

OneDataShare: Data Transfer Optimization as a

Service
Improvements and Support of Additional Features

Vamshi Krishna Kyatham

Department of Computer Science and

Engineering

University at Buffalo

Buffalo, New York, United States

vkyatham@buffalo.edu

Tevfik Kosar

Department of Computer Science and

Engineering

University at Buffalo

Buffalo, New York, United States

tkosar@buffalo.edu

Jacob Goldverg

Department of Computer Science and

Engineering

University at Buffalo

Buffalo, New York, United States

jacobgol@buffalo.edu

Abstract— Fast, efficient, and reliable data transfer across

wide-area networks remains a critical bottleneck for data-

intensive cloud applications. OneDataShare (ODS) addresses

this challenge by enabling high-speed, protocol-agnostic data

transfers between heterogeneous endpoints. This paper

presents how ODS is enhanced through advanced techniques

such as Bayesian Optimization and Deep Deterministic Policy

Gradient (DDPG), which intelligently tune transfer parameters

to maximize throughput.

I. INTRODUCTION

With the increasing demand for efficient, reliable, and
high-throughput data transfers across heterogeneous systems,
traditional tools often fall short in performance and usability.
Cloud computing services and scientific collaborations
require flexible and high-speed solutions that also guarantee
security and user accessibility. OneDataShare aims to fulfil
this demand by acting as a universal, protocol-independent
data transfer optimization service hosted in the cloud.

The core goals of OneDataShare include:

• Optimization of end-to-end data transfers

• Interoperation across heterogeneous storage
systems via protocol translation

• Prediction of data delivery times to support real-
time decisions

Figure 1: Performance comparison between previous work of
ODS along with different data transfer services

This paper documents the enhancements made in
optimization, authentication, and visualization aspects of
ODS. We build on earlier optimization models such as
HARP, ProMC, and ANN-based tuning, and introduce
reinforcement learning and probabilistic modeling (Bayesian

Optimization) to further improve parameter selection under
dynamic conditions. Furthermore, the platform's security has
been extended through the implementation of federated login
options via Google, GitHub, and CILogon using
OAuth2/OIDC.

II. BACKGROUND AND RELATED WORK

OneDataShare (ODS) brings transformative improvements

to the landscape of cloud-based data transfers through its

emphasis on elasticity, sustainability, and user-centric

design. Its architecture is engineered with key performance-

critical features that not only enhance the system's

efficiency but also ensure its practical adoption by a wide

range of users.

 Figure 2: OneDataShare high-level overview

OneDataShare is structured to offer a seamless and

optimized data-sharing experience through a modular yet

cohesive design. As illustrated in Figure 2, it incorporates a

variety of core services such as protocol translators,

schedulers, provenance managers, and cloud managers.

These components collectively operate within the backend

infrastructure while remaining transparent to the user,

appearing as a black-box interface. When a user submits a

data transfer request via a RESTful API, OneDataShare

processes the request through its internal engine.

The platform supports diverse client interfaces including

web portals, mobile and tablet applications, command-line

tools, and file system integrations allowing flexibility in

how users interact with the service. A thin-client

architecture ensures that all complex operations, including

protocol translation, transfer optimization, and scheduling,

occur in the cloud. This not only guarantees reliability and

high availability but also provides cost-effective scalability,

as users are charged only based on their specific resource

usage.

System-level monitoring services oversee the performance

and health of internal components, maintaining transparency

and stability for end-users. These architectural choices

reflect a strong alignment with both technical demands and

usability expectations, positioning OneDataShare as a

ubiquitous and sustainable solution for modern data transfer

needs.

Several earlier models have informed the development of
OneDataShare. HARP utilized historical data and real-time
probing to predict optimal parameter values. ProMC
extended this with data-centric adaptive tuning. ASM/ANN-
based models employed supervised learning to predict
parameter settings for transfer optimization by using offline
adaptive sampling techniques (As shown in Figure 1).

However, these methods, while effective, are limited by their
reliance on either static tuning or non-adaptive heuristics.
Moreover, traditional systems often required complex user
configurations and lacked support for federated
authentication, reducing usability and accessibility.

OneDataShare overcomes these limitations by using
intelligent sampling techniques and real-time learning, as
well as integrating secure, modern authentication
mechanisms.

III. METHODOLOGIES

INTELLIGENT TRANSFER PARAMETER OPTIMIZATION

Transfer performance in ODS is governed by three main
parameters:

• Parallelism: Number of parallel threads per file

• Concurrency: Number of files transferred
simultaneously

• Pipelining: Number of pipelined requests

 Figure 3: Protocol Parameters tuned in the data transfer

To find optimal combinations of these parameters
dynamically, we employed two advanced methods:

3.1 Bayesian Optimization:

Bayesian Optimization (BO) is a powerful technique for
optimizing black-box functions that are expensive to
evaluate. In our case, the objective function represents the
negative throughput of data transfers for a given set of
parameters. Since we want to maximize throughput,

f(x) = -Throughput(x).

Step-by-Step Process:

1. Initialization: Begin with a small number of
randomly selected sample points {x₁, x₂, ..., xₙ} from
the parameter space 𝒳, and evaluate the objective
function to get {yᵢ = f(xᵢ)} for i = 1 to n.

2. Surrogate Model Construction: Use the sampled
data Dₙ = {(xᵢ, yᵢ)} to construct a surrogate model
f̂(x), typically a Gaussian Process (GP):

 f̂(x) ~ GP(μ(x), k(x, x′))

Where:

μ(x) is the mean function (often assumed to be 0)

 k(x, x′) is the covariance or kernel function (e.g.,

RBF or Matern kernel)

The GP gives a predictive distribution at any point
x:

f̂(x) ~ N(μₙ(x), σₙ²(x))

3. Acquisition Function Optimization: Choose the
next point xₙ₊₁ to evaluate by optimizing an
acquisition function α(x; Dₙ) that balances
exploration and exploitation.

A common acquisition function is Expected
Improvement (EI):

 α_EI(x) = E[max(f_best - f̂(x), 0)]

 This can be computed as:

α_EI(x) = (f_best - μₙ(x)) * Φ((f_best - μₙ(x)) /

σₙ(x)) + σₙ(x) * φ((f_best - μₙ(x)) / σₙ(x))

 Where:

 f_best is the best observed value so far

Φ is the cumulative distribution function (CDF) of

the standard normal distribution

φ is the probability density function (PDF) of the

standard normal distribution

4. Surrogate Model Update:

 Evaluate f(xₙ₊₁), update the dataset:

 Dₙ₊₁ = Dₙ ∪ {(xₙ₊₁, f(xₙ₊₁))}

 Then update the GP model using the new data.

5. Termination:

Repeat steps 3 and 4 until one of the following
criteria is met:

max |μₙ₊₁(x) - μₙ(x)| < ε (Convergence)

max σₙ(x) < δ (Uncertainty threshold)

Number of function evaluations ≥ N_max (Budget limit)

Implementation Note:

We use the skopt.gp_minimize function from scikit-
optimize to implement this Bayesian Optimization
process.

 Application to ODS:

• The optimizer proposes values for concurrency and
parallelism.

• These are used to execute data transfer jobs.

• The throughput values are smoothed using
Exponential Moving Average (EMA), and the
negative EMA throughput value is used as the
objective. This smoothing approach ensures that
short-term spikes do not mislead the optimization
process and allows the model to focus on stable
trends.

• The surrogate GP model predicts performance for
untested configurations, and the acquisition function
identifies the most promising next step.

• This iterative refinement enables BO to efficiently
discover parameter combinations that maximize
throughput with minimal overhead.

 Figure 4: Throughput variation using Bayesian optimization
compared to previous approaches.

As shown above, Bayesian Optimization helps in
achieving high throughput.

3.2. Reinforcement Learning:

Deep Deterministic Policy Gradient (DDPG):

The Deep Deterministic Policy Gradient (DDPG)
algorithm is a model-free, off-policy reinforcement learning
method designed for continuous action spaces. In the context
of OneDataShare, DDPG is used to dynamically tune
transfer parameters such as concurrency and parallelism to
maximize throughput based on observed network conditions.

DDPG maintains two neural networks:

• Actor Network (μ(s|θμ)): Determines the best
action (i.e., parameter values) to take given the
current state (i.e., network conditions).

• Critic Network (Q(s, a|θQ)): Evaluates the quality
(expected reward) of a given action in a specific
state.

To stabilize learning, DDPG uses target networks Q'
and μ', which are delayed copies of the main networks and
are updated slowly over time.

Training Loop:

1. Observe the current state s (e.g., network metrics
like bandwidth and latency).

2. Use the actor network to select an action a = μ(s).

3. Execute the action (initiate a data transfer) and
observe the reward r (measured throughput) and the
next state s'.

4. Store the experience tuple (s, a, r, s') in a replay
buffer.

5. Sample a mini-batch of experiences from the buffer
to train both networks:

o Critic Update: Minimize the loss: L = (r
+ γQ'(s', μ'(s')) - Q(s, a))²

o Actor Update: Maximize the objective: J
= E[Q(s, μ(s))]

6. Update the target networks:

o θQ' ← τθQ + (1 - τ)θQ'

o θμ' ← τθμ + (1 - τ)θμ' where τ is a small
constant that controls the rate of update.

Application in ODS:

• State Space: Includes real-time network metrics
such as RTT, available bandwidth, and packet loss
rate.

• Action Space: Continuous values corresponding to
concurrency and parallelism levels.

• Reward Function: Throughput achieved from the
transfer, optionally smoothed using Exponential
Moving Average (EMA).

DDPG empowers the ODS optimization engine to
continually learn and adapt to changing network conditions,
thereby improving the overall efficiency and reliability of
data transfers.

IV. SYSTEM ARCHITECTURE

OneDataShare is composed of multiple Spring Boot-
based microservices that interact to support secure, scalable,
and optimized data transfers:

1. ODS API: This is the gateway service that exposes
public APIs for user registration, login, transfer
initiation, and metadata viewing. It acts as the main
interface between users and the platform.

2. Optimization Service: This FastAPI based
microservice hosts implementations of various
optimization algorithms, including Bayesian
Optimization and DDPG, to dynamically tune or
schedule data transfers. It primarily focuses on
maximizing throughput and is being extended to
support carbon-aware data transfer strategies.

3. Endpoint Credential Service: Responsible for
securely storing and managing credentials for user-
specified servers and cloud storage endpoints using
Hashicorp Vault. It ensures secure communication
over TLS/SSL and keeps authentication tokens
refreshed automatically.

4. Transfer Scheduler: Utilizes Hazelcast for
distributed coordination of upcoming file transfers.
This service enables real-time, decentralized
scheduling decisions, supporting nodes that are
behind firewalls or restrictive networks through
encrypted communication.

5. Monitoring Service: Collects and maintains
comprehensive telemetry on file transfers including
throughput, latency, memory usage, CPU
utilization, and energy consumption. Time series
data is stored in InfluxDB, while CockroachDB
holds transfer metadata and file operation logs.

6. Transfer-Service: A Spring Batch microservice
responsible for performing the actual data transfers
to and from cloud or server endpoints. It supports
dynamic connections and configurable threading via
API controls.

7. ODS Connector: A user-specific, containerized
version of the file transfer service, typically
deployed via Docker. It is isolated per user and
provides a secure and private data transfer
environment.

8. ODS CLI: A CLI with SDK that interacts with the
ODS core to provide a replacement to the UI

This microservice architecture supports scalability,
modular development, and robust performance for handling
large-scale, optimized, and secure data transfers in
distributed environments.

 Figure 5: System Architecture of OneDataShare

V. FILE TRANSFER PROTOCOLS SUPPORTED

OneDataShare is designed to function as a protocol-agnostic

data transfer platform, enabling interoperability across

diverse storage systems and endpoints. It supports on-the-fly

protocol translation and seamless data movement between

heterogeneous systems. Currently supported protocols

include:

FTP (File Transfer Protocol): Traditional and widely used

for transferring files over TCP/IP.

SFTP (SSH File Transfer Protocol): Secure version of FTP,

leveraging SSH for encrypted file transfer.

HTTP/HTTPS: Enables file transfers over standard and

secure web protocols.

S3 (Amazon Simple Storage Service): Allows interaction

with Amazon S3-compatible cloud storage services.

Dropbox: Supports transfers to and from Dropbox cloud

storage.

Box: Integration for enterprise-grade cloud storage via Box.

VFS (Virtual File System): Abstracts over multiple backend

storage types, providing a unified interface.

Google Drive: Direct integration with Google Drive for

cloud-based file transfers.

This multi-protocol support, combined with dynamic

translation capabilities, allows users to transfer data between

any combination of the above systems with minimal

configuration, significantly improving flexibility and

usability in complex workflows.

 Figure 6: Various File transfer protocols supported by OneDataShare

VI. SECURITY ASPECTS OF ONEDATASHARE

To enhance the usability and security of ODS, we
implemented federated authentication using social and
organizational login services. The login system supports:

• Google (OIDC)

• GitHub (OAuth2)

• CILogon (OIDC with Institutional login)

4.1 Architecture and Implementation:

Using Spring Security, the backend was extended to support
OAuth2/OIDC by configuring a custom SecurityFilterChain

bean. This method first added support for the OAuth2 login
flow alongside the default form login method. It specified:

• The base URI /oauth2/authorization/{provider} for
initiating the login

• The redirection endpoint /oauth2/callback/* to
handle responses from providers

• A custom
OAuth2AuthorizationRequestRepositoryCookie to
store authorization requests in browser cookies for
retrieval post-redirect

Both custom OAuth2/OIDC services extract user data using
an abstract class and concrete implementations map
provider-specific (Google, GitHub, CILogon) attribute keys.

Authentication success is handled by a custom success
handler, which issues a JWT token and stores it in cookies
for frontend access. Authentication failures are handled by
custom failure handler, which redirects users with
appropriate error messages.

A custom TokenAuthenticationFilter ensures that both
ODS-native and third-party tokens (with ATOKEN and
BEARER headers respectively) are handled appropriately
before reaching the authentication context.

4.2 Security Considerations

• Authorization Code Grant was used for all
OAuth2/OIDC flows to ensure tokens are never
exposed in URLs

• JWT tokens are issued upon successful
authentication and stored securely

• Clients are configured using
InMemoryClientRegistrationRepository with
sensitive information loaded from application-
prod.properties

• Account conflict resolution logic prevents users
from accidentally creating duplicate accounts across
login providers

 Figure 7: Landing page of OneDataShare with various secure login
features

This security mechanism enhances both the accessibility
and trustworthiness of OneDataShare, enabling seamless
login experiences while ensuring robust protection of user
data.

VII. ONEDATASHARE METRICS VISUALIZATION TOOL

To support in-depth analysis and monitoring of data
transfer behavior, OneDataShare integrates a dynamic
Metrics Visualization Tool. This web-based dashboard
provides a user-friendly interface to track and interpret key
performance indicators for each data transfer job submitted
through the platform.

Key Features:

Job Selector Dropdown: Users can select from a list of
transfer jobs they have triggered. Each entry corresponds to a
unique job ID, allowing for targeted inspection and analysis.

Time-Series Visualization: Performance metrics are
visualized per epoch, enabling detailed inspection of job
performance over time. Each epoch represents a time interval
during the transfer operation.

Metrics Tracked:

Parallelism: Displays the number of parallel threads used
during each phase of the transfer, helping users understand
how data was distributed across threads.

Concurrency: Shows how many files were transferred
simultaneously, illustrating the system’s ability to handle
multi-file workloads.

Throughput: Real-time and historical throughput (e.g., in
MBps), including smoothed trends using Exponential
Moving Average (EMA), to highlight consistent
performance and detect anomalies.

Loss: Model’s prediction error during training
(Reinforcement Learning algorithms).

This dashboard supports interactive visualization,
allowing users to hover over data points for exact values and
compare trends across epochs. It leverages File System/S3
for storing the metrics data.

By providing granular insights into transfer parameters and
system behavior, the Metrics Visualization Tool empowers
users to make informed optimization decisions, debug issues,
and validate the impact of changes in configurations or
environments.

 Figure 8: OneDataShare Metrics Visualization Tool

VIII. CONCLUSION AND FUTURE WORK

We have presented our vision for improved
OneDataShare as a cloud-hosted data transfer scheduling and
optimization service, designed to relieve users from the
complexities of managing end-to-end data transfers.
OneDataShare aims to provide a simple, intuitive platform
that supports data sharing regardless of file size, type, or
protocol differences between sender and receiver.

Through its modular microservices architecture, support
for diverse transfer protocols, real-time optimization via
Bayesian Optimization and Deep Deterministic Policy
Gradient (DDPG), and seamless federated authentication,
OneDataShare represents a robust and scalable solution for
modern data-intensive workflows. The integration of a
dynamic Metrics Visualization Tool further enhances
transparency and operational insight, helping users fine-tune
performance and diagnose transfer bottlenecks.

As part of our ongoing research, we are exploring
additional reinforcement learning algorithms such as
Proximal Policy Optimization (PPO) to further improve
parameter tuning and adaptability. Building OneDataShare
into a more reliable, scalable, and sustainable ecosystem that
can benefit a broader range of users and scientific
communities remains a core area of future development.

REFERENCES

[1] Engin Arslan and Tevfik Kosar. High-speed transfer optimization

based on historical analysis and real-time tuning. IEEE Transactions
on Parallel and Distributed Systems (TPDS), 29(6):1303–1316, 2018

[2] Engin Arslan, Bahadir A Pehlivan, and Tevfik Kosar. Big data
transfer optimization through adaptive parameter tuning. Journal of
Parallel and Distributed Computing

[3] MD SQ Zulkar Nine, Kemal Guner, Ziyun Huang, Xiangyu Wang,
Jinhui Xu, and Tevfik Kosar. Big data transfer optimization based on
offline knowledge discovery and adaptive sampling. In Proc. of IEEE
Big Data 2017, IEEE International Conference on, pages 465–472.
IEEE, 2017

[4] H. Jamil, L. Rodolph, J. Goldverg and T. Kosar, "Energy-Efficient
Data Transfer Optimization via Decision-Tree Based Uncertainty
Reduction," 2022 International Conference on Computer
Communications and Networks (ICCCN), Honolulu, HI, USA, 2022,
pp. 1-10, doi: 10.1109/ICCCN54977.2022.9868866.

[5] H. Jamil, E. Rodrigues, J. Goldverg and T. Kosar, "Learning to
Maximize Network Bandwidth Utilization with Deep Reinforcement
Learning," GLOBECOM 2023 - 2023 IEEE Global Communications
Conference, Kuala Lumpur, Malaysia, 2023, pp. 3711-3716, doi:
10.1109/GLOBECOM54140.2023.10437507.

[6] Asif Imran, Md S Q Zulkar Nine, Kemal Guner, and Tevfik Kosar,
“OneDataShare: A Vision for Cloud-hosted Data Transfer Scheduling
and Optimization as a Service”

