
Energy Efficiency of AI Generated Code

by

DEVI VARAPRASAD REDDY JONNALA

May 12, 2025

A thesis submitted to the Faculty of the Graduate School of the University at Buffalo,
The State University of New York in partial fulfillment of the requirements for the

degree of

Master of Science (MS)

Department of Computer Science and Engineering

MAILTO:DEVIVARA@BUFFALO.EDU
http://www.cse.buffalo.edu

© Copyright by
Devi Varaprasad Reddy Jonnala

2025

ii

To my family

iii

Acknowledgements

It has been a great privilege to work under the supervision of Dr. Tevfik
Kosar. I am deeply grateful to Dr. Kosar for his invaluable guidance
and support over the past year. I also thank Dr. Chen Wang for his
support. My sincere thanks go to Arman Islam and Ritika Rekhi from
the Data Intensive Distributed Computing Lab, as well as Pratik Pokharel
and Siddharth Cilamkoti, for their thoughtful insights and contributions
throughout the course of this project. I also thank the National Science
Foundation (Award# 2343284), the State University of New York (SUNY),
and IBM for partially sponsoring this work. Finally, I am profoundly
grateful to my family for their unwavering support and confidence in me,
which continues to empower and motivate me.

Abstract

ENERGY EFFICIENCY OF AI GENERATED CODE

Recent advances in AI have created new prospects for improving software development,
particularly through the usage of Large Language Models (LLMs) for code generation.
The increasing integration of code generation models into software development has
heightened the need to evaluate not only the correctness but also the efficiency and
sustainability of AI-generated code. More efficient code can significantly enhance
the performance and execution efficiency of software developed using LLM-assisted
programming.

In this work, we investigate the energy efficiency of code generated by several well-
known LLMs. We use EFFIBENCH dataset containing 1000 LeetCode problems with the
most efficient solutions known as canonical solutions. Our research aims to determine
which models provide not only functionally correct but also energy-efficient code, thus
contributing to more sustainable software development processes. We perform the
analysis using perf to report the energy consumption in Joules. The results of this study
can be used in the development of novel code generation and refactoring techniques to
improve the overall energy efficiency of the code generated by LLMs.

v

CONTENTS

Abstract v

List of Figures viii

List of Tables ix

1 Research concept 1

1.1 Introduction . 1

1.2 Contributions . 2

2 Related Work 4

2.1 Green Computing . 4

2.1.1 Infrastructure Sustainability 5

2.1.2 Code level Sustainability . 6

2.2 Code Evaluation Benchmarks . 7

2.3 Analysis of LLM-Generated code 8

3 Methodology 11

3.1 Benchmark Selection . 11

3.1.1 Benchmark Statistics . 12

vi

CONTENTS

3.1.2 Benchmark Evaluation . 13

3.2 LLMs under study . 13

3.3 Code Generation . 14

4 Evaluation 22

4.1 Experiment Design . 22

4.1.1 Experiment Environment . 24

4.2 Metrics . 24

4.3 Results for common problems . 26

4.3.1 Batch-1: LLMs with pass@25 > 65% 26

4.3.2 Batch-2: LLMs with pass@25 > 80% 28

4.3.3 Batch-3: All LLMs . 29

4.4 Worst Case Analysis . 30

5 Conclusion 33

5.1 Limitations and Future work . 34

Bibliography 35

vii

LIST OF FIGURES

3.1 Overall worflow . 15

3.2 Code Generation Workflow . 16

4.1 problem 1638 - DeepSeek-v3 . 31

4.2 problem 1638 - Canonical . 31

4.3 problem 945 - GPT-4-turbo . 32

4.4 problem 945 - Canonical . 32

viii

LIST OF TABLES

3.1 Comparison of benchmark datasets [1]. 12

3.2 Statistics of EFFIBENCH [1]. 12

3.3 Statistics of filtered EFFIBENCH . 13

3.4 LLMs under study. 14

3.5 Model Access Types by Vendor . 15

3.6 LLMs under study. 21

4.1 Execution Time by Bucket Category 23

4.2 Batch-1: Problem difficulty and algorithm distribution 26

4.3 Batch-1: Model performance and efficiency metrics 27

4.4 Batch-2 Problem difficulty and algorithm distribution 28

4.5 Batch-2 model performance and resource usage comparison 28

4.6 Batch-3: Problem difficulty and algorithm distribution 29

4.7 Batch-3: performance and efficiency metrics for 20 LLMs 30

ix

CHAPTER 1

RESEARCH CONCEPT

1.1 INTRODUCTION

In software development, code generators have become indispensable for boosting pro-

ductivity, maintaining consistency, enforcing standards, and refining existing codebases.

With the advent of LLM-based code generation tools, developers can swiftly create code

structures tailored to their specific requirements, thereby simplifying the development

process and minimizing errors. Traditionally, evaluations of code generators have

centered around algorithmic efficiency and the quality of the produced code. However,

a critical yet often neglected factor is the energy efficiency of the generated code.

Software applications are major consumers of computing resources, leading to

substantial energy consumption and carbon emissions. Information Technology (IT)

currently contributes about 10% of global energy usage [2] and is responsible for

approximately 3% of global carbon emissions[3], exceeding the aviation industry’s

emissions of 2% [4]. The demand for computing power, especially due to trends like

Generative AI, is expected to cause data centers to consume 20% of global electricity by

1

1.2 Contributions

2030 [5]. The energy gains achieved in limiting the datacenter energy demand through

the improvement of hardware systems and improved cooling systems can be outpaced

by the increased demand for AI workloads and blockchain applications.

As computing systems grow more sensitive to power demands, evaluating and

improving code for energy consumption is becoming increasingly essential. Beyond

performance alone, considerations around power usage now encompass broader con-

cerns such as environmental sustainability, cost efficiency, and hardware scalability

challenges.

Our work aims to fill this gap by investigating the energy efficiency of code generated

by LLMs. We use the EFFIBENCH [1] benchmark, consisting of 1000 Leetcode [6]

problems with interview frequencies greater than 40% and with executable canonical

solutions. We also select the latest versions of 20 widely used LLMs, and calculate

the metrics like CPU-Energy (in Joules), RAM Energy (in Joules), execution time, and

memory usage. By measuring and comparing the energy consumption of generated code

snippets, we seek to provide insights into the environmental and economic implications

of using code generated by LLMs. This thesis seeks to underscore the importance of

incorporating energy efficiency considerations into code generation practices, paving

the way for more sustainable and cost-effective software development processes.

1.2 CONTRIBUTIONS

This thesis makes the following contributions:

• We conduct an extensive evaluation of 20 LLMs, and compare the energy effi-

ciency of the code generated by them.

2

1.2 Contributions

• We ensure fair prompt inputs during code generation and fair comparison of

LLMs against themselves and canonical solutions by only considering problems

correctly addressed by all models.

• Our findings reveal that even the latest versions of state-of-the-art LLMs (like

GPT-4o, Gemini-2.0) generate code that is inefficient when compared to human-

written solutions (canonical solutions).

3

CHAPTER 2

RELATED WORK

2.1 GREEN COMPUTING

Green Computing is about the efficient use of computing resources to minimize en-

vironmental impact, primarily focusing on energy efficiency, reduced emissions, and

sustainable product design. With rapid technological advancements especially in the

fields of AI, Internet of Things, and Cloud Computing, there has been an exponential

growth in the demand for compute[7] which leads to an exponential growth in energy

consumption by data centers. If this issue is left unchecked, the emissions from the

Information and Communication (ICT) industry will grow manyfold[5] leading to

extreme weather conditions, habitat destruction, and global warming. Fortunately, to

prevent this, many big corporations are targeting to become carbon neutral by 2050 or

sooner. There has been extensive research in both academia and industry to design and

promote green computing and sustainability practices.

4

2.1 Green Computing

2.1.1 INFRASTRUCTURE SUSTAINABILITY

Colleen Josephson et al. [8] outline a four-pillar framework to achieve zero-carbon ICT:

• Prioritizing Renewable Energy: transition from carbon-intensive energy sources to

renewables, measuring carbon emissions accurately, and carbon-aware workload

shifting (moving computing tasks geographically to where renewable energy is

abundant).

• Efficient Use of Resources: improving server utilization, reducing zombie (inac-

tive) virtual machines, and encouraging cloud-based on-demand resource usage.

• Addressing Embodied Carbon: designing reusable, modular, and recyclable

hardware to minimize waste.

• Removing Institutional Barriers: cultural and structural changes to prioritize

sustainability over traditional business practices.

Effective thermal management is critical for data centers, where cooling systems

often consume up to 40% of total energy use. Research has increasingly focused on

innovative strategies to improve energy efficiency and sustainability in data center

cooling. Aayush Agrawal et al.[9] analyze different cooling strategies for various

climatic conditions for reducing energy usage and the total cost of ownership in data

centers. Liu et al.[10] propose a novel two-phase spray cooling system for data center

racks, which eliminates the need for traditional chillers. Sarkar et al. (2023) [11]

propose DC-CFR, a multi-agent reinforcement learning framework that optimizes data

center operations by coordinating cooling, load shifting, and battery usage in real-time.

Unlike prior static or forecast-based methods, DC-CFR reduces carbon emissions and

energy use by over 14% using adaptive, cooperative control strategies.

5

2.1 Green Computing

2.1.2 CODE LEVEL SUSTAINABILITY

While the techniques discussed in section 2.1.1 deal only with optimizing the resource

usage for computing infrastructure and data centers, it is also important to look at

optimizing the underlying processes i.e., software and applications that cause the

energy consumption. [12] propose the concept of ”Energy-Aware Programming,”

emphasizing the importance of considering energy efficiency in software development.

Their work underscores the need for developers to adopt practices that minimize energy

consumption while maintaining code functionality and performance.

Addressing the carbon footprint of computation, the study on ”Green Algorithms”

[13] introduces a quantitative model for assessing the environmental impact of compu-

tational processes. The paper presents a methodological framework and an online tool

called Green Algorithms for estimating and reporting the carbon footprint of compu-

tational tasks, addressing the environmental impact of high-performance computing.

Through case studies on particle physics simulations, weather forecasts, and natural

language processing, the study illustrates the applicability of the framework while

advocating for greener computational practices.

In the domain of deep learning, the Zeus framework [14] focuses on an optimization

framework designed to address the trade-off between DNN training performance and

energy consumption by automatically adjusting job- and GPU-level configurations.

Utilizing an online exploration-exploitation approach and just-in-time energy profiling,

Zeus achieves significant improvements in energy efficiency, ranging from 15.3% to

75.8%, across various DNN training workloads without requiring expensive offline

measurements.

6

2.2 Code Evaluation Benchmarks

2.2 CODE EVALUATION BENCHMARKS

Code generation [15] is one of the use cases of LLMs, where they generate code snippets

based on the description given in the prompt. The inputs to the prompt can be a text

explaining the expected behavior of code to be generated or a combination of text and

code snippets to be fixed. To evaluate this capability of LLMs, several benchmarks have

been proposed.

HumanEval [16] which is developed by researchers at OpenAI consists of 164

hand-written programming challenges and unit tests with Python method signatures.

The challenges are hand-written to make sure they are not part of the training dataset.

Subsequent works like HumanEval-X [17], and HumanEval-XL [18] extend the scope

of the HumalEval to other programming languages like C++, Java, and Go. EvalPlus

[19] improves the quality and quantity of test cases given in HumanEval. Another

benchmark MBPP [15] consists of 974 basic Python problems with 3 test cases for

each task, whereas MBXP [20] extends MBPP to include other programming languages.

APPS [21] sources 10000 Python coding problems from open-access coding websites

and provides 13.2 unit tests on average to measure coding ability and problem-solving.

As the scope of code generation widens, there are several benchmarks related to data

science like DS-1000 [22] are proposed. For evaluating models on completing broader

software engineering tasks, several benchmarks like APIBench [23], SWE-Bench [24],

and RepoEval [25] are proposed. The above-proposed benchmarks focus only on the

correctness of the generated code and do not consider the efficiency of the code.

EFFIBENCH [1] addresses this issue by constructing a benchmark with 1000 Leet-

Code problems with each problem consisting of 100 test cases. They study 42 LLMs

and evaluate the code generated for efficiency, using metrics like execution time and

7

2.3 Analysis of LLM-Generated code

memory usage.

2.3 ANALYSIS OF LLM-GENERATED CODE

Most of the benchmarks [15, 16] focus on the ability of LLMs to generate code correctly

rather than how efficient is the generated code with respect to resource utilization.

The study titled ”Learn to Code Sustainably: An Empirical Study on LLM-based

Green Code Generation”, [26] investigates the sustainability of auto-generated code

produced by LLMs like GitHub Copilot, OpenAI’s ChatGPT-3, and Amazon’s Code-

Whisperer, compared to human-generated code. It proposes the metric ”Green Capacity”

based on code correctness, runtime, memory usage, FLOPs, and energy consumption to

assess the environmental impact of these AI models and their potential contribution to

sustainable software development. This study considers only 3 problems from LeetCode

without considering the baseline energy consumption of the testbed.

The study titled ”Can LLMs Generate Green Code - A Comprehensive Study

Through LeetCode” [27] compares the energy efficiency of code generated by 8 LLMs

using a python library called PyJoules. It only considers 8 problems from Leetcode and

uses different prompt styles like promptbase, promptCoT, prompteff to see if they can

generate efficient code. This study concludes that LLMs rarely generate efficient code

because of already-seen data during training.

Coignion et al. (2024)[28] studies LLM-generated code on LeetCode, consider-

ing 18 LLMs specifically designed for code and 208 most recent problems sourced

from LeetCode by Döderlein et al. [29]. They study the impact of temperature and

success rate on code performance and find that there is little to no correlation between

correctness, temperature, and performance.

8

2.3 Analysis of LLM-Generated code

Niu et al. (2024) [30] evaluates the efficiency of LLM-generated code based on

runtime using two benchmarks, HumanEval [16] and MBPP [15], and extend the

evaluation to more challenging problems from the online judge platform LeetCode. The

findings reveal that the efficiency of code generated by LLMs is independent of both

the correctness of the code and the size of the model. Additionally, Chain-of-Thought

(CoT) prompting is found to improve the efficiency of generated code, particularly for

complex problems.

Cursaru et al. (2024) [31] perform controlled experiments on Raspberry Pi with

3 problems from LeetCode using CodeLlama [32] for code generation. Erhabor et al.

(2023) [33] evaluate Github Copilot on C++ problems with 32 human programmers

working on 2 problems, one with Copilot’s assistance and the other independently. Both

these studies conclude that AI-generated code is worse in terms of energy efficiency

and runtime performance.

Cappendijk et al. (2024) [34] study the energy consumption of the code generated

by CodeLlama and DeepSeek-Code models using perf and GNU time commands. This

study uses only 3 problems from LeetCode and does not consider a wide variety of

problems with various algorithms and difficulties. They suggest prompt engineering

could help improve the efficiency of auto-generated code, but not a single prompt can

consistently result in improved efficiency with different models.

Solovyeva et al. (2025) [35] compare the energy efficiency of code generated by

LLMs like GPT-4o, GPT-o1-mini, Github Copilot across three languages: Python,

Java, and C++ on different hardware. This study takes 53 LeetCode ”Hard” problems

and finds out that C++ code is least accurate and Python code is mostly accurate and

sometimes more efficient. For Models, the code generated by Copilot is less accurate

but more energy-efficient, whereas OpenAI o1-mini is more accurate with less energy-

9

2.3 Analysis of LLM-Generated code

efficient code.

Overall, these studies underscore the importance of considering energy efficiency in

code generation practices and highlight the potential for sustainable software develop-

ment through optimized energy consumption.

10

CHAPTER 3

METHODOLOGY

3.1 BENCHMARK SELECTION

As discussed in section 2.2, benchmarks like MBPP, HumanEval, etc. are designed to

evaluate the correctness of the code generated by LLMs. They are not best suitable to

evaluate the efficiency of code generated due to one or many of the following reasons:

• Choice of problems: not including problems of all difficulties, and not including

a variety of algorithms.

• Number of test cases: Most of the benchmarks have less number of test cases

per problem.

• Quality of test cases: The test cases included are very basic with small inputs.

The efficiency of an algorithm can only be known when the size of inputs is large.

All the above-mentioned issues were addressed by the dataset – EFFIBENCH [1].

It is inspired by the common practice of evaluating developers’ coding ability using

problems from the competitive coding platform – LeetCode. Problems that are asked in

11

3.1 Benchmark Selection

interviews frequently (>40%) are considered and paired with the most efficient solutions

from the LeetCode discussion forum. Test cases for each problem are generated using

a test case generator created using GPT-3.5-turbo. The comparison of Effibench with

other datasets is shown in Table 3.1

Dataset Number of Problems Evaluation Support Avg. Test Cases Avg. Lines of Canonical Solution Data Source Assessment

HumanEval 164 Test Cases 7.7 6.3 Hand-Written Correctness

MBPP 974 Test Cases 3.0 6.7 Crowd-sourced Correctness

APPS 10000 Test Cases 13.2 18.0 Competitions Correctness

DSP 1119 Test Cases 2.1 4.5 Notebooks Correctness

DS-1000 1000 Test Cases 1.6 3.6 StackOverflow Correctness

EFFIBENCH 1000 Test Cases 100 14.6 LeetCode Efficiency & Correctness

Table 3.1: Comparison of benchmark datasets [1].

3.1.1 BENCHMARK STATISTICS

The coding problems in Effibench can be categorized based on difficulty and algorithms.

As per LeetCode, there are three difficulty types - Easy, Medium, and Hard. Based

on algorithms, the problems can be divided into 11 categories. As shown in Table 3.2,

there are 171 easy, 589 medium, and 240 hard problems in the dataset. One problem

can be tagged to more than one algorithm and hence the sum of the number of problems

across different algorithms for a given difficulty will be greater than the reported total.

Algorithm Greedy DP Backtracking Divide & Conquer DFS BFS Binary Search Two Pointers Sliding Window Bit Manipulation Sorting Total

Number of problems 243 277 48 21 108 86 148 105 70 102 238 1000

Number of Easy problems 32 8 1 4 18 8 23 39 9 26 63 171

Number of Medium problems 170 151 37 8 72 52 75 59 47 58 133 589

Number of Hard problems 41 118 10 9 18 26 50 7 14 18 42 240

Table 3.2: Statistics of EFFIBENCH [1].

12

3.2 LLMs under study

3.1.2 BENCHMARK EVALUATION

Before using the dataset for our study, we thoroughly analyzed and tested the dataset.

The following are the findings from our analysis:

• 12 problems do not have comprehensive test cases.

• 110 problems throw errors when we run canonical solutions against comprehen-

sive test cases. This is due to one or all of the following reasons: syntax errors

in canonical solutions, syntax errors in comprehensive test cases, and improper

definition of test cases for TreeNode, GraphNode, and LinkedList problems.

We excluded the above-mentioned 122 problems and considered 878 problems for

our study. The updated statistics for this filtered dataset can be seen in Table 3.3.

Algorithm Sliding Window Divide & Conquer Binary Search DP Greedy Two Pointers Backtracking Bit Manipulation Sorting DFS BFS Total

Total problems 62 19 139 258 231 88 40 97 230 53 58 878

Easy problems 8 4 23 7 32 31 1 25 62 3 0 145

Medium problems 40 6 68 140 161 52 31 54 128 37 36 510

Hard problems 14 9 48 111 38 5 8 18 40 13 22 223

Table 3.3: Statistics of filtered EFFIBENCH

3.2 LLMS UNDER STUDY

We chose the latest versions of the most popular LLMs which are widely used by

developers for code generation tasks. A Total of 21 LLMs are studied of which 7 models

from Meta (Llama-3.1-8b, Llama-3.1-70b, Llama-3.3-70b), Mistral (Mistral-large-2407,

Codestral-mamba-2407, Pixtral-large-2411) and DeepSeek-v3 are open-souced. The

models and their parameters are shown in Table 3.4

13

3.3 Code Generation

Vendor LLM # params

OpenAI GPT 3.5-turbo-0125 175B

OpenAI GPT 4-turbo (2024-04-09) Not Public

OpenAI GPT 4o (2024-08-06) Not Public

Meta Llama 3.1 (8B) 8B

Meta Llama 3.1 (70B) 70B

Meta Llama 3.3 70B

Anthropic Claude 3.5 Sonnet (2024-10-22) Not Public

Anthropic Claude 3.5 Haiku (2024-10-22) Not Public

Google Gemini 1.5 Flash-002 Not Public

Google Gemini 1.5 Pro-002 Not Public

Google Gemini 2.0 Flash-001 Not Public

Google Gemini 2.0 Flash-Lite-001 Not Public

Mistral AI Mistral-large-2407 123B

Mistral AI Pixtral-large-2411 124B

Mistral AI Codestral-mamba-2407 7B

Amazon Nova - Micro Not Public

Amazon Nova - Lite Not Public

Amazon Nova - Pro Not Public

xAI Grok Not Public

DeepSeek DeepSeek v3 37B

EFFIBENCH Canonical Not Applicable

Table 3.4: LLMs under study.

3.3 CODE GENERATION

The overall workflow of this study is shown in Figure. 3.1. We considered 878 problems

from EFFIBENCH and generated solutions using the LLMs discussed in section 3.2.

14

3.3 Code Generation

Figure 3.1: Overall worflow

LLMs are accessed using APIs as shown in Table ??. We utilized batch inference

wherever possible to save on time and costs. Prompts in batch inference are executed

independently and the results are made available in a single file.

Vendor/Model Access Type

OpenAI Batch API

Amazon AWS Bedrock Batch Inference

LLaMA Groq Cloud

LLaMA 3.1-70B AWS Bedrock Batch Inference

Google Vertex AI Batch Prediction

xAI API

Deepseek Fireworks.ai API

Mistral API

Anthropic API

Table 3.5: Model Access Types by Vendor

If the LLMs are not able to generate the correct code in the first go, retries are

allowed till it generates a correct solution or up to 24 times. After each iteration, python

files for each problem are generated, they contain the solution generated by LLMs

followed by test cases in the dataset. All the files are then executed and errors are

logged, in the next regeneration, the error message is included in the prompt to correct

its mistake. To ensure fairness, all models follow the same prompt format. Once a

15

3.3 Code Generation

correct solution is generated, that problem will not be considered for regeneration in

the next iteration. During each iteration, the number of input tokens and the number of

output tokens to LLMs are noted along with the number of problems passed till that

iteration.

Figure 3.2: Code Generation Workflow

We defined ’pass@k’ as the number of problems passing the test cases after k

iterations of generating code with LLMs. The results for various LLMs are shown in

Table 3.6

16

3.3 Code Generation

We used a prompt structure similar to the one used in EFFIBENCH, which follows

the MBPP code generation prompt. The prompt input format is shown below:

Initial Prompt Format

Please write a solution based on the task description that passes the provided test cases.

You must follow these rules:

• First, the code should be in ‘‘‘python\n[Code]\n‘‘ block. There should

be only one such block in your response.

• Second, you should not add the provided test cases into your

‘‘‘\npython[Code]\n‘‘‘ block.

• Third, you do not need to write the test cases, we will provide the test cases for

you.

• Finally, you should make sure that the provided test cases can pass your solution.

Sample Problem Statement, Code and Solution

Now the actual task for you:

Problem Statement

Small Test Cases

Constraints

17

3.3 Code Generation

If the code has to be regenerated, the below prompt format is used:

Regen Prompt Format

Please write a solution based on the task description that passes the provided test cases.

You must follow these rules:

• First, the code should be in ‘‘‘python\n[Code]\n‘‘ block. There should

be only one such block in your response.

• Second, you should not add the provided test cases into your

‘‘‘\npython[Code]\n‘‘‘ block.

• Third, you do not need to write the test cases, we will provide the test cases for

you.

• Finally, you should make sure that the provided test cases can pass your solution.

• your last generated code is not passing all test cases, please correct your logic and

regenerate.

Problem Statement

Small Test Cases

Constraints

for which your last generated code was this: Previous Solution

All the given test cases are correct so you have to correct the logic as it fails the below

test case: Error Message

18

3.3 Code Generation

Problem-3 Description

Given a string s, find the length of the longest substring without repeating characters.

Example 1:

Input: s = "abcabcbb"

Output: 3

Explanation: The answer is "abc", with the length of 3.

Example 2:

Input: s = "bbbbb"

Output: 1

Explanation: The answer is "b", with the length of 1.

Example 3:

Input: s = "pwwkew"

Output: 3

Explanation: The answer is "wke", with the length of 3.

Notice that the answer must be a substring, "pwke" is a subsequence and not a

substring.

Constraints:

• 0 ≤ s.length ≤ 5× 104

• s consists of English letters, digits, symbols, and spaces.

Test case (Python):

solution = Solution()

assert solution.lengthOfLongestSubstring("abcabcbb") == 3

assert solution.lengthOfLongestSubstring("bbbbb") == 1

assert solution.lengthOfLongestSubstring("pwwkew") == 3

19

3.3 Code Generation

Generated Code - Amazon Nova

from typing import *

class Solution:

def lengthOfLongestSubstring(self, s: str) -> int:

max_length = 0

start = 0

char_index_map = {}

for end in range(len(s)):

if s[end] in char_index_map and char_index_map[s[end]] >= start:

start = char_index_map[s[end]] + 1

char_index_map[s[end]] = end

max_length = max(max_length, end - start + 1)

return max_length

20

3.3 Code Generation

LLM Pass@1 (%) Pass@10 (%) Pass@25 (%)

GPT 3.5 (gpt-3.5-turbo-0125) 56.9% 67.0% 71.0%

GPT 4 Turbo (gpt-4-turbo-2024-04-09) 56.3% 87.0% 89.4%

GPT 4o (gpt-4o-2024-08-06) 78.6% 90.0% 92.4%

Llama 3.1 (8B) 20.6% 55.2% 62.2%

Llama 3.1 (70B) 54.7% 75.5% 81.2%

Llama 3.3 (70B) 66.1% 79.3% 82.9%

Claude 3.5 Sonnet (2024-10-22) 78.6% 89.7% 89.5%

Claude 3.5 Haiku (2024-10-22) 71.4% 83.8% 85.3%

Gemini 1.5 Flash-002 66.1% 75.2% 77.4%

Gemini 1.5 Pro-002 79.7% 87.1% 87.7%

Gemini 2.0 Flash-001 80.9% 88.5% 90.1%

Gemini 2.0 Flash-Lite-001 71.3% 82.0% 84.4%

Mistral-large-2407 64.8% 72.8% 76.2%

Pixtral-large-2411 56.2% 73.5% 78.2%

Codestral-mamba-2407 43.8% 55.5% 63.0%

Nova - Micro 33.7% 49.1% 51.5%

Nova - Lite 43.1% 56.7% 58.9%

Nova - Pro 60.6% 73.2% 75.3%

Grok 75.3% 84.1% 85.0%

DeepSeek v3 83.7% 90.0% 91.3%

Canonical 100.0% 100.0% 100.0%

Table 3.6: LLMs under study.

DeepSeek-v3 has the highest pass@1 score of 83.7%, whereas both DeepSeek-v3

and GPT-4o have pass@10 score of 90% and, finally GPT-4o has the highest pass@25

score of 92.4%.

21

CHAPTER 4

EVALUATION

4.1 EXPERIMENT DESIGN

Once the code generation with LLMs is done, we proceed to measure the energy

consumed by the generated code. As a first step, based on pass@k metric, we select

the LLMs and find the problems that are correctly solved by all the LLMs, hereafter

referred to as common problems. These common problems are then executed again to

check for errors and to record minimum runtime. The correctness of the code is tested

by the test cases in the dataset, and the code passing all test cases can be considered

correct. Based on the runtime, we assign a problem a bucket category (as shown in

Table 4.1), so that running the problems in each bucket multiple times makes sure

the runtime crosses 1 second, which ensures accurate readings by the profiling tool

perf [36]. perf is used to compute the runtime, CPU-Energy (power/energy-pkg),

RAM- Energy (power/energy-ram). This approach gives the energy consumption

of the entire system in Joules. To get the energy consumption only during the code

execution, we consider the baseline energy consumption and subtract it from the actual

22

4.1 Experiment Design

energy reported.

Bucket Category Execution Time

40 runs < 50 ms

25 runs 50 ms – 100 ms

10 runs 100 ms – 500 ms

2 runs > 500 ms

Table 4.1: Execution Time by Bucket Category

Baseline power consumption: We measure the energy consumed by the system

while no process is running on it for 30 seconds.

Pbaseline =
Eidle, 30s

30 s
(4.1)

Now, we can calculate the Energy consumed by code Eadjusted as,

Eadjusted = Eactual − Pbaseline × tcode (4.2)

where Eactual is the energy reported by Perf while the code runs for tcode seconds.

The solutions generated by different LLMs along with canonical solutions are

organized in folders named after problem index. During the experiment, the problems

are processes based on folders, with each folder containing the solutions generated by

different LLMs for that particular problem along with canonical solutions. All the sets

of solutions in a folder are run 5 times in a random order each time, with each solution

being run multiple times according to its bucket category. Baseline Power consumption

is measured before processing each folder and after running each solution a cool-down

period of 10 seconds is maintained to reduce the effect of previous executions. To avoid

the usage of compute for tasks other than the execution of solutions, the measurements

23

4.2 Metrics

are simply logged and computations of averages are only performed after the execution

of all problems. The adjusted energy consumption for each solution is then computed

and the results are analyzed using the metrics discussed in section 4.2.

In addition to the above experiment, we calculated the memory used by each

solution using the python library Memory Profiler. This library helps us sample

the memory used by the process at the given intervals (in this case 0.001 seconds)

and store the readings in a .dat file for each solution. This experiment is done 3 times

independently of the previous one with perf and the results are averaged to reduce noise.

4.1.1 EXPERIMENT ENVIRONMENT

All the experiments are conducted on a Ubuntu 24.04 LTS (Kernel 6.8.0-51-generic)

machine equipped with an Intel(R) Xeon(R) Gold 6126 (24 cores) processor with 192

GB of main memory, hosted on Chameleon cloud [37] and Python 3.12.3. While the

experiments are running, we make sure that the machine is not being used for any other

tasks and that no updates are being installed on it.

4.2 METRICS

We use the following metrics to evaluate the results:

Execution Time: represents the time taken by the problem to complete execution,

represented by Tcode. It is measured using perf.

Average Execution Time: is the sum of the execution times of problems considered

24

4.2 Metrics

for the experiment divided by the number of problems considered (N).

Avg. ET =
1

N

N∑
i=1

Tcodei (4.3)

Memory Consumption over Time: is a metric that measures memory consumption

taking into account the time for which it is being consumed. It is measured using the

python library memory profiler.

mem-sec =
n−1∑
i=1

(
Mi +Mi+1

2
× (Ti+1 − Ti)

)
(4.4)

where,

• Mi is the memory consumption at time Ti

• n is the number of sampling points

• The unit is memory-seconds (MB-sec)

Average Memory Consumption over Time: is the sum of the mem-sec of the

problems considered for the experiment divided by the number of problems considered

(N).

Avg. mem-sec =
1

N

N∑
i=1

memseccodei (4.5)

Package Energy: is the energy consumed by the CPU during the execution of code

as measured by perf. It is the adjusted package energy calculated using equation 4.2.

RAM Energy: is the energy consumed by memory during the execution of the code,

measured using perf. It is then adjusted considering the baseline power consumption

using the equation 4.2.

25

4.3 Results for common problems

Total Energy: is the sum of CPU Energy and RAM Energy for a particular problem.

Average Total Energy: is the sum of the total energy consumed by problems

considered for the experiment divided by the number of problems considered.

Avg. TE =
1

N

N∑
i=1

TEcodei (4.6)

4.3 RESULTS FOR COMMON PROBLEMS

After generating solutions to the problems, we select the batches of problems and LLMs

based on pass@k to compute the metrics discussed in section 4.2. This is to ensure that

all LLMs are considered in at least one analysis. The analysis of results is discussed

in the following subsections. Overall, DeepSeek-v3 outperforms all other models in

generating energy-efficient code.

4.3.1 BATCH-1: LLMS WITH PASS@25 > 65%

There are 16 LLMs with pass@25 metric greater than 65%. There are 426 problems

solved correctly, by all of these LLMs. As shown in table 4.2, there are 102 easy, 265

medium, and 59 hard problems. Table 4.3 summarizes the average energy and memory

consumption of these problems.

Algorithm Sliding Window Divide & Conquer Binary Search DP Greedy Two Pointers Backtracking Bit Manipulation Sorting DFS BFS Total

Total 32 6 63 109 106 56 14 49 120 23 22 426

Easy 4 1 15 7 20 24 0 18 41 3 0 102

Medium 24 3 37 74 73 32 12 26 72 18 17 265

Hard 4 2 11 28 13 0 2 5 7 2 5 59

Table 4.2: Batch-1: Problem difficulty and algorithm distribution

26

4.3 Results for common problems

Model Avg Total Energy Avg Runtime Avg mem-sec Avg Input Tokens Avg Output Tokens Avg Pass at

canonical 5.52 0.07 7.63

claude-haiku 7.24 0.09 8.60 1103 610 1.2089

claude-sonnet 7.12 0.09 8.64 912 514 1.0493

Deepseek-v3 6.30 0.08 8.04 811 155 1.0213

Gemini-1.5-flash 9.02 0.11 9.25 1158 195 1.2324

Gemini-1.5-pro 8.34 0.10 8.84 873 159 1.0213

Gemini-2.0-flash 6.57 0.08 8.36 927 180 1.0425

Gemini-2.0-flash-lite 7.36 0.09 8.85 1043 206 1.1643

GPT-3.5-turbo 7.34 0.09 8.80 1448 245 1.6197

GPT-4-turbo 10.66 0.13 10.15 974 223 1.1573

GPT-4o 6.98 0.09 8.54 817 175 1.0213

grok-2-1212 9.32 0.12 9.09 877 137 1.0610

llama-3.1-70b 9.37 0.12 9.31 1516 350 1.5962

llama-3.3-70b 9.21 0.11 9.71 1021 218 1.7512

mistral-large-2407 9.21 0.11 9.46 1476 208 1.3474

Nova-Pro 7.24 0.09 8.74 1263 239 1.3568

pixtral-large-2411 7.54 0.09 8.48 1596 222 1.3709

Table 4.3: Batch-1: Model performance and efficiency metrics

It can be seen that canonical solutions have the least energy consumption of 5.52

Joules, whereas, among LLMs, DeepSeek-v3 has the least energy consumption of

6.3 Joules. GPT-4-Turbo has the overall worse energy efficiency when we consider

this set of problems. While analyzing the energy consumption based on difficulty, all

LLMs are equally energy efficient on Easy problems, the most significant difference

is observed with Medium problems, where DeepSeek-v3 performs the best and GPT-

4-turbo performs the worst consuming 1.2 times and 2.16 times the energy consumed

by canonical solutions. Overall among all the algorithms, DeepSeek-v3 consistently

performed better than all LLMs, whereas Llama 3.3-70b, Grok-2-1212, Llama-3.1-70b,

and GPT-4-turbo performed the worst. We also observed that problems involving

dynamic programming and sorting consume more energy than the other ones.

27

4.3 Results for common problems

4.3.2 BATCH-2: LLMS WITH PASS@25 > 80%

There are 11 LLMs with pass@25 metric greater than 80%. There are 576 problems

solved correctly, by all of these LLMs. As shown in table 4.4, there are 119 easy, 347

medium, and 110 hard problems. Table 4.5 summarizes the average energy and memory

consumption of these problems.

Algorithm Sliding Window Divide & Conquer Binary Search DP Greedy Two Pointers Backtracking Bit Manipulation Sorting DFS BFS Total

Total 48 12 86 158 149 62 25 66 155 33 30 576

Easy 7 3 16 7 28 24 1 22 48 3 0 119

Medium 31 4 46 98 101 37 19 34 89 27 24 347

Hard 10 5 24 53 20 1 5 10 18 3 6 110

Table 4.4: Batch-2 Problem difficulty and algorithm distribution

As compared to batch-1 (see table 4.2), this batch has double the number of hard

problems and more number of problems across various algorithms. It can be considered

that this batch of problems includes complex problems that could not be solved by most

of the LLMs.

Model Avg Total Energy Avg Runtime Avg mem-sec Avg Input Tokens Avg Output Tokens Avg Pass at

canonical 5.46 0.07 6.62

claude-haiku 7.05 0.09 7.65 1421 719 1.4149

claude-sonnet 6.74 0.08 7.33 964 532 1.0764

Deepseek-v3 6.37 0.08 6.90 890 191 1.0747

Gemini-1.5-pro 11.15 0.14 8.43 927 174 1.0556

Gemini-2.0-flash (1) 9.81 0.12 7.77 1084 231 1.1510

Gemini-2.0-flash (2) 7.31 0.09 8.27 1230 241 1.3073

GPT-4-turbo 9.40 0.12 9.08 1378 343 1.4479

GPT-4o 6.63 0.08 7.44 935 218 1.0920

grok-2-1212 10.92 0.14 9.34 982 156 1.1458

llama-3.1-70b 8.99 0.11 8.22 2562 645 2.3090

llama-3.3-70b 10.52 0.13 10.73 1249 291 2.4392

Table 4.5: Batch-2 model performance and resource usage comparison

No LLMs can outperform the canonical solutions in terms of energy consumption.

Among LLMs, DeepSeek-v3 consistently performs the best, closely followed by GPT-

28

4.3 Results for common problems

4o and Claude-Sonnet-3.5 across all algorithms and problem difficulties. Whereas

Llama, Grok-2-1212, and GPT-4-turbo have significantly higher energy consumption.

4.3.3 BATCH-3: ALL LLMS

In this Batch, we consider all the 21 LLMs shown in table 3.4. There are 298 common

problems solved correctly by all of these LLMs. As shown in table 4.6, there are 89

easy, 179 medium, and 30 hard problems. Table 4.7 summarizes the average energy

and memory consumption of these problems.

Algorithm Sliding Window Divide & Conquer Binary Search DP Greedy Two Pointers Backtracking Bit Manipulation Sorting DFS BFS Total

Total 23 4 38 74 66 50 11 35 85 20 16 298

Easy 4 1 13 7 14 22 0 18 33 3 0 89

Medium 17 3 21 49 46 28 10 14 51 15 13 179

Hard 2 0 4 18 6 0 1 3 1 2 3 30

Table 4.6: Batch-3: Problem difficulty and algorithm distribution

Even in this batch of experiments, no LLM can beat canonical solutions in overall

energy consumption. DeepSeek-v3 performs the best among all LLMs, whereas GPT-4-

turbo performs the worst. It can be observed that among the worst performing LLMs

we see a slight change in order, models like Llama-3.3-70b, and Llama-3.1-70b perform

better than GPT-4-turbo in Batch-3 but not in Batch-2. This could be because of

relatively simple problems in Batch 3 and when they are tested against more complex

problems, their performance is less than that of all other models.

29

4.4 Worst Case Analysis

Model Avg Total Energy Avg Runtime Avg mem-sec Avg Input Tokens Avg Output Tokens Avg Pass at

canonical 5.78 0.07 8.33

claude-haiku 7.09 0.09 9.12 1049 598 1.1913

claude-sonnet 6.41 0.08 8.71 886 508 1.0470

codestral-mamba-2407 7.86 0.10 7.00 6973 773 4.3792

Deepseek-v3 5.91 0.08 8.30 790 146 1.0168

Gemini-1.5-flash 9.54 0.12 9.92 1007 163 1.0738

Gemini-1.5-pro 8.66 0.11 9.32 835 147 1.0067

Gemini-2.0-flash 6.12 0.08 8.66 872 167 1.0201

Gemini-2.0-flash-lite 7.15 0.09 9.21 935 181 1.0906

GPT-3.5-turbo 7.19 0.09 9.28 1130 182 1.3389

GPT-4-turbo 12.01 0.15 11.26 882 192 1.0906

GPT-4o 6.77 0.09 8.99 784 161 1.0101

grok-2-1212 9.98 0.12 9.77 800 121 1.0134

llama-3.1-70b 10.09 0.13 10.10 977 160 1.1846

llama-3.1-8b 8.11 0.10 8.46 944 179 1.5805

llama-3.3-70b 9.79 0.12 10.51 1257 250 1.3423

mistral-large-2407 9.82 0.12 10.17 1275 178 1.2282

Nova-lite 6.92 0.09 8.90 1303 268 1.4094

Nova-micro 8.12 0.10 9.80 2133 439 2.0671

Nova-Pro 7.12 0.09 9.21 1147 215 1.2712

pixtral-large-2411 7.47 0.09 8.81 1288 173 1.1879

Table 4.7: Batch-3: performance and efficiency metrics for 20 LLMs

4.4 WORST CASE ANALYSIS

In this section, we analyze the inefficient code generated by the best-performing LLM,

DeepSeek-v3, and worst performers GTP-4-turbo and Grok-2-1212. We filter out the

10 most inefficient pieces of code generated by these LLMs and manually analyze the

implementation for inefficiency. In the case of DeepSeek-v3, all the top 10 inefficient

problems are associated with dynamic programming and backtracking. The comparison

of one such problem is shown in figures 4.2, 4.1 for the problem with ID: 1638. The task

is to find the count of sub-strings that differ by one character. The solution generated by

DeepSeek-v3 is shown in figure 4.1, where it uses a brute-force approach of checking

all sub-strings with a time complexity of O(m3n), making it inefficient for larger inputs.

30

4.4 Worst Case Analysis

Figure 4.1: problem 1638 - DeepSeek-v3

The canonical solution shown in figure 4.2, uses a dynamic programming approach

to solve it in O(mn) time. Though this solution has some space complexity due to the

usage of dp matrices, this solution is approximately 50 times more energy efficient than

the one in figure 4.1.

Figure 4.2: problem 1638 - Canonical

A similar pattern is seen in another inefficient solution generated by DeepSeek-

v3, where it fails to use memoization/caching of already computed results, to avoid

computing them again and again.

31

4.4 Worst Case Analysis

Grok-2-1212 also lags in generating efficient solutions for problems associated with

DP and backtracking. GPT-4-turbo fails to perform well in problems associated with

dynamic programming and relatively simple technique sorting. If we consider problem:

945, the minimum number of increments to make an array unique. The time complexity

of the solution generated by GPT-4-turbo (see figure 4.3) can be considered O(n) as

it has only one ’for loop’ with a large iteration. Even for small inputs the loop runs a

lot of times, consuming more resources. The canonical solution uses a sorting-based

greedy approach as shown in figure 4.4 which consumes less energy with the same time

complexity.

Figure 4.3: problem 945 - GPT-4-turbo

Figure 4.4: problem 945 - Canonical

32

CHAPTER 5

CONCLUSION

In this thesis, we study the energy efficiency of code generated by various popular

state-of-the-art Large Language Models. We compare the efficiency of code generated

against the most optimized human-written canonical solutions and against every other

LLM. It is observed that LLMs can not generate energy-efficient code in most of the

cases, and can only generate code as efficiently as humans in some of the cases. This

implies that sustainability goals are not embedded into these models during the training

phase.

Among the studied LLMs, DeepSeek-v3 and GPT-4o generate the most efficient

code, with higher accuracy. It is important to consider using models, that generate

energy-efficient code in less number of retries, to reduce the impact of energy consumed

in regenerating the code. We can also employ prompt engineering techniques to make

the LLMs generate more energy efficient. Overall, this thesis addresses the most

overlooked part i.e., the capability of generating energy-efficient code, in evaluating the

performance of LLMs.

33

5.1 Limitations and Future work

5.1 LIMITATIONS AND FUTURE WORK

Though this thesis performs a comprehensive study in evaluating LLMs’ ability to

generate efficient code, it has some limitations:

• LLMs are not deterministic. The same LLM might generate a different code, the

next time we ask it.

• Datasets used could have been seen by LLMs during the training phase, resulting

in it memorizing and generating the most efficient solution.

• This thesis is currently limited to evaluating codes generated in Python only and

does not consider other programming languages.

To address the above limitations, future studies can focus on including a diverse

range of programming languages and problems that were created recently but not

seen by LLMs during their training phase. The impact of various prompt engineering

techniques on the code generation aspect of LLMs can also be thoroughly investigated.

34

BIBLIOGRAPHY

[1] Dong Huang, Yuhao Qing, Weiyi Shang, Heming Cui, and Jie M. Zhang.
Effibench: Benchmarking the efficiency of automatically generated code.
In Advances in Neural Information Processing Systems, volume 37,
pages 11506–11544. Curran Associates, Inc., 2024. URL https:
//proceedings.neurips.cc/paper_files/paper/2024/file/
15807b6e09d691fe5e96cdecde6d7b80-Paper-Datasets_and_
Benchmarks_Track.pdf. ix, 2, 7, 11, 12

[2] Erol Gelenbe. Electricity consumption by ict: Facts, trends, and measurements.
Ubiquity, 2023(August), August 2023. doi: 10.1145/3613207. URL https:
//doi.org/10.1145/3613207. 1

[3] State of the Planet. Ai’s growing carbon footprint, June 2023.
URL https://news.climate.columbia.edu/2023/06/09/
ais-growing-carbon-footprint/. Accessed: 2025-04-21. 1

[4] Air Transport Action Group. Facts & figures, 2023. URL https://www.atag.
org/facts-figures/. Accessed: 2025-04-21. 1

[5] Lotfi Belkhir and Ahmed Elmeligi. Assessing ict global emissions footprint:
Trends to 2040 & recommendations. Journal of cleaner production, 177:448–463,
2018. 2, 4

[6] LeetCode. Problems, 2025. URL https://www.leetcode.com/
problems. Accessed: 2025-04-21. 2

[7] Peter J. Denning and Ted G. Lewis. Exponential laws of computing growth.
Commun. ACM, 60(1):54–65, December 2016. ISSN 0001-0782. doi: 10.1145/
2976758. URL https://doi.org/10.1145/2976758. 4

[8] Peter J. Denning and Ted G. Lewis. Exponential laws of computing growth.
Commun. ACM, 60(1):54–65, December 2016. ISSN 0001-0782. doi: 10.1145/
2976758. URL https://doi.org/10.1145/2976758. 5

35

https://proceedings.neurips.cc/paper_files/paper/2024/file/15807b6e09d691fe5e96cdecde6d7b80-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/15807b6e09d691fe5e96cdecde6d7b80-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/15807b6e09d691fe5e96cdecde6d7b80-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/15807b6e09d691fe5e96cdecde6d7b80-Paper-Datasets_and_Benchmarks_Track.pdf
https://doi.org/10.1145/3613207
https://doi.org/10.1145/3613207
https://news.climate.columbia.edu/2023/06/09/ais-growing-carbon-footprint/
https://news.climate.columbia.edu/2023/06/09/ais-growing-carbon-footprint/
https://www.atag.org/facts-figures/
https://www.atag.org/facts-figures/
https://www.leetcode.com/problems
https://www.leetcode.com/problems
https://doi.org/10.1145/2976758
https://doi.org/10.1145/2976758

BIBLIOGRAPHY

[9] Aayush Agrawal, Mayank Khichar, and Sanjeev Jain. Transient simulation of
wet cooling strategies for a data center in worldwide climate zones. Energy
and Buildings, 127:352–359, 2016. ISSN 0378-7788. doi: https://doi.org/10.
1016/j.enbuild.2016.06.011. URL https://www.sciencedirect.com/
science/article/pii/S037877881630500X. 5

[10] Pengfei Liu, Ranjith Kandasamy, Jin Yao Ho, Teck Neng Wong, and Kok Chuan
Toh. Dynamic performance analysis and thermal modelling of a novel two-
phase spray cooled rack system for data center cooling. Energy, 269:126835,
2023. ISSN 0360-5442. doi: https://doi.org/10.1016/j.energy.2023.126835.
URL https://www.sciencedirect.com/science/article/pii/
S0360544223002293. 5

[11] Soumyendu Sarkar, Avisek Naug, Ricardo Luna Gutierrez, Antonio Guillen,
Vineet Gundecha, Ashwin Ramesh Babu, and Cullen Bash. Real-time car-
bon footprint minimization in sustainable data centers wth reinforcement learn-
ing. In NeurIPS 2023 Workshop on Tackling Climate Change with Machine
Learning, 2023. URL https://www.climatechange.ai/papers/
neurips2023/28. 5

[12] Xueliang Li and John P. Gallagher. An energy-aware programming approach for
mobile application development guided by a fine-grained energy model. CoRR,
abs/1605.05234, 2016. URL http://arxiv.org/abs/1605.05234. 6

[13] Loı̈c Lannelongue, Jason Grealey, and Michael Inouye. Green algorithms: Quanti-
fying the carbon footprint of computation. 2020. 6

[14] Jie You, Jae-Won Chung, and Mosharaf Chowdhury. Zeus: Understanding
and optimizing GPU energy consumption of DNN training. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 23),
pages 119–139, Boston, MA, April 2023. USENIX Association. ISBN 978-1-
939133-33-5. URL https://www.usenix.org/conference/nsdi23/
presentation/you. 6

[15] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le,
and Charles Sutton. Program synthesis with large language models, 2021. URL
https://arxiv.org/abs/2108.07732. 7, 8, 9

[16] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy
Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,

36

https://www.sciencedirect.com/science/article/pii/S037877881630500X
https://www.sciencedirect.com/science/article/pii/S037877881630500X
https://www.sciencedirect.com/science/article/pii/S0360544223002293
https://www.sciencedirect.com/science/article/pii/S0360544223002293
https://www.climatechange.ai/papers/neurips2023/28
https://www.climatechange.ai/papers/neurips2023/28
http://arxiv.org/abs/1605.05234
https://www.usenix.org/conference/nsdi23/presentation/you
https://www.usenix.org/conference/nsdi23/presentation/you
https://arxiv.org/abs/2108.07732

BIBLIOGRAPHY

Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-
pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin,
Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code, 2021. URL
https://arxiv.org/abs/2107.03374. 7, 8, 9

[17] Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zi-
han Wang, Lei Shen, Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang.
Codegeex: A pre-trained model for code generation with multilingual benchmark-
ing on humaneval-x, 2024. URL https://arxiv.org/abs/2303.17568.
7

[18] Qiwei Peng, Yekun Chai, and Xuhong Li. HumanEval-XL: A multilingual code
generation benchmark for cross-lingual natural language generalization. In Nico-
letta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti,
and Nianwen Xue, editors, Proceedings of the 2024 Joint International Confer-
ence on Computational Linguistics, Language Resources and Evaluation (LREC-
COLING 2024), pages 8383–8394, Torino, Italia, May 2024. ELRA and ICCL.
URL https://aclanthology.org/2024.lrec-main.735/. 7

[19] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your
code generated by chatGPT really correct? rigorous evaluation of large language
models for code generation. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=
1qvx610Cu7. 7

[20] Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen
Tian, Ming Tan, Wasi Uddin Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang,
Sujan Kumar Gonugondla, Hantian Ding, Varun Kumar, Nathan Fulton, Arash
Farahani, Siddhartha Jain, Robert Giaquinto, Haifeng Qian, Murali Krishna Ra-
manathan, Ramesh Nallapati, Baishakhi Ray, Parminder Bhatia, Sudipta Sengupta,
Dan Roth, and Bing Xiang. Multi-lingual evaluation of code generation models,
2023. URL https://arxiv.org/abs/2210.14868. 7

[21] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora,
Ethan Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. Measuring coding challenge competence with apps, 2021. URL
https://arxiv.org/abs/2105.09938. 7

37

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2303.17568
https://aclanthology.org/2024.lrec-main.735/
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://arxiv.org/abs/2210.14868
https://arxiv.org/abs/2105.09938

BIBLIOGRAPHY

[22] Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettle-
moyer, Scott Wen tau Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A
natural and reliable benchmark for data science code generation, 2022. URL
https://arxiv.org/abs/2211.11501. 7

[23] Yun Peng, Shuqing Li, Wenwei Gu, Yichen Li, Wenxuan Wang, Cuiyun Gao, and
Michael Lyu. Revisiting, benchmarking and exploring api recommendation: How
far are we?, 2021. 7

[24] Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir
Press, and Karthik Narasimhan. Swe-bench: Can language models resolve real-
world github issues?, 2024. URL https://arxiv.org/abs/2310.06770.
7

[25] Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan,
Yi Mao, Jian-Guang Lou, and Weizhu Chen. Repocoder: Repository-level code
completion through iterative retrieval and generation, 2023. URL https://
arxiv.org/abs/2303.12570. 7

[26] Tina Vartziotis, Ippolyti Dellatolas, George Dasoulas, Maximilian Schmidt, Flo-
rian Schneider, Tim Hoffmann, Sotirios Kotsopoulos, and Michael Keckeisen.
Learn to code sustainably: An empirical study on green code generation. In
Proceedings of the 1st International Workshop on Large Language Models for
Code, LLM4Code ’24, page 30–37, New York, NY, USA, 2024. Association for
Computing Machinery. ISBN 9798400705793. doi: 10.1145/3643795.3648394.
URL https://doi.org/10.1145/3643795.3648394. 8

[27] Jonas F. Tuttle, Dayuan Chen, Amina Nasrin, Noe Soto, and Ziliang Zong. Can
llms generate green code - a comprehensive study through leetcode. In 2024 IEEE
15th International Green and Sustainable Computing Conference (IGSC), pages
39–44, 2024. doi: 10.1109/IGSC64514.2024.00017. 8

[28] Tristan Coignion, Clément Quinton, and Romain Rouvoy. A performance study
of llm-generated code on leetcode. In Proceedings of the 28th International
Conference on Evaluation and Assessment in Software Engineering, EASE ’24,
page 79–89, New York, NY, USA, 2024. Association for Computing Machinery.
ISBN 9798400717017. doi: 10.1145/3661167.3661221. URL https://doi.
org/10.1145/3661167.3661221. 8

[29] Jean-Baptiste Döderlein, Mathieu Acher, Djamel Eddine Khelladi, and Benoit
Combemale. Piloting copilot and codex: Hot temperature, cold prompts, or black
magic? https://ssrn.com/abstract=4496380, 2023. Available at
SSRN: https://ssrn.com/abstract=4496380 or http://dx.doi.
org/10.2139/ssrn.4496380. 8

38

https://arxiv.org/abs/2211.11501
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2303.12570
https://arxiv.org/abs/2303.12570
https://doi.org/10.1145/3643795.3648394
https://doi.org/10.1145/3661167.3661221
https://doi.org/10.1145/3661167.3661221
https://ssrn.com/abstract=4496380
https://ssrn.com/abstract=4496380
http://dx.doi.org/10.2139/ssrn.4496380
http://dx.doi.org/10.2139/ssrn.4496380

BIBLIOGRAPHY

[30] Changan Niu, Ting Zhang, Chuanyi Li, Bin Luo, and Vincent Ng. On evaluating
the efficiency of source code generated by llms. In Proceedings of the 2024
IEEE/ACM First International Conference on AI Foundation Models and Software
Engineering, FORGE ’24, page 103–107, New York, NY, USA, 2024. Associa-
tion for Computing Machinery. ISBN 9798400706097. doi: 10.1145/3650105.
3652295. URL https://doi.org/10.1145/3650105.3652295. 9

[31] Vlad-Andrei Cursaru, Laura Duits, Joel Milligan, Damla Ural, Berta Rodriguez
Sanchez, Vincenzo Stoico, and Ivano Malavolta. A controlled experiment on
the energy efficiency of the source code generated by code llama. In Antonia
Bertolino, João Pascoal Faria, Patricia Lago, and Laura Semini, editors, Quality
of Information and Communications Technology, pages 161–176, Cham, 2024.
Springer Nature Switzerland. 9

[32] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy
Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cris-
tian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade
Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas
Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code,
2024. URL https://arxiv.org/abs/2308.12950. 9

[33] Daniel Erhabor, Sreeharsha Udayashankar, Meiyappan Nagappan, and Samer
Al-Kiswany. Measuring the runtime performance of c++ code written by humans
using github copilot, 2024. URL https://arxiv.org/abs/2305.06439.
9

[34] Tom Cappendijk, Pepijn de Reus, and Ana Oprescu. Generating energy-efficient
code with llms, 2024. URL https://arxiv.org/abs/2411.10599. 9

[35] Lola Solovyeva, Sophie Weidmann, and Fernando Castor. Ai-powered, but power-
hungry? energy efficiency of llm-generated code, 2025. URL https://arxiv.
org/abs/2502.02412. 9

[36] Arnaldo Carvalho De Melo. The new linux’perf’tools. In Slides from Linux
Kongress, volume 18, 2010. 22

[37] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan
Stanzione, Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody Hammock,
Joe Mambretti, Alexander Barnes, François Halbach, Alex Rocha, and Joe Stubbs.
Lessons learned from the chameleon testbed. In Proceedings of the 2020 USENIX
Annual Technical Conference (USENIX ATC ’20). USENIX Association, July
2020. 24

39

https://doi.org/10.1145/3650105.3652295
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2305.06439
https://arxiv.org/abs/2411.10599
https://arxiv.org/abs/2502.02412
https://arxiv.org/abs/2502.02412

	Abstract
	List of Figures
	List of Tables
	1 Research concept
	1.1 Introduction
	1.2 Contributions

	2 Related Work
	2.1 Green Computing
	2.1.1 Infrastructure Sustainability
	2.1.2 Code level Sustainability

	2.2 Code Evaluation Benchmarks
	2.3 Analysis of LLM-Generated code

	3 Methodology
	3.1 Benchmark Selection
	3.1.1 Benchmark Statistics
	3.1.2 Benchmark Evaluation

	3.2 LLMs under study
	3.3 Code Generation

	4 Evaluation
	4.1 Experiment Design
	4.1.1 Experiment Environment

	4.2 Metrics
	4.3 Results for common problems
	4.3.1 Batch-1: LLMs with pass@25 > 65%
	4.3.2 Batch-2: LLMs with pass@25 > 80%
	4.3.3 Batch-3: All LLMs

	4.4 Worst Case Analysis

	5 Conclusion
	5.1 Limitations and Future work

	Bibliography

