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Abstract—Multi-Task Learning (MTL) is a Machine Learning
approach where a single model is trained to tackle multiple
tasks at the same time. This could be helpful in improving the
overall performance and generalization for the given application.
However MTL models come with a major disadvantage of task
conflicts in which improvement of model in one particular task
might affect the model’s performance in other tasks. This is
generally caused due to gradient conflicts between several tasks.
Sharpness-Aware minimization (SAM) minimizes the task loss
while simultaneously reducing the sharpness of the loss land-
scape, Our empirical observations shows that SAM effectively
mitigates task conflicts in MTL. Inspired by this observation
we researched about integrating SAM into MTL with sampling.
Both average loss gradient and individual task gradients as
perturbations help achieve good result in MTL but combining
them both remains unclear. Also not all task specific gradients
are useful perturbations for MTL since most useful informations
might be only within certain layers of the backbone, not only that
effectively computing task specific gradient without additional
overhead is another challenge.

I. INTRODUCTION

Multi-task learning (MTL) is a machine learning approach
where a single model tries to perform multiple tasks simulata-
neously by leveraging shared informations between tasks[1].
This improves data efficiency and enhances generalization
across all tasks[2]. This approach is widely used in several
applications, including natural language processing[3; 4; 5],
computer vision [6; 7], speech recognition [8; 9] etc.
One major challenge that MTL encounters is the problem of
task conflicts where improvement of model in one particular
task might lead to degradation of performance for other tasks.
This is majorly caused due to gradient conflicts that have
varying magnitudes and directions for different tasks [10].
Sharpness-Aware Minimization (SAM) [11] focuses on up-
dating the model parameter in such a way that it not only
minimizes the task loss but also reduces the sharpness of the
loss landscape [12], It has been found useful in application
generalization [13; 14], and transfer learning [15]. But still its
proper usage for Multi-task learning still remains unexplored
except for the recent study [16]. The authors of this paper
proposed a method called F-MTL that integrates SAM into
MTL
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A. Motivation

Even though F-MTL improves performance for MTL
modes, it has two big issues.

i) First is that the computational cost involved is signifi-
cantly larger since applying SAM individually to each
task incurs additional gradient computation and also
the separate manipulation of two gradient components
doubles memory and time cost, where K is the number
of tasks.

ii) Second the perturbations of this method only makes use
of task-specific information and neglects the shared-
information across the tasks.
To address this issues we propose a algorithm that can
efficiently apply SAM into MTL.

II. RELATED-WORKS

Parameter sharing in MTL frameworks are usually done
in two ways. The first method is hard parameter sharing
in which there is a backbone layer that captures the shared
representation and on top of this we have multiple task
specific layers that are learned independently for each task
[17; 18; 19; 20]. The second method is soft parameter sharing
where each task has its own model and for each task we
penalize the distance between different task specific model’s
parameters [21; 22]. In computer vision multi-task learning
is used to exploit the shared features and use them for dif-
ferent vision tasks. The MT3DNet [23] architecture leverages
Multi-task learning to perform various tasks (segmentation,
monocular depth estimation and object detection) concurrently.
All these tasks are integrated for 3d surgical scene recon-
struction. Computational cost and efficiency can be improved
by MTL [24; 25] since it allows simultaneous prediction of
different tasks rather than training separate models for each
task and this can be beneficial in satellite imagery masking
for estimating Suspended Sediment Concentration [2].

Multi-objective Optimization (MOO) as discussed by [10]
helps in MTL scenarios. In MTL it is necessary to ensure
conflicts between tasks are mitigated for optimal performance,
this is where MOO comes in handy for mitigating conflicts by
optimizing every task’s objectives simultaneously.



Loss Balancing Methods: Loss balancing method dynami-
cally updates the objective weights using some measures in
loss such as how fast the loss decreases, homeostatic uncer-
tainty of loss, loss scale and validation loss. Dynamic Weight
Average (DWA) gets the objective weight to be the ratio of
training losses from last two iterations for the corresponding
objective. Impartial Multi-Task learning (IMTL) aims to bal-
ance losses across each task by transforming every objective
to similar loss scale. Multi-Objective Meta Learning (MOML)
uses Meta Learning to adaptively tune the objective weights.
This approach is formulated as a multi-objective bi-level
optimization problem and the time and memory cost grows
significantly as the dimension of parameter increases. Auto-
has similar formulation as MOML but the multi-objective
upper-level subproblem is replaced with a single-objective
problem and also approximates the complex hypergradient,
this make the method much efficient than MOML.

Gradient Balancing Methods: Gradient balancing method
adaptively aggregates the gradient of all objectives at each
iteration to find the update direction. In gradient weighting
method, update direction is computed as a weighted sum of
gradient of all objectives. Multiple Gradient Descent Algo-
rithm (MGDA) aims to find direction so as to maximize the
minimal decrease across objectives. Conflict-Averse Gradient
Descent (CAGrad) improves the previous MGDA by making
sure that the aggregated direction stays close to average
gradient. In gradient manipulation, the gradient are converted
to overcome conflicting gradient. Projecting Conflicting Gra-
dients (PCGrad) is a method by which the gradients that
are conflicting are projected onto the normal plane of the
other objectives’ gradient. By this way the gradient conflicts
are reduced. Gradient Vaccine (GradVac) extends PCGrad to
more generalized form, based on the cosine similarity between
gradients of objectives’ the corrected gradient is obtained.

III. PRELIMINARIES

A. Multi-task learning

In MTL we try to optimize multiple objective functions, for
K multiple tasks the optimization is given by

min
θ∈Rm

L = (l1(θ), l2(θ), · · · , lK(θ)),

{li}Ki=1 are the objectives parameterized by θ ∈ Rm. A
solution is Pareto optimal if no other solution outperforms
it on every objective simultaneously. In contrast, a solution is
Pareto stationary when there exists a convex combination of
the gradients of all objectives that sums to zero, in other words
the gradients are linearly dependent. Since Pareto stationarity
is a prerequisite for Pareto optimality, most multi-task learning
optimizers focus on locating Pareto-stationary points.

B. Sharpness-aware minimization

Consider a model parameterized by θ ∈ Rm and the
corresponding loss function given by l(θ), we consider a small
perturbation given by ϵ added to model parameters, where
∥ϵ∥ ≤ ρ. The change in loss is given by l(θ + ϵ) − l(θ)

which indicates the sharpness of the loss landscape at θ in
the direction of perturbation [11].

min
θ∈Rm

max
∥ϵ∥≤ρ

l(θ + ϵ)

The inner maximization problem max∥ϵ∥≤ρ l(θ + ϵ) can be
approximated using Taylor’s series. This leads to the approx-
imate perturbation as

ϵ̂(θ) = ρ∇l(θ)/∥∇l(θ)∥,

This shows that the perturbation is oriented in the direction
of current gradient with a small step forward. The gradient of
the outer minimization is then given by

∇θl(θ + ϵ̂(θ)) =
d(θ + ϵ̂(θ))

dθ
· ∇θl(θ)

∣∣
θ+ϵ̂(θ)

≈ ∇θl(θ)
∣∣
θ+ϵ̂(θ)

,

The approximation drops the second-order gradients to im-
prove the computational efficiency.

IV. HOW SAM MITIGATES TASK CONFLICTS

A. Toy Example
In MTL, task conflicts arise when different tasks have gra-

dients pointing in conflicting directions, leading to instability
or degraded performance for one or more tasks. Traditional
approaches try to manipulate the gradient directions directly
(like PCGrad, CAGrad). In contrast, SAM alters the loss
geometry to find flatter regions that are generally less sensitive
to parameter perturbations and more compatible across tasks.
To evaluate SAM’s effectiveness in mitigating task conflicts,
we conduct experiments using a toy example involving two
conflicting objective functions defined as:

f1(x) = (x1 − 2)2 + 0.5(x2 + 1)2

f2(x) = 0.5(x1 + 2)2 + (x2 − 1)2

where the parameter vector is constrained to x1 ∈ [−5, 5],
and x2 ∈ [−3, 3]. These two objectives are designed such that
their respective minima lie in opposite quadrants of the search
space, creating gradient conflicts in the shared parameter
space. Unlike dynamic-weighting MTL methods like MGDA
or PCGrad that attempt to directly modify gradients at each
iteration, we adopt Linear Scalarization (LS), which combines
task losses using static weights. To this baseline, we apply
SAM to the scalarized loss and evaluate the difference in op-
timization trajectory. Both LS and LS with SAM are initialized
from the same starting point x0 = (0, 0), but they converge
to different solutions. While LS typically converges to a sharp
local minimum biased towards one objective, LS with SAM
leads to a flatter solution region that balances both objectives
more effectively. In these flatter regions, moving along the
loss surface yields minimal degradation to either objective,
indicating reduced task conflict. Our experiments show that
SAM consistently pushes the solution toward Pareto-efficient
points where gradients from both tasks are better aligned.
This demonstrates that SAM, by smoothing the shared loss
landscape, naturally mitigates task conflicts without explicitly
modifying the gradients for each task.



Fig. 1. SAM with sampling and global-local perturbation along with magni-
tude normalization to match the magnitude of global perturbation

Algorithm 1 SAM with global and sampled local perturba-
tions

1: Input: Model parameters θ0, loss functions l1, · · · , lK ,
gradient manipulation MTL method M, learning rate η,
perturbation step size ρ, iteration steps T , set of sampled
layers l.

2: Output: MTL model trained with efficient SAM
3: for t = 0 to T − 1 do
4: Compute average gradient ∇θl0(θt)
5: for task i = 1 to K do
6: if sh ∈ l then
7: Compute layerwise gradient ∇̂θli(θt,sh)
8: end if
9: Compute perturbation ϵ̂i,sh

10: Compute gradient gSAM
t,i

11: end for
12: Compute dt = M(gSAM

t,1 , · · · , gSAM
t,K )

13: Update the parameters θt+1 = θt − ηdt
14: end for

B. Both Local and Global Information helps

We analyze the impact of incorporating two types of sharp-
ness information on multi-task learning (MTL) performance.
The first variant, referred to as global information, computes
the gradient using the average loss across all tasks and
applies a single shared perturbation to the model parameters.
In contrast, the second variant, termed local information,
calculates gradients independently for each task, leading to
task-specific perturbations. Our experimental results indicate
that both global and local sharpness-aware perturbations sig-
nificantly improve the performance of baseline MTL methods.

V. PROPOSED ALGORITHM

From the experiments reported in Section IV we propose a
efficient algorithm that makes use of both global and sampled
local information as shown in Algorithm 1, which combines
the benefits of G-SAM and L-SAM along with sampling to
mitigate task conflicts while keeping the computation cost
manageable.

Fig. 2. Cosine Similarity of different backbone layers between 2 tasks on
CelebA dataset using CAGRAD method

Compared to the traditional MTL methods, the total computa-
tional cost of the proposed algorithm involves K +1 gradient
computations along with additional forward pass computation,
making it more efficient than F-MTL [16]. On top of this
task-specific gradients are approximated and only computed
to those crucial layers. The formulation of the perturbation
for SAM is given by:

ϵ̂i,sh =


ρ α∇θl0(θ)+(1−α)∇θli(θsh)
∥α∇θl0(θ)+(1−α)∇θli(θsh)∥ if sh ∈ l

ρ α∇θl0(θ)
∥α∇θl0(θ)∥ otherwise.

l here refers to set of sampled backbone layers that are
considered to be crucial layers for model learning between
tasks. α ∈ [0, 1] is a tunable weight scalar which is used
to control the amount of global and local information in the
perturbation. For equal amount of information α = 0.5 is
chosen.
The cosine similarity in Figure 2,3 shows the dynamics
of different backbone layers between several tasks. This
can help identify the crucial layers that are shared between
several tasks, and only the information from these layers
in perturbation will have a major impact. Only certain lay-
ers—specifically the first, some middle layers, and the last
layers—showed more changes in cosine similarity compared
to other layers in the backbone. Let Cf , Cb represent the
computation cost of a forward pass and a backward pass,
the proposed algorithm has a total computational cost of
Cb + 2KCf , One backward pass to compute the average
gradient and two forward passes to compute the approximated
local perturbation for each task. This is much efficient than
F-MTL [16] which has a total overhead of KCb + Cgm,
where Cgm represents the cost for gradient manipulation MTL
method.

VI. CONCLUSION

We first researched about how integrating SAM into MTL
can mitigate task conflicts with the help of both average
gradients and task specific gradients. We then proposed a
efficient algorithm that combines both global and sampled
local information that helps in training MTL models with
better generalization performance and reduced computational
cost. We will also explore effective and efficient methods in



Fig. 3. Cosine Similarity of different backbone layers between 2 tasks on
CelebA dataset using MGDA method

future for mitigating general task conflicts in MTL using Low-
Rank approximations.
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