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Abstract— Fast, efficient, and reliable data transfer across 

wide-area networks remains a critical bottleneck for data-

intensive cloud applications. OneDataShare (ODS) addresses 

this challenge by enabling high-speed, protocol-agnostic data 

transfers between heterogeneous endpoints. This paper 

presents how ODS is enhanced through advanced techniques 

such as Bayesian Optimization and Deep Deterministic Policy 

Gradient (DDPG), which intelligently tune transfer parameters 

to maximize throughput. 

I. INTRODUCTION 

With the increasing demand for efficient, reliable, and 
high-throughput data transfers across heterogeneous systems, 
traditional tools often fall short in performance and usability. 
Cloud computing services and scientific collaborations 
require flexible and high-speed solutions that also guarantee 
security and user accessibility. OneDataShare aims to fulfil 
this demand by acting as a universal, protocol-independent 
data transfer optimization service hosted in the cloud. 

The core goals of OneDataShare include: 

• Optimization of end-to-end data transfers 

• Interoperation across heterogeneous storage 
systems via protocol translation 

• Prediction of data delivery times to support real-
time decisions 

 

Figure 1: Performance comparison between previous work of 
ODS along with different data transfer services 

This paper documents the enhancements made in 
optimization, authentication, and visualization aspects of 
ODS. We build on earlier optimization models such as 
HARP, ProMC, and ANN-based tuning, and introduce 
reinforcement learning and probabilistic modeling (Bayesian 

Optimization) to further improve parameter selection under 
dynamic conditions. Furthermore, the platform's security has 
been extended through the implementation of federated login 
options via Google, GitHub, and CILogon using 
OAuth2/OIDC. 

II. BACKGROUND AND RELATED WORK 

OneDataShare (ODS) brings transformative improvements 

to the landscape of cloud-based data transfers through its 

emphasis on elasticity, sustainability, and user-centric 

design. Its architecture is engineered with key performance-

critical features that not only enhance the system's 

efficiency but also ensure its practical adoption by a wide 

range of users. 

 

 

  Figure 2: OneDataShare high-level overview 

 

OneDataShare is structured to offer a seamless and 

optimized data-sharing experience through a modular yet 

cohesive design. As illustrated in Figure 2, it incorporates a 

variety of core services such as protocol translators, 

schedulers, provenance managers, and cloud managers. 

These components collectively operate within the backend 

infrastructure while remaining transparent to the user, 

appearing as a black-box interface. When a user submits a 

data transfer request via a RESTful API, OneDataShare 

processes the request through its internal engine. 



 

The platform supports diverse client interfaces including 

web portals, mobile and tablet applications, command-line 

tools, and file system integrations allowing flexibility in 

how users interact with the service. A thin-client 

architecture ensures that all complex operations, including 

protocol translation, transfer optimization, and scheduling, 

occur in the cloud. This not only guarantees reliability and 

high availability but also provides cost-effective scalability, 

as users are charged only based on their specific resource 

usage. 

 

System-level monitoring services oversee the performance 

and health of internal components, maintaining transparency 

and stability for end-users. These architectural choices 

reflect a strong alignment with both technical demands and 

usability expectations, positioning OneDataShare as a 

ubiquitous and sustainable solution for modern data transfer 

needs. 

 
Several earlier models have informed the development of 
OneDataShare. HARP utilized historical data and real-time 
probing to predict optimal parameter values. ProMC 
extended this with data-centric adaptive tuning. ASM/ANN-
based models employed supervised learning to predict 
parameter settings for transfer optimization by using offline 
adaptive sampling techniques (As shown in Figure 1). 

However, these methods, while effective, are limited by their 
reliance on either static tuning or non-adaptive heuristics. 
Moreover, traditional systems often required complex user 
configurations and lacked support for federated 
authentication, reducing usability and accessibility. 

OneDataShare overcomes these limitations by using 
intelligent sampling techniques and real-time learning, as 
well as integrating secure, modern authentication 
mechanisms. 

III. METHODOLOGIES 

INTELLIGENT TRANSFER PARAMETER OPTIMIZATION 

Transfer performance in ODS is governed by three main 
parameters: 

• Parallelism: Number of parallel threads per file 

• Concurrency: Number of files transferred 
simultaneously 

• Pipelining: Number of pipelined requests 

 

   Figure 3: Protocol Parameters tuned in the data transfer 

 

To find optimal combinations of these parameters 
dynamically, we employed two advanced methods: 

3.1 Bayesian Optimization: 

Bayesian Optimization (BO) is a powerful technique for 
optimizing black-box functions that are expensive to 
evaluate. In our case, the objective function  represents the 
negative throughput of data transfers for a given set of 
parameters. Since we want to maximize throughput, 

f(x) = -Throughput(x). 

Step-by-Step Process: 

1. Initialization: Begin with a small number of 
randomly selected sample points {x₁, x₂, ..., xₙ} from 
the parameter space 𝒳, and evaluate the objective 
function to get {yᵢ = f(xᵢ)} for i = 1 to n. 

2. Surrogate Model Construction: Use the sampled 
data Dₙ = {(xᵢ, yᵢ)} to construct a surrogate model 
f̂(x), typically a Gaussian Process (GP): 

  f̂(x) ~ GP(μ(x), k(x, x′)) 

Where: 

μ(x) is the mean function (often assumed to be 0) 

 k(x, x′) is the covariance or kernel function (e.g., 

RBF or Matern kernel) 

The GP gives a predictive distribution at any point 
x: 

f̂(x) ~ N(μₙ(x), σₙ²(x)) 

3. Acquisition Function Optimization: Choose the 
next point xₙ₊₁ to evaluate by optimizing an 
acquisition function α(x; Dₙ) that balances 
exploration and exploitation. 

A common acquisition function is Expected 
Improvement (EI): 

 α_EI(x) = E[max(f_best - f̂(x), 0)] 

         This can be computed as: 

α_EI(x) = (f_best - μₙ(x)) * Φ((f_best - μₙ(x)) / 

σₙ(x)) + σₙ(x) * φ((f_best - μₙ(x)) / σₙ(x)) 

         Where: 

 f_best is the best observed value so far 

Φ is the cumulative distribution function (CDF) of 

the standard normal distribution 

φ is the probability density function (PDF) of the 

standard normal distribution 

4. Surrogate Model Update: 

  Evaluate f(xₙ₊₁), update the dataset: 

  Dₙ₊₁ = Dₙ ∪ {(xₙ₊₁, f(xₙ₊₁))} 

  Then update the GP model using the new data. 

5. Termination: 

Repeat steps 3 and 4 until one of the following 
criteria is met: 



 

max |μₙ₊₁(x) - μₙ(x)| < ε (Convergence) 

max σₙ(x) < δ (Uncertainty threshold) 

Number of function evaluations ≥ N_max (Budget limit) 

Implementation Note: 

We use the skopt.gp_minimize function from scikit-
optimize to implement this Bayesian Optimization 
process. 

 Application to ODS: 

• The optimizer proposes values for concurrency and 
parallelism. 

• These are used to execute data transfer jobs. 

• The throughput values are smoothed using 
Exponential Moving Average (EMA), and the 
negative EMA throughput value is used as the 
objective. This smoothing approach ensures that 
short-term spikes do not mislead the optimization 
process and allows the model to focus on stable 
trends. 

• The surrogate GP model predicts performance for 
untested configurations, and the acquisition function 
identifies the most promising next step. 

• This iterative refinement enables BO to efficiently 
discover parameter combinations that maximize 
throughput with minimal overhead. 

 

   Figure 4: Throughput variation using Bayesian optimization 
compared to previous approaches. 

 

As shown above, Bayesian Optimization helps in 
achieving high throughput. 

3.2. Reinforcement Learning: 

Deep Deterministic Policy Gradient (DDPG): 

The Deep Deterministic Policy Gradient (DDPG) 
algorithm is a model-free, off-policy reinforcement learning 
method designed for continuous action spaces. In the context 
of OneDataShare, DDPG is used to dynamically tune 
transfer parameters such as concurrency and parallelism to 
maximize throughput based on observed network conditions. 

DDPG maintains two neural networks: 

• Actor Network (μ(s|θμ)): Determines the best 
action (i.e., parameter values) to take given the 
current state (i.e., network conditions). 

• Critic Network (Q(s, a|θQ)): Evaluates the quality 
(expected reward) of a given action in a specific 
state. 

To stabilize learning, DDPG uses target networks Q' 
and μ', which are delayed copies of the main networks and 
are updated slowly over time. 

Training Loop: 

1. Observe the current state s (e.g., network metrics 
like bandwidth and latency). 

2. Use the actor network to select an action a = μ(s). 

3. Execute the action (initiate a data transfer) and 
observe the reward r (measured throughput) and the 
next state s'. 

4. Store the experience tuple (s, a, r, s') in a replay 
buffer. 

5. Sample a mini-batch of experiences from the buffer 
to train both networks: 

o Critic Update: Minimize the loss: L = (r 
+ γQ'(s', μ'(s')) - Q(s, a))² 

o Actor Update: Maximize the objective: J 
= E[Q(s, μ(s))] 

6. Update the target networks: 

o θQ' ← τθQ + (1 - τ)θQ' 

o θμ' ← τθμ + (1 - τ)θμ' where τ is a small 
constant that controls the rate of update. 

Application in ODS: 

• State Space: Includes real-time network metrics 
such as RTT, available bandwidth, and packet loss 
rate. 

• Action Space: Continuous values corresponding to 
concurrency and parallelism levels. 

• Reward Function: Throughput achieved from the 
transfer, optionally smoothed using Exponential 
Moving Average (EMA). 

DDPG empowers the ODS optimization engine to 
continually learn and adapt to changing network conditions, 
thereby improving the overall efficiency and reliability of 
data transfers. 

IV. SYSTEM ARCHITECTURE 

OneDataShare is composed of multiple Spring Boot-
based microservices that interact to support secure, scalable, 
and optimized data transfers: 

1. ODS API: This is the gateway service that exposes 
public APIs for user registration, login, transfer 
initiation, and metadata viewing. It acts as the main 
interface between users and the platform. 

2. Optimization Service: This FastAPI based 
microservice hosts implementations of various 
optimization algorithms, including Bayesian 
Optimization and DDPG, to dynamically tune or 
schedule data transfers. It primarily focuses on 
maximizing throughput and is being extended to 
support carbon-aware data transfer strategies. 



3. Endpoint Credential Service: Responsible for 
securely storing and managing credentials for user-
specified servers and cloud storage endpoints using 
Hashicorp Vault. It ensures secure communication 
over TLS/SSL and keeps authentication tokens 
refreshed automatically. 

4. Transfer Scheduler: Utilizes Hazelcast for 
distributed coordination of upcoming file transfers. 
This service enables real-time, decentralized 
scheduling decisions, supporting nodes that are 
behind firewalls or restrictive networks through 
encrypted communication. 

5. Monitoring Service: Collects and maintains 
comprehensive telemetry on file transfers including 
throughput, latency, memory usage, CPU 
utilization, and energy consumption. Time series 
data is stored in InfluxDB, while CockroachDB 
holds transfer metadata and file operation logs. 

6. Transfer-Service: A Spring Batch microservice 
responsible for performing the actual data transfers 
to and from cloud or server endpoints. It supports 
dynamic connections and configurable threading via 
API controls. 

7. ODS Connector: A user-specific, containerized 
version of the file transfer service, typically 
deployed via Docker. It is isolated per user and 
provides a secure and private data transfer 
environment. 

8. ODS CLI: A CLI with SDK that interacts with the 
ODS core to provide a replacement to the UI 

This microservice architecture supports scalability, 
modular development, and robust performance for handling 
large-scale, optimized, and secure data transfers in 
distributed environments. 

 

  Figure 5: System Architecture of OneDataShare 

V. FILE TRANSFER PROTOCOLS SUPPORTED 

 

OneDataShare is designed to function as a protocol-agnostic 

data transfer platform, enabling interoperability across 

diverse storage systems and endpoints. It supports on-the-fly 

protocol translation and seamless data movement between 

heterogeneous systems. Currently supported protocols 

include: 

 

FTP (File Transfer Protocol): Traditional and widely used 

for transferring files over TCP/IP. 

 

SFTP (SSH File Transfer Protocol): Secure version of FTP, 

leveraging SSH for encrypted file transfer. 

 

HTTP/HTTPS: Enables file transfers over standard and 

secure web protocols. 

 

S3 (Amazon Simple Storage Service): Allows interaction 

with Amazon S3-compatible cloud storage services. 

 

Dropbox: Supports transfers to and from Dropbox cloud 

storage. 

 

Box: Integration for enterprise-grade cloud storage via Box. 

 

VFS (Virtual File System): Abstracts over multiple backend 

storage types, providing a unified interface. 

 

Google Drive: Direct integration with Google Drive for 

cloud-based file transfers. 

 

This multi-protocol support, combined with dynamic 

translation capabilities, allows users to transfer data between 

any combination of the above systems with minimal 

configuration, significantly improving flexibility and 

usability in complex workflows. 

 

 
         

       Figure 6: Various File transfer protocols supported by OneDataShare 
 

VI. SECURITY ASPECTS OF ONEDATASHARE 

To enhance the usability and security of ODS, we 
implemented federated authentication using social and 
organizational login services. The login system supports: 

• Google (OIDC) 

• GitHub (OAuth2) 

• CILogon (OIDC with Institutional login) 

4.1 Architecture and Implementation: 

Using Spring Security, the backend was extended to support 
OAuth2/OIDC by configuring a custom SecurityFilterChain 



bean. This method first added support for the OAuth2 login 
flow alongside the default form login method. It specified: 

• The base URI /oauth2/authorization/{provider} for 
initiating the login 

• The redirection endpoint /oauth2/callback/* to 
handle responses from providers 

• A custom 
OAuth2AuthorizationRequestRepositoryCookie to 
store authorization requests in browser cookies for 
retrieval post-redirect 

Both custom OAuth2/OIDC services extract user data using 
an abstract class and concrete implementations map 
provider-specific (Google, GitHub, CILogon) attribute keys. 

Authentication success is handled by a custom success 
handler, which issues a JWT token and stores it in cookies 
for frontend access. Authentication failures are handled by 
custom failure handler, which redirects users with 
appropriate error messages. 

A custom TokenAuthenticationFilter ensures that both 
ODS-native and third-party tokens (with ATOKEN and 
BEARER headers respectively) are handled appropriately 
before reaching the authentication context. 

4.2 Security Considerations 

• Authorization Code Grant was used for all 
OAuth2/OIDC flows to ensure tokens are never 
exposed in URLs 

• JWT tokens are issued upon successful 
authentication and stored securely 

• Clients are configured using 
InMemoryClientRegistrationRepository with 
sensitive information loaded from application-
prod.properties 

• Account conflict resolution logic prevents users 
from accidentally creating duplicate accounts across 
login providers 

 

 Figure 7: Landing page of OneDataShare with various secure login 
features 

This security mechanism enhances both the accessibility 
and trustworthiness of OneDataShare, enabling seamless 
login experiences while ensuring robust protection of user 
data. 

VII. ONEDATASHARE METRICS VISUALIZATION TOOL 

To support in-depth analysis and monitoring of data 
transfer behavior, OneDataShare integrates a dynamic 
Metrics Visualization Tool. This web-based dashboard 
provides a user-friendly interface to track and interpret key 
performance indicators for each data transfer job submitted 
through the platform. 

Key Features: 

Job Selector Dropdown: Users can select from a list of 
transfer jobs they have triggered. Each entry corresponds to a 
unique job ID, allowing for targeted inspection and analysis. 

Time-Series Visualization: Performance metrics are 
visualized per epoch, enabling detailed inspection of job 
performance over time. Each epoch represents a time interval 
during the transfer operation. 

Metrics Tracked: 

Parallelism: Displays the number of parallel threads used 
during each phase of the transfer, helping users understand 
how data was distributed across threads. 

Concurrency: Shows how many files were transferred 
simultaneously, illustrating the system’s ability to handle 
multi-file workloads. 

Throughput: Real-time and historical throughput (e.g., in 
MBps), including smoothed trends using Exponential 
Moving Average (EMA), to highlight consistent 
performance and detect anomalies. 

Loss: Model’s prediction error during training 
(Reinforcement Learning algorithms). 

This dashboard supports interactive visualization, 
allowing users to hover over data points for exact values and 
compare trends across epochs. It leverages File System/S3 
for storing the metrics data. 

By providing granular insights into transfer parameters and 
system behavior, the Metrics Visualization Tool empowers 
users to make informed optimization decisions, debug issues, 
and validate the impact of changes in configurations or 
environments. 

 

  Figure 8: OneDataShare Metrics Visualization Tool 

 



VIII. CONCLUSION AND FUTURE WORK 

We have presented our vision for improved 
OneDataShare as a cloud-hosted data transfer scheduling and 
optimization service, designed to relieve users from the 
complexities of managing end-to-end data transfers. 
OneDataShare aims to provide a simple, intuitive platform 
that supports data sharing regardless of file size, type, or 
protocol differences between sender and receiver. 

Through its modular microservices architecture, support 
for diverse transfer protocols, real-time optimization via 
Bayesian Optimization and Deep Deterministic Policy 
Gradient (DDPG), and seamless federated authentication, 
OneDataShare represents a robust and scalable solution for 
modern data-intensive workflows. The integration of a 
dynamic Metrics Visualization Tool further enhances 
transparency and operational insight, helping users fine-tune 
performance and diagnose transfer bottlenecks. 

As part of our ongoing research, we are exploring 
additional reinforcement learning algorithms such as 
Proximal Policy Optimization (PPO) to further improve 
parameter tuning and adaptability. Building OneDataShare 
into a more reliable, scalable, and sustainable ecosystem that 
can benefit a broader range of users and scientific 
communities remains a core area of future development. 
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