
Pirouette Compiler: Design and Implementation of a Compiler
for Higher-Order Functional Choreographies

by

Yining Zhang

May 2025

A project report submitted to the
faculty of the Graduate School of

the University at Buffalo, The State University of New York
in partial fulfillment of the requirements for the

degree of

Master of Science
Department of Computer Science

Copyright by
Yining Zhang

2025
All Rights Reserved

Abstract

This report presents the development of a compiler infrastructure for Pirouette using OCaml. It

will be a practical tool that enables programmers to write and execute choreographic programs;

and also, a foundational framework for researching and developing optimization techniques

specifically tailored to choreographic programming. The compiler is backend-agnostic and can

be configured to use multiple communication channel backends. This infrastructure validates

the theoretical underpinnings of choreographic programming and also serves as a testbed for

exploring how the unique characteristics of choreographies.

i

Table of Contents

Table of Contents . ii

List of Equations . iii

List of Listings . iv

1 Introduction . 1

1.1 Choreographic Programming . 1

1.2 The Pirouette Language . 2

2 Implementation . 7

2.1 Hierarchically Composed ASTs . 7

2.2 Parsing . 14

2.3 Endpoint Projection . 16

2.4 Code Generation . 17

Glossary . 26

Bibliography . 27

ii

List of Equations

Equation 1 Local AST definition . 8

Equation 2 Choreo AST definition . 9

Equation 3 Net AST definition . 10

iii

List of Listings

Listing 1 Ping-Pong program . 3

Listing 2 Ping-pong: main function . 4

Listing 3 Ping-pong: Alice endpoint code . 5

Listing 4 Ping-pong: Bob endpoint code . 5

Listing 5 Parameterized AST definition . 11

Listing 6 AST metadata functor . 12

Listing 7 AST with position metadata . 12

Listing 8 AST with type metadata . 13

Listing 9 AST transformation between phases . 13

Listing 10 Pirouette to OCaml expression transformation . 18

Listing 11 Pattern expression with quotation syntax . 18

Listing 12 Message passing interface . 19

Listing 13 NetIR translation . 20

Listing 14 Shared memory messaging interface implementation . 21

Listing 15 Function signature for domain toplevel . 22

Listing 16 Domain spawning with location mapping . 22

Listing 17 NetIR transformation for Domain execution . 23

Listing 18 Channel creation for location pairs . 24

Listing 19 Messaging interface implementation . 24

Listing 20 Sequential domain joining . 25

iv

1 | Introduction

1.1 Choreographic Programming
Modern software development is growing more complex, and multi-core processors are now

more common. To handle this complexity and tap into modern hardware, developers are turning

to concurrent programming paradigms. Concurrency lets different parts of a program run at the

same time, improving performance and responsiveness. Many ways exist to structure concurrent

systems. One popular approach is message passing. Alongside traditional multi-threading, mes-

sage-passing architectures, where independent components communicate by sending messages

rather than sharing memory directly, offer a way to structure complex interactions. [9]

Concurrent programming is powerful, but it can also introduce challenges for developers, partic-

ularly concerning message ordering and deadlocks. Keeping the right order of messages between

concurrent entities, such as actors, is crucial. Message order violations or bad interleavings

may come from unexpected delays or execution overlaps. Such problems can lead to incorrect

states or even system failures. Deadlocks are another big problem. They happen when parts of a

program are blocked waiting for each other. Identifying these concurrency issues is notoriously

difficult. Their non-deterministic nature means they often manifest only under specific, rare

timing conditions, making them hard to reproduce consistently. The inherent complexity and

elusive nature of these bugs typically require considerable time and effort to detect, diagnose,

and resolve. And there is a lack of specialized frameworks to help. [6, 9]

Choreographic programming, represents a emerging paradigm in developing concurrent and

distributed systems, moving from writing the program for each participant individually towards

specifying the system’s interactions from a unified, global perspective [1]. In the choreographic

paradigm, the programmer writes a choreography, which serves as a blueprint detailing the

sequence of communications and interactions among all participating roles (or endpoints) [3].

1

Chapter 1 Introduction

This choreography raises the level of abstraction and offers an objective view of the entire

system’s communication procedure.

A choreography undergoes a compilation process called Endpoint Projection (EPP), which trans-

forms the choreography into individual implementations deployed across distributed nodes.

When endpoint projection maintains soundness, the resulting system inherently guarantees

deadlock freedom — a fundamental property ensuring that every message sent will be matched

with a corresponding receive operation[1]. Beyond this core benefit, choreographies facilitate

comprehensive whole-program analyses that can systematically identify and eliminate various

potential bugs, and simultaneously creating many opportunities for verification and performance

optimization.

1.2 The Pirouette Language
Pirouette [4] is the first language for choreographic programming which is higher-order, func-

tional, and statically typed. Pirouette is defined generically over a local language of messages, and

lifts guarantees about the message type system to its own. The language’s type soundness and

the properties of endpoint projection guarantee deadlock freedom, which is also formally proven.

The communication model in Pirouette centers around message passing between participants.

The message passing operator ⇝ combines sending and receiving into a single construct,

ensuring by design that communication endpoints are properly matched.

A distinguishing feature of Pirouette is its support for higher-order programming. Functions

in Pirouette can accept both local values and entire choreographies as arguments. This enables

powerful abstraction capabilities not available in previous choreographic languages.

To demonstrate the Pirouette language, consider a simple ping-pong protocol that parameterizes

an interaction between Alice and Bob . Alice sends an integer to Bob ; Bob applies a function

to this integer and sends the result back to Alice , who then prints it. We can implement this

protocol using a higher-order Pirouette function, make_pingpong , which takes Bob ’s processing

function (handler) as an argument:

2

Chapter 1 Introduction

1 make_pingpong : (Bob.int -> Bob.int) -> (Alice.int -> Alice.unit);
2
3 make_pingpong handler :=
4 let do_pingpong Alice.value :=
5 [Alice] Alice.value ~> Bob.received;
6 let Bob.result := handler Bob.received; in
7 let Alice.response := [Bob] Bob.result ~> Alice; in
8 Alice.print_int Alice.response;
9 in do_pingpong

10 ;
11
12 main :=
13 let Alice.choice := Alice.read_line Alice.(); in
14 if Alice.(choice = "double") then
15 Alice[DOUBLE] ~> Bob;
16 make_pingpong (fun Bob.x -> Bob.(x * 2)) Alice.5
17 else
18 Alice[ADDONE] ~> Bob;
19 make_pingpong (fun Bob.x -> Bob.(x + 1)) Alice.5
20 ;

Listing 1: Pirouette Program for Ping-Pong Interaction.

The type signature (Bob.int -> Bob.int) -> (Alice.int -> Alice.unit) shows Pirouette’s

use of located types. It specifies that make_pingpong accepts a function (handler) that takes

an integer located at Bob (Bob.int) and returns another integer at Bob . The make_pingpong

function itself returns a new function (the actual choreography do_pingpong) which expects an

integer located at Alice (Alice.int) and ultimately results in a unit value located at Alice

(Alice.unit), signifying the completion of Alice’s role (printing the result). This use of a

function argument (handler) showcases the higher-order nature of Pirouette, allowing parts of

the protocol’s logic to be abstracted and passed in as data.

Inside the do_pingpong function body:

1. [Alice] Alice.value ~> Bob.received denotes a communication step. The location in

brackets ([Alice]) indicates the sender. Alice.value is the value being sent (bound to the

input of). Bob.received signifies that the value is received by Bob and bound to the local

variable received in Bob ’s scope.

3

Chapter 1 Introduction

2. let Bob.result := handler Bob.received; in represents a local computation occurring

only at Bob . Bob applies the handler function (passed into make_pingpong) to the received

value Bob.received , binding the output to Bob.result .

3. let Alice.response := [Bob] Bob.result ~> Alice; in shows the return communication.

Bob sends the computed Bob.result to Alice , who receives it as Alice.response . The

let ... := ... ~> ...; in syntax combines the send, receive, and binding into a single

choreographic step.

4. Alice.print_int Alice.response; is another local computation, this time performed by

Alice using the standard library function print_int on her received value Alice.response .

1 main :=
2 let Alice.choice := Alice.read_line Alice.(); in
3 if Alice.(choice = "double") then
4 Alice[DOUBLE] ~> Bob;
5 make_pingpong (fun Bob.x -> Bob.(x * 2)) Alice.5
6 else
7 Alice[ADDONE] ~> Bob;
8 make_pingpong (fun Bob.x -> Bob.(x + 1)) Alice.5
9 ;

Listing 2: Main function of the ping-pong choreography with protocol variations.

Pirouette’s endpoint projection transforms these choreographies into separate programs (NetIR)

for each participant. For the ping-pong example, the projection produces the following NetIR

code for Alice :

4

Chapter 1 Introduction

1 make_pingpong handler :=
2 let do_pingpong value :=
3 ret value ~> Bob;
4 let response := <~ Bob in
5 ret (print_int (ret response))
6 in
7 do_pingpong
8 ;
9

10 main :=
11 let choice := ret read_line ret () in
12 if ret (choice = "double") then
13 choose DOUBLE for Bob;
14 make_pingpong (fun _ -> ()) ret 5
15 else
16 choose ADDONE for Bob;
17 make_pingpong (fun _ -> ()) ret 5
18 ;

Listing 3: Alice ’s endpoint code of the ping-pong choreography.

And for Bob , the projection yields:

1 make_pingpong handler :=
2 let do_pingpong _ :=
3 let received := <~ Alice in
4 let result := handler received in
5 ret result ~> Alice
6 in
7 do_pingpong;
8
9 main :=

10 match choice from Alice with
11 | DOUBLE -> make_pingpong (fun x -> x * 2) ()
12 | ADDONE -> make_pingpong (fun x -> x + 1) ()
13 ;

Listing 4: Bob ’s endpoint code of the ping-pong choreography.

The type system ensures that these communications are well-formed and that distributed control

flow is coordinated correctly. This projection demonstrates how the original choreography is

accurately projected into programs for each node. At Alice ’s endpoint, we see explicit send

operations (~>) and receive operations (<~). Similarly, at Bob ’s endpoint, we see the comple-

5

Chapter 1 Introduction

mentary receive from Alice and send back to Alice , along with the handler function that

processes the received value.

When a conditional expression evaluates a condition at one location, other locations involved

in either branch must be informed of the decision, ensuring all participants follow the same

execution path. The control flow branching in the main function is coordinated by the choose

construct at Alice ’s side and the corresponding match choice at Bob ’s side.

By unifying functional and choreographic programming, Pirouette offers an expressive yet

safe approach to distributed programming. Programmers can leverage familiar and convenient

functional programming concepts while gaining the coordination benefits of choreographic

programming. This makes Pirouette particularly suitable for implementing complex distributed

protocols where correctness guarantees are essential.

6

2 | Implementation

The compilation pipeline of Pirouette consists of the following phases:

1. Lexical and Syntactic Analysis: The compiler’s front-end employs a lexer and parser to

analyze the source code and construct a Choreography Abstract Syntax Tree (AST), which

represents local expressions elevated to the choreographic level.

2. Location Analysis: The compiler traverses the complete AST structure to identify and

catalog all distinct locations specified in the choreographic program.

3. Endpoint Projection: For each identified location, the compiler performs endpoint projec-

tion, transforming choreographic constructs into location-specific implementations in an

intermediate representation called NetIR.

4. Code Generation: The compiler translates each node’s NetIR into OCaml code, preserving

the communication patterns and computational logic specified in the original choreography.

5. Target Compilation: The generated OCaml code is subsequently processed by the OCaml

compiler, producing executable binaries for each network endpoint.

2.1 Hierarchically Composed ASTs
The implementation of choreographic programming in Pirouette requires an Abstract Syntax

Tree (AST) architecture that reflects the dual nature of the paradigm: global choreographies

and their projection to local behaviors. In the compiler, three interconnected AST structures

are defined — Local, Choreo, and NetIR — forming a complete representation for distributed

computations.

7

Chapter 2 Implementation

The Local AST serves as the foundation, defining an expression-based language with standard

constructs such as values (integers, strings, booleans), operators, pattern matching, and basic

data structures (products and sums). This local language represents the computational capabil-

ities of individual nodes in the distributed system.

𝜏𝐿 ⩴ unit | int | string | bool

| 𝜏𝐿 × 𝜏𝐿 | 𝜏𝐿 + 𝜏𝐿

𝑝𝐿 ⩴ _ | 𝑣 | 𝑥 | (𝑝𝐿, 𝑝𝐿) | left(𝑝𝐿) | right(𝑝𝐿)

𝑒𝐿 ⩴ () | 𝑣 | 𝑥 | 𝑜𝑝1(𝑒𝐿) | 𝑜𝑝2(𝑒𝐿, 𝑒𝐿)

| let 𝑥 = 𝑒𝐿 in 𝑒𝐿

| (𝑒𝐿, 𝑒𝐿) | fst(𝑒𝐿) | snd(𝑒𝐿)

| left(𝑒𝐿) | right(𝑒𝐿)

| match 𝑒𝐿 with {𝑝𝐿 ⇒ 𝑒𝐿}+

𝑣 ⩴ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 | 𝑠 𝑡𝑟 𝑖𝑛𝑔 | 𝑏𝑜𝑜𝑙𝑒𝑎𝑛

𝑜𝑝1 ⩴ −

𝑜𝑝2 ⩴ + | − | ∗ | / | = | ≤ | ≥ | ≠ | > | < | && | ||

Equation 1: Abstract syntax of the Local language.

Building upon this foundation, the Choreo AST encapsulates the global choreographic specifi-

cations by introducing location-aware constructs. It extends the type system with TLoc to

represent location-specific types and introduces specialized expressions like LocExpr to execute

local computations at specific locations (corresponding to the ℓ.𝑒 syntax), Send to represent

communication between locations (ℓ1.𝑒 ℓ2.𝑥; 𝐶), and Sync for synchronization events. Notably,

the Let construct corresponds to the let ℓ.𝑥 𝐶1 in 𝐶2 syntax, binding values computed at specific

locations for use in subsequent choreographies.

8

Chapter 2 Implementation

𝜏𝐶 ⩴ unit | ℓ.𝜏𝐿 | 𝜏𝐶 ↦ 𝜏𝐶

| 𝜏𝐶 × 𝜏𝐶 | 𝜏𝐶 + 𝜏𝐶

𝑝𝐶 ⩴ _ | 𝑥 | ℓ.𝑝𝐿 | (𝑝𝐶 , 𝑝𝐶)

| left(𝑝𝐶) | right(𝑝𝐶)

𝑒𝐶 ⩴ () | 𝑥 | ℓ.𝑒𝐿

| ℓ1.𝑒𝐶 ⇝ ℓ2

| if 𝑒𝐶 then 𝑒𝐶 else 𝑒𝐶

| let 𝑠 in 𝑒𝐶

| 𝑝𝐶 ↦ 𝑒𝐶 | 𝑒𝐶(𝑒𝐶)

| (𝑒𝐶 , 𝑒𝐶) | fst(𝑒𝐶) | snd(𝑒𝐶)

| left(𝑒𝐶) | right(𝑒𝐶)

| match 𝑒𝐶 with {𝑝𝐶 ⇒ 𝑒𝐶 }+

𝑠𝐶 ⩴ 𝑝𝐶 : 𝜏𝐶

| 𝑝𝐶 ≔ 𝑒𝐶

Equation 2: Abstract syntax of the Choreo language.

By Endpoint Projection, every node runs programs in a local expression-based language. So the

third component, NetIR AST, is also built upon the Local AST. It represents the translation of

global choreographies into location-specific behaviors. NetIR introduces communication primi-

tives like Send and Recv that replace the unified Send from the choreography, and distributed

choice mechanisms (ChooseFor and AllowChoice) that implement the projection of conditional

behaviors across multiple participants.

9

Chapter 2 Implementation

𝜏𝐸 ⩴ unit | 𝜏𝐿 | 𝜏𝐸 ↦ 𝜏𝐸

| 𝜏𝐸 × 𝜏𝐸 | 𝜏𝐸 + 𝜏𝐸

𝑒𝐸 ⩴ () | 𝑥 | ret(𝑒𝐿)

| if 𝑒𝐸 then 𝑒𝐸 else 𝑒𝐸

| let 𝑠𝐸 in 𝑒𝐸

| sendℓ 𝑒𝐸 | recvℓ()

| chooseℓ 𝐿; 𝑒𝐸 | allowℓ {𝐿 : 𝑒𝐸}+

| 𝑝𝐿 ↦ 𝑒𝐸 | 𝑒𝐸(𝑒𝐸)

| (𝑒𝐸 , 𝑒𝐸) | fst(𝑒𝐸) | snd(𝑒𝐸)

| left(𝑒𝐸) | right(𝑒𝐸)

| match 𝑒𝐸 with {𝑝𝐿 ⇒ 𝑒𝐸}+

𝑠𝐸 ⩴ 𝑝𝐿 : 𝜏𝐸

| 𝑝𝐿 ≔ 𝑒𝐸

Equation 3: Abstract syntax of the Net IR.

This tiered AST architecture enables the complete representation and transformation pipeline

from high-level choreographic specifications to executable distributed programs, maintaining

the semantic correspondence between the global view of the computation and its local realiza-

tions at each endpoint.

In compiler construction, Abstract Syntax Trees (ASTs) typically undergo multiple transforma-

tions across compilation phases, with each pass potentially requiring a different representation

to accommodate phase-specific metadata. Typically we need to define distinct AST types for

each phase, resulting in significant code duplication and challenging maintenance, e.g., we need

to write pretty-printinghelper functions for each AST definition. We leverage OCaml’s Gener-

alized Algebraic Data Types (GADTs) and module functors to address this challenge elegantly.

Our approach parameterizes AST node definitions with a type variable representing metadata,

allowing the core structure to remain invariant while metadata evolves across compilation

phases. This architecture enables the compiler to maintain a single definition of AST structure

10

Chapter 2 Implementation

while attaching different metadata to nodes at each phase, rather than constructing entirely new

AST types.

The implementation begins with a parameterized definition of AST node types. As shown in the

following excerpt, each node carries metadata of type 'm :

1 type 'm expr =
2 | Unit of 'm
3 | Val of 'm value * 'm
4 | Var of 'm var_id * 'm
5 | UnOp of 'm un_op * 'm expr * 'm
6 | BinOp of 'm expr * 'm bin_op * 'm expr * 'm
7 | Let of 'm var_id * 'm expr * 'm expr * 'm
8 | Pair of 'm expr * 'm expr * 'm
9 | Match of 'm expr * ('m pattern * 'm expr) list * 'm

Listing 5: Parameterized AST definition with metadata type variable 'm

The implementation relies on a functor-based design that instantiates AST types with specific

metadata through a parameterized module. This is achieved through the With functor, which

expects a module providing a metadata type:

11

Chapter 2 Implementation

1 module With (Info : sig
2 type t
3 end) =
4 struct
5 type nonrec value = Info.t M.value
6 type nonrec expr = Info.t M.expr
7
8 let get_info_expr : expr -> Info.t = function
9 | Unit i -> i

10 | Val (_, i) -> i
11 | Var (_, i) -> i
12 | UnOp (_, _, i) -> i
13 | BinOp (_, _, _, i) -> i
14 | Let (_, _, _, i) -> i
15 (* ... other cases ... *)
16 ;;
17
18 let set_info_expr : Info.t -> expr -> expr =
19 fun i -> function
20 | Unit _ -> Unit i
21 | Val (v, _) -> Val (v, i)
22 | Var (x, _) -> Var (x, i)
23 | UnOp (op, e, _) -> UnOp (op, e, i)
24 | BinOp (e1, op, e2, _) -> BinOp (e1, op, e2, i)
25 (* ... other cases ... *)
26 ;;
27 end

Listing 6: The With functor that instantiates AST nodes with specific metadata types.

When transitioning between compiler phases, a new AST type can be instantiated with phase-

specific metadata. For example, during parsing, we might attach source location information:

1 module Pos_info = struct
2 type t =
3 { fname : string
4 ; start : int * int (* line, column *)
5 ; stop : int * int (* line, column *)
6 }
7 end
8
9 module Local = Ast_core.Local.With (Pos_info)

Listing 7: Instantiation of the AST with source position information for the parsing phase.

12

Chapter 2 Implementation

This instantiation yields a new AST module with nodes carrying position information. Later

phases can introduce different metadata types without altering the AST structure. For instance,

a typing phase might replace position information with type annotations:

1 module Type_info = struct
2 type t = ty option (* Option containing inferred type *)
3 end
4
5 module Typed_ast = Ast_core.Local.With (Type_info)

Listing 8: Instantiation of the AST with type information for the typing phase.

Type safety is preserved across transformations through the functor’s type constraints and the

OCaml type system’s static guarantees. The accessor and modifier functions such as and

ensure that metadata is handled consistently for each node type:

1 let transform_expr (e : Local.expr) : Typed_ast.expr =
2 match e with
3 | Local.Var (x, _) ->
4 let x' = transform_var_id x in
5 Typed_ast.Var (x', Some inferred_type)
6 | Local.BinOp (e1, op, e2, _) ->
7 let e1' = transform_expr e1 in
8 let e2' = transform_expr e2 in
9 let op' = transform_binop op in

10 Typed_ast.BinOp (e1', op', e2', Some result_type)
11 (* ... other cases ... *)

Listing 9: Transformation function that converts AST nodes with different metadata types.

Our design yields substantial code reuse benefits, as traversal algorithms, pattern matching

structures, and transformation logic can be written once and reused across different compilation

phases. Beyond reducing code duplication, this approach enhances compiler robustness by

limiting the surface for potential inconsistencies between AST representations.

Interestingly, after completing our implementation, we discovered that a similar approach was

explored in the development of the Catala compiler[2], a DSL for implementing algorithms

defined in law. The authors of that work also leverage GADTs to achieve a unified AST represen-

tation, though with some architectural differences. Their design centers around a parameterized

13

Chapter 2 Implementation

GADT 'kind Generic.expr that represents all possible AST nodes across compilation passes,

using phantom types as guards to characterize different families of terms. Their approach offers

several notable advantages that align with our goals: it distinguishes intermediate ASTs at the

type level for stronger compile-time guarantees, reduces boilerplate through systematic code

reuse, and allows for comfortable AST manipulation through OCaml’s natural pattern matching.

While our implementation focuses on attaching different metadata to nodes through functors,

their design emphasizes using phantom types to control which terms are allowed in different

compilation phases. Both approaches demonstrate how OCaml’s advanced type system features

can be leveraged to create maintainable compiler architectures that balance expressiveness with

type safety.

2.2 Parsing

2.2.1 Lexical Analyzer Generation
A lexical analyzer, often referred to as a scanner or tokenizer in compiler design, is the first phase

of the compilation process responsible for converting a sequence of characters into meaningful

lexical units called tokens. The process of lexical analysis divides the input text into these tokens

according to a set of rules that define the language’s lexical structure.

Traditionally, lexical analyzers were hand-coded, requiring developers to write complex char-

acter-by-character processing routines that could identify patterns in the input stream. Lexical

analyzer generators [7] are specialized tools to automate this process, offering a more systematic

and maintainable approach to building scanners. These generators accept high-level specifica-

tions of lexical patterns, typically expressed as regular expressions, and produce executable code

that implements a lexical analyzer conforming to those specifications.

The generator transforms these abstract pattern definitions into efficient finite automata that

can recognize the specified patterns in the input stream. When a pattern is recognized in the

input text, the generated analyzer can execute associated semantic actions, which might include

recording token information, manipulating symbol tables, or performing other context-specific

operations.

14

Chapter 2 Implementation

The core principle behind lexical analyzer generators is the formal language theory concept

that regular expressions can be systematically converted to deterministic finite automata (DFAs),

which serve as efficient recognition engines for the patterns defined by those expressions.

The generator approach creates a clear separation between the specification of lexical structure

(what patterns to recognize) and the implementation details of the recognition process, allowing

language designers and compiler writers to focus on the language definition rather than low-

level character processing algorithms.

The lexer definition in the compiler uses OCamllex[5], a lexical analyzer generator for the OCaml

programming language. The lexer transforms source code into tokens through specifications

consisting of regular expressions with associated semantic actions. The implementation com-

prises three main components: a header section containing auxiliary OCaml code for position

tracking and error handling, pattern definitions that establish the vocabulary of recognizable

lexemes, and rule definitions that specify the state transitions of the underlying finite automaton.

The primary rule, read, handles most token recognition by matching patterns for language

constructs and emitting appropriate token constructors. The lexer employs specialized rules for

complex lexical structures including string literals (read_string) and both single-line and multi-

line comments (read_single_line_comment and read_multi_line_comment). Error handling is

integrated throughout the implementation, with explicit exception raising for unexpected char-

acters and unterminated constructs. Position information is maintained to enable precise error

reporting.

2.2.2 Parser Generator
An LR(1) parser generator transforms high-level grammar specifications into efficient parsers

capable of processing input text according to the rules of a formal language. The “LR” designa-

tion indicates that the input is scanned from Left to right to produce a rightmost derivation,

while the “(1)” signifies that parsing decisions require looking ahead at most one token. These

parsers operate as deterministic pushdown automata, processing input tokens sequentially and

constructing derivation trees in a bottom-up fashion. The performance characteristics of LR(1)

parsers are highly predictable: assuming constant-time semantic actions, they achieve linear time

complexity with respect to input size.[13]

15

Chapter 2 Implementation

At the core of LR(1) parsing lies the concept of item-sets, which characterize the states of

the parser. Each state represents a collection of “LR(1) items” — essentially productions with

a marker indicating how much of the production has been recognized, along with lookahead

information. The parser generator constructs action and goto tables from these states, which

together form the parsing automaton. The action table determines what the parser should do

upon encountering each possible input token in each state (shift, reduce, accept, or error), while

the goto table dictates which state to transition to after a reduction. This table-driven approach

enables efficient parsing decisions without backtracking.[14]

Our parser is implemented using Menhir[10], a modern LR(1) parser generator for OCaml.

Menhir transforms high-level grammar specifications, decorated with semantic actions, into

deterministic pushdown automata parsers with predictable performance characteristics. Assum-

ing constant-time semantic actions, our parser achieves linear time complexity with respect to

input size.

Menhir’s table-based LR(1) parsing approach ensures our implementation delivers deterministic

and efficient parsing. The parser processes input tokens sequentially, building derivation trees

bottom-up while using semantic actions to construct corresponding AST nodes that capture both

syntactic structure and source locations.

The semantic actions in our implementation are fragments of OCaml code that execute during

parsing to construct abstract syntax tree (AST) nodes. We maintain separate AST hierarchies

for choreographic and local expressions, reflecting the dual nature of our language which must

represent both communication patterns between participants and local computations. Position

tracking is systematically integrated throughout the parser via the gen_pos function, which

records precise source location information from the lexer for each syntactic construct. After

parsing, a new AST module is generated with location metainformation attached to each AST

node.

2.3 Endpoint Projection
At its core, the implementation transforms a global choreographic description into location-

specific programs, maintaining the distributed semantics while ensuring each participant only

sees their relevant part of the interaction.

16

Chapter 2 Implementation

The implementation centers around a recursive traversal of the choreographic syntax tree,

where each construct is projected differently based on the target location. For local expressions

(LocExpr), only the intended location receives the actual expression; all others receive an empty

unit value. This follows the theoretical principle that local computations should only affect their

respective participants.

Communication primitives represent the heart of choreographies. When projecting a Send

operation between locations loc1 and loc2 , the implementation produces three distinct out-

comes: the source location loc1 receives a Send operation, the target location loc2 receives a

corresponding Recv operation, and all other locations receive nothing. This directly corresponds

to the theoretical notion that in a communication ℓ1.𝑒 ⇝ ℓ2.𝑥, each location plays a specific role.

The merge_net_expr and merge_net_stmt functions implement the theoretical merging opera-

tor (⊔) that combines the control flow from different branches when a location is not the decision

maker. For example, when projecting an If expression, the implementation first attempts to merge

the projections of both branches. If merging succeeds, the location receives the merged program;

otherwise, it receives a conditional statement that mirrors the original choreography’s structure.

Synchronization primitives, represented by Sync in the choreographic language, are projected

into ChooseFor and AllowChoice operations, which implement the theoretical choice propaga-

tion mechanism. The initiating location gets a ChooseFor operation, while the receiving location

gets an AllowChoice operation with appropriate handlers for each choice label.

By systematically implementing these projection rules, the NetGen module transforms the uni-

fied choreographic view into a collection of communicating processes (NetIR) that collectively

implement the specified behavior.

2.4 Code Generation

2.4.1 Code generation using Metaprogramming
Currently, our target language for code generation is OCaml, because our ASTs are very close

to OCaml. We can build the compiler more quickly for further uses.

17

Chapter 2 Implementation

Metaprogramming[8, 12, 15] — the practice of writing programs that generate or manipulate

other programs — represents a powerful paradigm in OCaml. In OCaml, metaprogramming

enables developers to construct code using abstract syntax tree (AST) manipulations rather than

string-based generation, offering greater safety and expressivity. The OCaml ecosystem has had

various metaprogramming frameworks as well as Parsetree, a library for working with OCaml’s

abstract syntax tree, their APIs for representing ASTs are either outdated or unstable across

OCaml versions. Ppxlib has emerged as the definitive solution to this challenge, providing a

stable and complete framework for OCaml metaprogramming.

The core of our approach utilizes Ppxlib’s Ast_builder.Default module, which provides func-

tions for constructing various AST elements. For example, eint , estring , and ebool create

expression nodes for literals, while evar constructs variable references. Our implementation

uses these builders extensively in functions like emit_local_pexp , which transforms a Pirouette

expression (Local.expr) into OCaml’s expression:

1 let rec emit_local_pexp (expr : 'a Local.expr) =
2 match expr with
3 | Unit _ -> Ast_builder.Default.eunit ~loc
4 | Val (Int (i, _), _) -> Ast_builder.Default.eint ~loc i
5 | Val (String (s, _), _) -> Ast_builder.Default.estring ~loc s
6 /* ... */

Listing 10: Function to transform Pirouette expressions into OCaml AST expressions.

Ppxlib’s quotation syntax significantly simplifies AST construction. Rather than manually build-

ing complex expressions, quotations like [%expr ...] and [%pat? ...] allow us to write OCaml

code that is automatically converted to AST nodes. This is particularly valuable for complex

patterns, as seen in our pattern expression translation:

1 | Pair (p1, p2, _) -> [%pat? [%p emit_local_ppat p1], [%p emit_local_ppat p2]]
2 | Left (p, _) -> [%pat? Either.Left [%p emit_local_ppat p]]

Listing 11: Pattern expression translation using Ppxlib’s quotation syntax.

18

Chapter 2 Implementation

After constructing the generated AST, we simply call Ppxlib’s pretty printing function to get the

generated OCaml code.

2.4.2 Backend-Agnostic Messaging Architecture
The compiler uses a backend-agnostic approach to generating code for concurrent/distributed

nodes, where the core code generation functionality is parameterized by the messaging backend.

This architecture leverages OCaml’s first-class modules to abstract away the details of message

passing, allowing the same code generator to target different execution environments without

modification.

The module interface in Msg_intf.ml encapsulates the essential operations required for commu-

nication:

1 module type M = sig
2 val emit_net_send : src:string -> dst:string -> expression -> expression
3 val emit_net_recv : src:string -> dst:string -> expression
4 end

Listing 12: Message passing interface that abstracts send and receive operations.

This interface captures the minimal set of operations needed for message passing: sending a

value from one location to another, and receiving a value from a specific source. It separates

concerns between the core code generation logic and the specific details of message passing

implementations.

By parameterizing the code generator with a first-class module implementing the messaging

interface, we can generate code for different execution environments without changing the

generator itself. This is a snippet in the function, which handles the translation of network

expressions:

19

Chapter 2 Implementation

1
and emit_net_pexp ~(self_id : string) (module Msg : Msg_intf) (exp : 'a
Net.expr) =

2 match exp with
3 (* ... other cases ... *)
4 | Send (e, LocId (dst, _), _) ->
5 let val_id = Id.gen "val_" in
6 [%expr
7 let [%p Ast_builder.Default.pvar ~loc val_id] =
8 [%e emit_net_pexp ~self_id (module Msg) e]
9 in

10 [%e
11 Msg.emit_net_send
12 ~src:self_id
13 ~dst

14
 [%expr Marshal.to_string [%e Ast_builder.Default.evar ~loc val_id]
[]]]]

15 | Recv (LocId (src, _), _) ->
16 [%expr Marshal.from_string [%e Msg.emit_net_recv ~src ~dst:self_id] 0]
17 (* ... more cases ... *)

Listing 13: Code generation for NetIR expressions using a parameterized messaging module.

The implementation delegates to the provided messaging module for the actual code generation

of send and receive operations, while handling the marshalling of data uniformly. This separation

allows the core logic to remain focused on the transformation of the intermediate representation,

while the message passing details are encapsulated in the backend module.

For concrete implementations, we can create modules that implement the messaging interface

for specific backends. The example provided demonstrates a shared memory implementation

using OCaml’s domains and channels:

20

Chapter 2 Implementation

1 module Msg_chan_intf : Msg_intf.M = struct
2 let emit_net_send ~src ~dst pexp =
3 ignore dst;
4 [%expr
5 Domainslib.Chan.send
6 [%e Ast_builder.Default.evar ~loc (spf "chan_%s_%s" src dst)]
7 [%e pexp]]
8 ;;
9

10 let emit_net_recv ~src ~dst =
11 [%expr

12
 Domainslib.Chan.recv [%e Ast_builder.Default.evar ~loc (spf "chan_%s_%s"
src dst)]]

13 ;;
14 end

Listing 14: Implementation of the shared memory messaging interface.

This implementation generates code that uses channel-based communication between domains,

with channels named according to the source and destination. The implementation details are

completely hidden from the core code generator, which only needs to know about the abstract

send and receive operations.

The toplevel code generation function then handles the creation of the overall program structure,

including the initialization of the communication infrastructure and the spawning of domains.

This architectural separation allows for different backend implementations to have different

toplevel structures without affecting the core code generation logic. Under such an architecture,

adding a message passing backend becomes relatively trivial; it only requires implementing the

corresponding message interface and generating the top-level.

2.4.3 The Shared-Memory Backend
The shared memory backend implementation presented in our architecture leverages Multicore

OCaml’s domain system to provide efficient parallel execution with structured communication

channels. Multicore OCaml extends the OCaml runtime with true parallel execution capabilities

through its domain system, where each domain runs as a separate system thread within the same

address space.[11]

In our implementation, we utilize domains to represent the distinct locations in a distributed

system, but within a single process. The emit_toplevel_domain function generates code that

21

Chapter 2 Implementation

creates a domain for each location identifier, spawns the appropriate code within each domain,

establishes communication channels between domains, and manages domain lifecycle:

1 let emit_toplevel_domain
2 out_chan
3 (loc_ids : string list)
4 (net_stmtblock_l : 'a Net.stmt_block list)
5 = ...

Listing 15: Signature of function that generates code to spawn Domains for each location.

Each domain is created using .spawn , which takes a function to execute within the new Domain.

This is evident in the function:

1 List.map2
2 (fun loc_id net_stmts ->
3 Ast_builder.Default.value_binding
4 ~loc
5 ~pat:(Ast_builder.Default.pvar ~loc (spf "domain_%s" loc_id))

6
 ~expr:[%expr Domain.spawn (fun _ -> [%e emit_net_toplevel loc_id
net_stmts])])

7 loc_ids
8 net_stmtblock_l

Listing 16: Code generation for spawning domains, mapping each location identifier to a Domain.

This code generates bindings for domains, where each domain executes the network statements

associated with a particular location identifier. The important observation is that domains are

first-class values in OCaml - they can be passed around, stored in data structures, and joined

when needed.

I would add this paragraph after discussing the domain creation with Domain.spawn and before

moving to the channel communication section:

A technical challenge in our implementation lies in transforming the list-based network IR

representation into a suitable function for .spawn . Since .spawn requires a function of type

unit -> 'a , but our NetIR represents code as a list of statements, we need to restructure the

22

Chapter 2 Implementation

code. The emit_net_toplevel function recursively processes network statements, converting

them into OCaml let-bindings while searching for the main expression:

1 let main_expr = ref (Ast_builder.Default.eunit ~loc) in
2 let rec emit_net_toplevel loc_id stmts =
3 match stmts with
4 | [] -> !main_expr
5 | stmt :: stmts ->

6
 (match Emit_core.emit_net_binding ~self_id:loc_id (module Msg_chan_intf)
stmt with

7 | exception Emit_core.Main_expr e ->
8 main_expr := e;
9 emit_net_toplevel loc_id stmts

10 | binding ->
11 Ast_builder.Default.pexp_let
12 ~loc
13 Recursive
14 [binding]
15 (emit_net_toplevel loc_id stmts))

Listing 17: Implementation of function that wrapping NetIR statements for Domain execution.

This code detects assignments to the special variable “main” through an exception mechanism

(), capturing the assigned expression as the return value while wrapping all other statements as

let-bindings around it. The result is a properly structured function suitable for execution within

a new domain, with all statements appearing as let-bindings surrounding the main expression.

For communication between domains, we employ the .Chan module, which provides typed

channels for safe inter-domain communication. The channel mechanism offers a structured

approach to exchanging data between domains without explicit locks. Our implementation

creates a bidirectional channel for each pair of communicating locations:

23

Chapter 2 Implementation

1 let emit_chan_defs loc_ids =
2 let loc_pairs =
3 List.concat_map

4
 (fun a -> List.filter_map (fun b -> if a <> b then Some (a, b) else
None) loc_ids)

5 loc_ids
6 in
7 List.map
8 (fun (a, b) ->
9 Ast_builder.Default.value_binding

10 ~loc
11 ~pat:(Ast_builder.Default.pvar ~loc (spf "chan_%s_%s" a b))
12 ~expr:[%expr Domainslib.Chan.make_bounded 0])
13 loc_pairs

Listing 18: Function that generates code to create bounded communication channels.

We use bounded channels with capacity 0, creating synchronous communication points between

domains. This design choice ensures that communication between domains is synchronized - a

sending domain blocks until the receiving domain is ready to receive the message, which closely

models the semantics of distributed message passing.

The implementation of the messaging interface for domains is straightforward, delegating to

Domainslib’s channel operations:

1 module Msg_chan_intf : Msg_intf.M = struct
2 let emit_net_send ~src ~dst pexp =
3 ignore dst;
4 [%expr
5 Domainslib.Chan.send
6 [%e Ast_builder.Default.evar ~loc (spf "chan_%s_%s" src dst)]
7 [%e pexp]]
8 ;;
9

10 let emit_net_recv ~src ~dst =
11 [%expr

12
 Domainslib.Chan.recv [%e Ast_builder.Default.evar ~loc (spf "chan_%s_%s"
src dst)]]

13 ;;
14 end

Listing 19: Implementation of the messaging interface for Domains.

24

Chapter 2 Implementation

This code generates expressions that send and receive data through the named channels. The

channel names follow a convention that encodes both the source and destination.

Domain termination is handled through the .join primitive, which blocks until a domain

finishes execution. Our implementation generates code that joins all domains sequentially:

1 let rec emit_domain_join_seq = function
2 | [] -> assert false
3 | [loc_id] ->

4
 [%expr Domain.join [%e Ast_builder.Default.evar ~loc (spf "domain_%s"
loc_id)]]

5 | loc_id :: loc_ids ->
6 Ast_builder.Default.pexp_sequence
7 ~loc

8
 [%expr Domain.join [%e Ast_builder.Default.evar ~loc (spf "domain_%s"
loc_id)]]

9 (emit_domain_join_seq loc_ids)

Listing 20: Function that generates code to join all domains sequentially.

This approach ensures proper cleanup and prevents the program from terminating before all

domains complete their work. Since domains share the same address space, memory allocated

by one domain could potentially be accessed by another domain. However, our communication

model uses channels exclusively, avoiding direct sharing of mutable state between domains and

mitigating data races.

The generated code maintains a clean separation between the concurrent execution structure

(domains) and the communication mechanism (channels), while adhering to the message-

passing paradigm. This aligns with Multicore OCaml’s design philosophy, which encourages

explicit communication rather than shared memory synchronization. The result is a backend

implementation that provides true parallelism with structured communication, serving as an

effective testbed for distributed systems while remaining within a single process.

25

Glossary

AST – Abstract Syntax Tree: TODO 7

EPP – Endpoint Projection: TODO 2

26

Bibliography

[1] Marco Carbone and Fabrizio Montesi. 2013. Deadlock-freedom-by-design: Multiparty Asyn-

chronous Global Programming. Association for Computing Machinery (ACM), New York,

NY, USA Rome, Italy.

[2] Louis Gesbert and Denis Merigoux. 2023. Modern DSL compiler architecture in OCaml: our

experience with Catala.

[3] Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, David Richter, Guido Salvaneschi,

and Pascal Weisenburger. 2021. Multiparty Languages: The Choreographic and Multitier

Cases. Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany.

[4] Andrew K. Hirsch and Deepak Garg. 2022. Pirouette: Higher-Order Typed Functional

Choreographies. Proceedings of the ACM on Programming Languages 6, POPL (2022), 1–27.

[5] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme

Vouillon. 2025. Lexer and parser generators (ocamllex, ocamlyacc). The OCaml Manual.

[6] Carmen Torres Lopez, Stefan Marr, Hanspeter Mössenböck, and Elisa Gonzalez Boix.

2017. A Study of Concurrency Bugs and Advanced Development Support for Actor-based

Programs. arXiv (2017), 1706.

[7] E. Lesk Michael and E. Schmidt Eric. 1990. Lex—a lexical analyzer generator.

[8] Kiselyov Oleg. 2024. MetaOCaml: Ten Years Later - System Description.

[9] Godefroid Patrice and Nagappan Nachiappan. 2008. Concurrency at Microsoft – An

Exploratory Survey.

[10] François Pottier and Yann Régis-Gianas. 2024. Menhir Reference Manual. INRIA.

27

Bibliography

[11] KC Sivaramakrishnan, Stephen Dolan, Leo White, Sadiq Jaffer, Tom Kelly, Anmol Sahoo,

Sudha Parimala, Atul Dhiman, and Anil Madhavapeddy. 2020. Retrofitting parallelism onto

OCaml. Proceedings of the ACM on Programming Languages 4, ICFP (2020), 1–30.

[12] Joshua B. Smith. 2007. Camlp4. Practical OCaml, 411–429.

[13] C. Wetherell and A. Shannon. 1981. LR—Automatic Parser Generator and LR(1) Parser. IEEE

Transactions on Software Engineering 3 (1981), 274–278.

[14] David A. Workman and John B. Higdon. 1978. The design of a parser generator. Association

for Computing Machinery (ACM), New York, NY, USA.

[15] Hongbo Zhang. 2013. Fan: compile-time metaprogramming for OCaml.

28

	Table of Contents
	List of Equations
	List of Listings
	Introduction
	Choreographic Programming
	The Pirouette Language

	Implementation
	Hierarchically Composed ASTs
	Parsing
	Lexical Analyzer Generation
	Parser Generator

	Endpoint Projection
	Code Generation
	Code generation using Metaprogramming
	Backend-Agnostic Messaging Architecture
	The Shared-Memory Backend

	Glossary
	Bibliography

