnosis states, demographic data collection, and conversational interactions.

Core Diagnostic Loop

The central diagnostic loop encompasses multiple critical steps:

Symptom Extraction and Standardization Symptoms described by the user in natural language are
accurately extracted using OpenAI’s GPT-3.5 Turbo API [13]. Extracted symptoms are standardized to
structured terms referencing the Unified Medical Language System (UMLS) [7] to maintain consistency and
facilitate downstream processes.
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Figure 2: MedLink System Architecture

Parallel Disease Prediction MediLink employs a dual-engine diagnostic prediction system:

• Retrieval-Augmented Generation (RAG): Uses embeddings created from user-reported symp-
toms to retrieve related diseases from a Pinecone [15] vector database. This database has been popu-
lated previously with high-quality symptom-disease mappings.

• Generative Diagnostic Model: Implements a fine-tuned MedAlpaca-7B model via Low-Rank Adap-
tation (LoRA). This model directly predicts a ranked list of diseases based on provided symptoms, and
leverages beam search over disease prediction. The reason for choosing generation over classification
is provided in the training section.

Confidence Evaluation and Ensemble Prediction The outputs from both the RAG and generative
models are assessed through dynamic weighting based on prediction confidence levels. The system dynami-
cally adjusts the weights ( For e.g., 70% RAG and 30% LLM if high confidence in LLM predictions, otherwise
a balanced 50-50 split) to produce a combined disease ranking and decision-making.

Symptom Co-occurrence and Follow-Up Question Generation When the confidence score is below
the defined threshold (80%), MediLink employs a symptom co-occurrence analysis module implemented using
disease-symptom frequency and co-occurrence counters. This module identifies missing critical symptoms
based on retrieved and predicted top-5 diseases from RAG and LLM, each of which, if clarified, could
significantly reduce diagnostic ambiguity and enhance the system’s confidence score. Follow-up questions
targeting these symptoms are dynamically generated via OpenAI’s GPT-4o API, tailored according to current
confidence levels—fewer and more specific questions at high confidence, broader inquiries at lower confidence
levels.

Iterative Refinement Loop MediLink iteratively repeats the follow-up questioning and symptom clar-
ification process until the confidence score exceeds 0.80 or until the maximum allowable follow-ups (in our
case, we limited it to three) are reached.
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Knowledge and Evidence Retrieval Layer

Once a top candidate disease is selected from the diagnostic loop, MediLink queries external medical knowl-
edge sources using the PubMed API (via Entrez) based on the patient’s demographics, user interactions to
understand context, the set of symptoms extracted in a diagnostic loop, and the final disease prediction.
Relevant abstracts fetched from PubMed are segmented into smaller chunks (approximately 300 words each)
and stored as embeddings in a medical knowledge vector database (ChromaDB). This database facilitates
fast retrieval of contextually relevant medical evidence.

Reasoning Layer

This final layer synthesizes aggregated data from the user and evidence into a coherent medical explanation
using a structured Chain-of-Thought (CoT) reasoning process:

Context Aggregation The system combines comprehensive contextual information, user demographics,
complete conversational history, extracted symptoms, and diagnostic predictions, to inform the reasoning
process.

Evidence-Based Chain-of-Thought Reasoning MediLink retrieves the most relevant medical knowl-
edge chunks from ChromaDB based on the aggregated context. These evidence chunks are then systemati-
cally processed through OpenAI’s GPT-4o, producing detailed reasoning that includes:

• Pathophysiological Explanation: Biological and medical rationale behind the suspected diagnosis.

• Diagnostic Criteria: Alignment with established diagnostic guidelines.

• Symptom Match Assessment: Evaluation of symptom relevance and specificity.

• Differential Diagnosis: Consideration and justification of alternative diagnoses.

• Evidence Evaluation: Critical analysis of supporting medical literature.

• Final Confidence Assessment: Explicit declaration of confidence in the final diagnostic conclusion.

Final Response Generation The output reasoning is condensed into an accessible summary, clearly
outlining the diagnosis, recommended treatments (Fetched from RAG Database), and essential precautions
to take. Each response explicitly includes a disclaimer emphasizing the need for professional medical con-
sultation, as predicted disease is within the limited scope of the database, and in some cases, it might miss
the critical information.

Supporting Modules and Utilities

Several specialized modules enhance MediLink’s diagnostic and conversational capabilities:

• ICD-10 Mapper: Utilizes WHO’s ICD API for accurate mapping of disease predictions to standard-
ized ICD-10 codes, ensuring clinical interoperability.

• LangChain Modular Agent: An intent classifier built using LangChain’s ZeroShotAgent, catego-
rizing user inputs into symptom diagnosis requests, patient history inquiries, or general conversational
interactions.

• Vector Memory Stores: Dedicated ChromaDB instances manage conversational memory (prior
interactions), structured metadata, and medical knowledge separately, thus optimizing the system’s
retrieval efficiency and contextual accuracy.

MediLink’s robust, modular architecture is specifically designed for interpretability, extensibility, trans-
parency, reliability, and maintainability. This comprehensive design facilitates independent improvements,
potential integration with electronic health records, multimodal data sources, and advanced reasoning
methodologies in future iterations.
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Conclusion

We presented MediLink, a multi-agent medical diagnostic chatbot that integrates the strengths of generative
algorithms and retrieval augmented generation. By structuring the diagnostic process into modular steps
(symptom parsing, hypothesis generation, iterative inquiry, and evidence-backed explanation), MediLink
provides both accuracy and interpretability. The system leverages standard medical ontologies (ICD-10 codes
and UMLS concepts) to maintain a consistent understanding of medical terms throughout the interaction,
which is crucial for integrating with electronic health records or decision support tools. Through a dynamic
dialogue, it intuitively engages users, asking relevant follow-up questions much like a human physician would.

A major feature of MediLink is its ability to adapt responses based on the audience: healthcare profession-
als receive a concise, terminology-rich explanation with references, whereas patients receive a compassionate
and detailed explanation. This dual-mode communication aims to maximize the usefulness of the system in
both clinical settings (as a decision support or training tool) and direct-to-consumer health advice settings
(as a preliminary triage or informational service). The inclusion of Retrieval-Augmented Generation ensures
that MediLink’s knowledge remains current and its explanations can be audited against reputable sources.
This addresses one of the significant limitations of generative models, the tendency to produce outdated or
unsupported statements, by anchoring the final output in published medical literature.

In conclusion, MediLink demonstrates that a carefully designed combination of AI techniques can yield
a robust interactive diagnostic assistant. It shows that LLMs, when constrained and guided by structured
medical knowledge and supplemented with retrieval, can achieve impressive diagnostic reasoning performance
(comparable to specialized models [10]) while also delivering user-centric communication. We believe such
systems can serve as valuable adjuncts in healthcare: assisting clinicians by double-checking diagnoses and
providing evidence, and helping patients by interpreting their symptoms and encouraging appropriate follow-
up. The modular architecture of MediLink will also facilitate future enhancements as the field of medical AI
evolves.

Future Work

While the current MediLink prototype is effective, there are several areas for future improvement and expan-
sion. First, we plan to integrate temporal reasoning and symptom severity into the diagnostic process.
Real clinical scenarios often involve symptoms changing over time (e.g., a fever that peaked and then broke,
or pain that is gradually worsening). We aim to allow users to describe symptom timelines and severity levels
(mild, moderate, severe), and adjust the diagnostic reasoning accordingly. Incorporating temporal patterns
could help differentiate diseases (for instance, intermittent fevers vs. continuous fevers can suggest different
etiologies).

Second, we will incorporate patient medical history and risk factors into MediLink’s reasoning. This
involves extending the input beyond just current symptoms: the system should consider chronic conditions
(like diabetes or hypertension), past surgeries, medications, allergies, and family history. Such factors heavily
influence diagnostic probabilities in medicine. We may integrate with standards like FHIR for structured
health records to pull in a user’s history (with permission), or allow the user to input key history elements
conversationally. The diagnostic engine and co-occurrence models would then need to condition on this
information (for example, chest pain in a patient with a history of coronary artery disease warrants different
suspicion than in a young healthy patient).

Third, we plan to leverage deeper UMLS metadata and knowledge graph relationships. Cur-
rently, we use UMLS primarily for identifying concept IDs of symptoms and diseases. In the future, we
can utilize the rich semantic types and relationships in UMLS (and other knowledge sources like SNOMED
CT) to enhance reasoning. For example, knowing the anatomical location of a symptom (UMLS semantic
type for body location) could help MediLink ask more anatomically focused questions or rule out diseases
that don’t match the location. Semantic relations (such as ”finding site”, ”associated with”) could allow the
system to navigate a knowledge graph of disease-symptom-test relationships. This could enable suggestions
like recommending certain diagnostic tests or considering alternative diagnoses that are related via shared
findings. We also intend to use UMLS to better handle synonymy and variant phrasing beyond what the
current NER covers, so that the system is more robust to different ways patients might describe the same
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concept.
In addition to these specific enhancements, ongoing future work will include:

• Continuous Learning: Enabling MediLink to learn from new interactions (with appropriate over-
sight), gradually expanding its knowledge of rare conditions or atypical presentations by incorporating
new case data, but limiting these features to only medical professionals to make sure unnecessary
knowledge is not added.

• Evaluation and Safety: Conducting more extensive evaluations with clinicians and patients, and
assessing the safety of the advice given. We plan to implement a feedback loop where medical experts
can review and correct MediLink’s outputs, helping to refine the system. Furthermore, we will incor-
porate safety checks to recognize situations where the system should advise urgent medical attention
or defer to human professionals.

• User Interface and Deployment: Improving the front-end interface for MediLink, such as a smart-
phone app or web portal, with features like voice input/output for accessibility. We also plan integration
with electronic health record systems in clinical mode, so that a clinician can seamlessly use MediLink
during patient visits and log the AI’s suggestions and literature citations for reference.

• Multimodal Integration: Exploring adding capabilities for MedLink to handle other data types,
such as basic lab results or images. For instance, linking with a skin lesion image classifier agent
or a lab test interpreter could extend the system’s diagnostic range (this would effectively add more
specialized agents to the architecture).

By addressing these areas, we hope to make MediLink an even more comprehensive and reliable diagnostic
assistant. The combination of temporal data handling, patient history integration, and semantic knowledge
graph use will move the system closer to how a human doctor thinks—considering the whole patient, not just
isolated symptoms. We anticipate that these future improvements will further bridge the gap between AI
recommendations and real-world clinical decision making, ultimately contributing to safer and more effective
use of AI in healthcare.
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