
2DGS SLAM

by

Deep Nitin Shahane

May 2025

A dissertation submitted to the

Faculty of the Graduate School of

the University at Buffalo, State University of New York

in partial fulfilment of the requirements for the

degree of

Master of Science

Department of Computer Science and Engineering

Copyright by

Deep Nitin Shahane

2025

ii

Acknowledgments

The work presented in this thesis has been supported by the Spatial AI and

Robotics Lab (SAIR Lab). I am sincerely grateful to Shaoshu Su for his continu-

ous support, and to all members of the SAIR Lab for their valuable advice and

insightful discussions throughout this journey.

I would like to express my deepest gratitude to my advisor, Dr. Chen Wang,

for his exceptional guidance, care, and unwavering support during my Master’s

studies. Dr. Wang has not only taught me how to conduct impactful research,

but also how to contribute meaningfully to the academic community.

I am also thankful to my dissertation committee member, Dr. Roshan Ayyala-

somayajula, for his invaluable input, feedback, and support. Your insights have

been instrumental in shaping this work.

I want to thank all my former and present colleagues. I feel extremely lucky

to have worked with them during my masters studies. They made my life at UB

more colorful and have enriched me with a lot of precious memories.

Last, but not least, I would like to thank my wife and my parents for their

unconditional love and support.

iii

Table of Contents

Acknowledgments iii

List of Tables vi

List of Figures vii

Abstract viii

Chapter 1

Introduction 1

1.1 Background . 1

1.2 Motivation and Problem Statement 2

1.3 Research Objectives . 2

1.4 Key Contributions . 3

Chapter 2

Related Work 4

2.1 Related Work . 4

iv

Chapter 3

Methodology 6

3.1 Foundation . 6

3.2 Camera Pose Optimization . 8

3.2.1 Limitations of Existing Rasterizers 8

3.2.2 Custom CUDA-Based 2DGS Rasterizer 9

3.2.3 Lie Algebra-Based Jacobians for Camera Poses 9

3.2.4 Joint Optimization via Differentiable Rendering 10

3.3 Simultaneous Localization and Mapping (SLAM) 10

3.3.1 Tracking . 11

3.3.2 Keyframing . 12

3.3.3 Mapping . 14

3.4 Differentiable Rasterizer Enhancements for SLAM 16

3.4.1 Forward Rendering Enhancements in Forward.cu 16

3.4.2 Backward Pass Enhancements in Backward.cu 18

Chapter 4

Evaluation Results 21

Chapter 5

Conclusion 23

Bibliography 25

v

List of Tables

4.1 2DGS-Based SLAM Evaluation Results 22

4.2 3DGS SLAM Performance Before and After Refinement 22

vi

List of Figures

3.1 SLAM pipeline using 2D Gaussian Splatting 7

vii

Abstract

This work presents a visual SLAM system that leverages 2D Gaussian Splat-

ting (2DGS) in a monocular setting as an efficient alternative to conventional

3DGS-based SLAM pipelines. Existing SLAM approaches utilizing Gaussian

Splatting have primarily focused on 3D Gaussian Splatting (3DGS), which in-

troduces significant computational complexity, limited flexibility, and sub-

optimal rendering quality. Additionally, little effort has been made to adapt

Gaussian Splatting to different SLAM formulations or to evaluate its perfor-

mance in monocular scenarios.

To address these limitations, this system introduces 2D Gaussian Splatting

as a lightweight and efficient representation for visual SLAM. 2DGS models

scene elements as 2D surfels rendered directly in image space, enabling fast

per-frame optimization and simplifying the SLAM pipeline. Unlike 3DGS,

which requires complex 3D-to-2D projection and anisotropic Gaussian pro-

cessing, 2DGS operates natively in screen space, making it inherently more

compatible with direct visual odometry and real-time constraints.

The proposed system employs 2D Gaussian splats for tracking, mapping,

and rendering. It supports both monocular input and optional RGB-D data

(e.g., TUM-RGBD datasets), and integrates direct photometric tracking, ge-

ometric consistency checks, and spatial regularization to enhance incremen-

viii

tal mapping. Overall, this work demonstrates that 2DGS not only serves as

a viable substitute for 3DGS in SLAM but also provides a more practical and

real-time-capable alternative, especially suited for lightweight monocular sys-

tems.

ix

Chapter 1
Introduction

1.1 Background

A long-standing goal within computer vision and robotics is to achieve real-

time, high-fidelity 3D reconstruction from a single moving camera. Accom-

plishing near-photorealistic reconstruction from minimal sensor inputs would

significantly advance spatial AI systems, autonomous robotic navigation, and

immersive technologies, unlocking new possibilities across various industries.

Despite notable progress, existing visual SLAM systems often rely on modu-

lar or layered designs that treat localization, mapping, and scene understanding

as separate problems. While such approaches are effective, they introduce re-

dundancies and inefficiencies that hinder scalability and real-time performance.

A key challenge is the lack of a unified, efficient representation that supports

dense geometry reconstruction, consistent global mapping, and accurate cam-

era tracking in dynamic, unstructured environments.

2

1.2 Motivation and Problem Statement

Traditional scene representations—such as mesh models, voxel grids, or pixel-

based rasterizers—suffer from limitations like lack of differentiability, high com-

putational costs, or limited adaptability to scene complexity. These factors re-

strict their usefulness in optimization-based visual SLAM systems.

3D Gaussian Splatting (3DGS) has emerged as a powerful technique for

neural rendering, but its real-time use in SLAM remains impractical due to its

complex 3D-to-2D projection, anisotropic Gaussian handling, and processing

overhead.

In contrast, 2D Gaussian Splatting (2DGS) operates natively in screen space

and models images as a composition of 2D Gaussian kernels. These kernels

are defined by spatial location, orientation, covariance, color, and opacity, and

are blended via alpha compositing. This continuous, differentiable approach

supports real-time optimization and photorealistic rendering.

However, existing work on 2DGS has primarily been limited to offline ren-

dering tasks. There is a clear gap in adapting 2DGS to the real-time, incremental

nature of visual SLAM, particularly in monocular settings.

1.3 Research Objectives

This thesis proposes a novel 2DGS-based visual SLAM framework and aims to:

• Extend 2D Gaussian Splatting to real-time monocular SLAM applications.

• Develop an analytical Jacobian of camera poses (on the Lie group) with

respect to 2DGS to enable gradient-based optimization.

3

• Introduce a covariance-based regularization strategy for maintaining geo-

metric coherence during incremental mapping.

• Implement a dynamic resource management system to create, refine, and

prune Gaussians efficiently.

• Achieve robust tracking and high-fidelity reconstruction using only monoc-

ular RGB input, with optional support for RGB-D data.

1.4 Key Contributions

This work presents a real-time visual SLAM system that leverages 2D Gaus-

sian Splatting as a differentiable and lightweight scene representation. The key

contributions are:

• A novel real-time SLAM pipeline using 2DGS for efficient tracking, map-

ping, and rendering in monocular settings.

• Derivation and integration of an analytical Jacobian for pose optimization

directly in the differentiable rendering loop.

• A covariance-based regularization mechanism to ensure stability and ge-

ometric consistency across the Gaussian set.

• A dynamic management framework for Gaussian creation, updating, and

pruning that maintains an expressive yet compact scene model.

• Experimental validation demonstrating improved convergence, render-

ing quality, and pose accuracy compared to traditional and 3DGS-based

SLAM approaches.

Chapter 2
Related Work

2.1 Related Work

Point clouds and surfel maps have been widely adopted in visual SLAM sys-

tems as lightweight and flexible representations for 3D reconstruction. Point

clouds—composed of sparse or dense sets of 3D points from depth sensors or

multi-view stereo—are used in systems such as ORB-SLAM2 (with dense map-

ping extensions) and DSO. While point-based methods offer simplicity and scal-

ability, they lack surface connectivity, making it difficult to reconstruct continu-

ous geometry or perform mesh-based operations.

To address this, surfels—or surface elements—were introduced as an exten-

sion of point clouds. Each surfel encodes not only position, but also normal,

radius, and color information. Systems such as ElasticFusion and BundleFusion

leverage surfel maps for real-time dense SLAM, enabling surface reconstruction

and loop closure in dynamic scenes. These representations provide a structured

yet efficient alternative to volumetric approaches, supporting real-time updates

and surface tracking without the memory burden of voxel grids or signed dis-

5

tance fields (SDFs).

However, surfel-based methods suffer from several limitations. Discontinu-

ities often arise at surface boundaries, and fragmentation can occur over time

due to sensor noise or inaccurate data association. Maintaining topological con-

sistency during loop closures and scene updates is challenging, leading to vi-

sual artifacts and map degradation. Additionally, surfel fusion and optimiza-

tion are largely heuristic and not fully differentiable, limiting their integration

into gradient-based or learning-based SLAM systems [1].

In contrast, 2D Gaussian Splatting (2DGS) offers a smooth, continuous, and

fully differentiable scene representation. By modeling image-space elements as

soft, overlapping Gaussians, 2DGS naturally avoids discontinuities and sup-

ports stable incremental updates. Its differentiable nature enables end-to-end

optimization—including camera pose refinement—directly through the render-

ing process [2, 3]. Furthermore, modern GPUs efficiently render thousands of

Gaussians in real time, without the need for managing complex surfel topolo-

gies. These features make 2DGS a compelling alternative for SLAM, especially

in scenarios demanding visual fidelity and optimization flexibility [4].

Chapter 3
Methodology

3.1 Foundation

This chapter introduces the foundational representation used in our SLAM sys-

tem—2D Gaussian Splatting (2DGS)—a differentiable, image-space rendering

technique designed for efficient and accurate scene modeling. Unlike traditional

volumetric or mesh-based methods, 2DGS models the scene as a collection of

oriented planar Gaussians, each capturing both geometric and optical proper-

ties.

Each Gaussian Gi is defined by a mean position µW
i and a covariance matrix

ΣW
i in world coordinates, forming an oriented elliptical disk aligned with the

local surface geometry. These Gaussians also encode color ci and opacity αi,

which determine their contribution to the final rendered image.

Pixel values are synthesized by compositing the contributions of all Gaus-

sians that project onto the same pixel, using alpha blending:

Cp = ∑
i∈N

ciαi

i−1

∏
j=1

(1 − αj) (3.1)

7

where N denotes the set of Gaussians visible at pixel p, sorted in front-to-back

order.

The transformation from 3D world coordinates to the 2D image plane is

performed via perspective projection. A planar Gaussian N(µW , ΣW) is trans-

formed to N(µI , ΣI) on the image plane as:

µI = π(TCW · µW), ΣI = JΣW JT (3.2)

where π denotes the perspective projection, TCW ∈ SE(3) is the camera pose,

and J is the Jacobian of the projection function.

By operating directly in image space and using perspective-correct rasteriza-

tion, 2DGS avoids the complexity of 3D-to-2D projections found in volumetric

methods. Its fully differentiable nature enables efficient gradient flow, allowing

for joint optimization of camera poses and Gaussian parameters through gra-

dient descent. As a result, 2DGS enables high-fidelity reconstructions of both

surface geometry and appearance, making it particularly suitable for real-time

SLAM in monocular settings.

Figure 3.1: SLAM pipeline using 2D Gaussian Splatting

8

Figure 3.1 illustrates the overall structure of our SLAM system based on 2D

Gaussian Splatting. The pipeline integrates image-space representation, cam-

era pose optimization, frame tracking, keyframe selection, and mapping into a

unified framework. Each component interacts through differentiable rendering

outputs and geometric updates, enabling real-time, photorealistic scene recon-

struction.

3.2 Camera Pose Optimization

A core component of the proposed SLAM pipeline is an enhanced, differentiable

rasterizer explicitly designed to enable accurate and efficient camera pose esti-

mation. Traditional surfel-based or point cloud rasterizers lack the ability to

propagate gradients through the rendering pipeline, making them unsuitable

for gradient-based optimization tasks such as joint pose and map refinement.

3.2.1 Limitations of Existing Rasterizers

Existing Gaussian-based rasterizers were originally developed for offline neural

rendering tasks and do not meet the strict real-time requirements and optimiza-

tion demands of SLAM systems. They do not provide the necessary infrastruc-

ture for computing analytical derivatives with respect to camera poses or scene

parameters. Consequently, SLAM pipelines relying on these tools face limita-

tions in accuracy, convergence speed, and flexibility.

9

3.2.2 Custom CUDA-Based 2DGS Rasterizer

To address these issues, we design a custom rasterizer tailored specifically for

2D Gaussian Splatting. This rasterizer:

• Employs CUDA for highly efficient rasterization on GPU architectures.

• Supports both forward and backward rendering passes, essential for gradient-

based learning.

• Computes analytical Jacobians for 2D Gaussian parameters and camera

poses.

• Facilitates photometric loss-based optimization, enabling end-to-end joint

refinement of pose and scene structure.

This design enables real-time operation while maintaining high accuracy in

pose tracking and scene reconstruction.

3.2.3 Lie Algebra-Based Jacobians for Camera Poses

Inspired by 3D Gaussian Splatting (3DGS), we derive analytical Jacobians for

the 2DGS setting. Camera poses, expressed on the Lie group SE(3), are lin-

earized on the corresponding Lie algebra se(3) to allow efficient differentiation

with a minimal set of parameters.

We compute derivatives of the Gaussian mean µI and image-space covari-

ance ΣI with respect to the camera pose TCW via the chain rule:

∂µI

∂TCW ,
∂ΣI

∂TCW =
∂ΣI

∂J
∂J

∂µC

∂µC

∂TCW +
∂ΣI

∂ΣW

∂ΣW

∂TCW (3.3)

10

These terms reflect how both the position of Gaussians (µI) and their shape

and scale (ΣI) change with pose variation. The Lie algebra formulation reduces

parameter redundancy and allows efficient backpropagation within the opti-

mization framework.

3.2.4 Joint Optimization via Differentiable Rendering

The rasterizer is integrated with a joint optimization scheme that simultane-

ously refines camera poses and 2D Gaussian parameters. Each input frame un-

dergoes a forward pass that generates a synthetic image from current scene es-

timates. A photometric loss is computed between the rendered and observed

frames:

Lphoto = ∑
p
∥Irendered(p)− Iobserved(p)∥2 (3.4)

Gradients of this loss are propagated through the rasterizer back to both the

pose and scene parameters, enabling closed-loop optimization.

This differentiable framework allows our system to achieve high tracking

accuracy and visually coherent reconstructions, even under challenging monoc-

ular input conditions.

3.3 Simultaneous Localization and Mapping (SLAM)

Our visual SLAM system integrates 2D Gaussian Splatting (2DGS) into a fully

modular SLAM pipeline designed for real-time, high-fidelity scene reconstruc-

tion. The framework consists of three primary components—tracking, keyfram-

ing, and mapping—each with distinct responsibilities that collectively ensure

robust and scalable performance in both monocular and RGB-D settings.

11

3.3.1 Tracking

The tracking module processes incoming video frames and estimates the cur-

rent camera pose relative to the existing 2D Gaussian map. Utilizing the differ-

entiable 2DGS rasterizer, it performs frame-to-model alignment by minimizing

residuals between the live camera feed and the rendered synthetic view gener-

ated from the current map.

Photometric Tracking

Tracking is primarily driven by photometric residual minimization, which aligns

the observed image with the synthesized image produced from the Gaussian

representation. The photometric error is defined as:

Epho =
∥∥∥I(G, TCW)− Ī

∥∥∥
1

(3.5)

where I(G, TCW) is the image rendered from the current Gaussian map G

given camera pose TCW , and Ī is the observed input image. This loss encourages

precise alignment based solely on appearance information.

Geometric Tracking (Optional)

When depth data is available (e.g., in RGB-D settings), a secondary geometric

residual is also minimized:

Egeo =
∥∥∥D(G, TCW)− D̄

∥∥∥
1

(3.6)

where D(G, TCW) is the rendered depth map from the Gaussian scene and D̄

is the observed depth frame. This geometric loss helps reinforce pose estimation

12

in textureless or repetitive environments.

Optimization Strategy

To improve robustness and efficiency, the system jointly optimizes photomet-

ric and geometric residuals using a weighted combination. Key aspects of the

optimization include:

• Joint Residual Minimization: Both Epho and Egeo are minimized simulta-

neously.

• Per-Pixel Differentiation: Depth and color contributions are computed

per pixel using alpha-blended Gaussians.

• Analytical Jacobians: Explicitly derived with respect to camera poses, us-

ing Lie algebra for minimal and efficient parameterization.

• Exposure Robustness: Affine brightness parameters are optimized along-

side pose to account for illumination changes across frames.

This formulation ensures precise tracking in dynamic conditions, leveraging

the strengths of 2DGS—smooth differentiability, efficient rendering, and fine-

grained visual modeling—to support accurate real-time localization.

3.3.2 Keyframing

The keyframing module is responsible for maintaining a sparse but effective

subset of frames, referred to as keyframes, that serve as structural anchors for

the Gaussian-based scene representation. These keyframes are critical for pre-

serving long-term spatial consistency, enabling reliable relocalization, loop clo-

sure, and map refinement.

13

Keyframe Selection Criteria

To ensure both accuracy and efficiency, the system employs a selective strategy

that maintains a small keyframe set. New keyframes are introduced only when

they offer meaningful improvement to the map’s coverage or tracking stability.

Two primary metrics guide this decision:

• Gaussian Covisibility: Measures how many existing Gaussians are visi-

ble from the current camera view. Low covisibility implies that the current

view contains previously unseen areas or perspectives.

• Camera Motion: Evaluates the relative pose change compared to the most

recent keyframe. Significant translation or rotation indicates the camera is

exploring a new region.

A new keyframe is added when either covisibility falls below a threshold or

camera movement exceeds a defined spatial threshold.

Keyframe-Based Gaussian Management

Each newly selected keyframe triggers updates to the 2D Gaussian map. This

includes:

• Insertion of Gaussians: New Gaussians are added to capture novel image

content, refine geometric detail, and enhance visual coverage in underrep-

resented areas.

• Removal of Gaussians: Redundant or low-visibility Gaussians are pruned

to maintain computational efficiency and avoid memory overload.

14

This continuous refinement process ensures the Gaussian map remains both

compact and expressive, enabling real-time SLAM performance without com-

promising visual fidelity or tracking stability.

Efficiency Considerations

The keyframe module is designed to minimize overhead while maximizing map

utility. By maintaining only a minimal yet informative set of keyframes and

actively managing the Gaussian representation, the system ensures:

• Consistent visual tracking over long trajectories.

• High-resolution reconstructions focused on visually salient regions.

• Efficient memory and processing footprint, compatible with real-time op-

eration.

3.3.3 Mapping

The mapping module incrementally builds and continuously refines the 2D

Gaussian splatting map by leveraging updated camera poses and selected keyframes

from the tracking subsystem. Its objective is to maintain a globally consis-

tent, visually accurate, and geometrically stable representation of the scene over

time.

Gaussian Map Optimization

At the core of the mapping module is the joint optimization of Gaussian at-

tributes—including position, orientation, scale, color, and opacity—through a

15

differentiable rendering process. These attributes are updated based on the fol-

lowing losses:

• Photometric Residual: Enforces alignment between rendered and observed

images, enhancing visual fidelity.

• Geometric Residual (if depth is available): Aligns rendered and observed

depth maps to ensure accurate 3D geometry.

• Isotropic Regularization (Eiso): Penalizes anisotropic scaling of Gaussians,

encouraging shape consistency and preventing over-stretched or degener-

ate components that could degrade rendering quality.

Continuous Keyframe Optimization

To ensure robust global reconstruction, the mapping module operates over both

active keyframes (those currently in view) and a subset of randomly selected

past keyframes. This strategy enables the system to correct drift, reinforce long-

term consistency, and refine scene areas revisited by the camera.

Optimization Workflow

The mapping process involves the following steps:

• Render synthetic views of keyframes using the current Gaussian map.

• Compute residuals with respect to observed input frames (both photomet-

ric and geometric).

• Backpropagate gradients through the differentiable rasterizer to refine Gaus-

sian parameters.

16

• Apply isotropic regularization to stabilize optimization and improve vi-

sual coherence.

This continuous update cycle ensures the SLAM system adapts to scene

changes, integrates new observations, and maintains high-quality reconstruc-

tions in dynamic, real-world environments.

3.4 Differentiable Rasterizer Enhancements for SLAM

To enable real-time Simultaneous Localization and Mapping (SLAM) using the

2D Gaussian Splatting (2DGS) framework, we made critical modifications to the

CUDA-based differentiable rasterizer. These enhancements support not only

high-performance rendering but also expose intermediate representations re-

quired for photometric optimization, pose tracking, and gradient-based learn-

ing.

3.4.1 Forward Rendering Enhancements in Forward.cu

The forward pass was extended by modifying the renderCUDA kernel and its

launcher FORWARD::render to output low-level geometric and visibility data es-

sential for SLAM. Key enhancements include:

• New Output Buffers:

– out depth — stores the final composited depth value per pixel.

– out opacity — accumulates per-pixel opacity, computed as 1 − T,

where T is the final transmittance.

17

– n touched — tracks how many pixels are significantly influenced by

each Gaussian.

• Universal Depth Calculation: To ensure depth is always computed (even

outside of visualization modes), the accumulation step:

D += depth * w;

was moved into the general rendering path.

• Gaussian Influence Tracking: Pixel influence is tracked using:

if (T > 0.5f) {

atomicAdd(&(n_touched[collected_id[j]]), 1);

}

which serves as a confidence metric for SLAM optimization and pruning.

• Composited Output Storage: The following assignments capture depth

and opacity for later use:

out_depth[pix_id] = D;

out_opacity[pix_id] = 1.0f - T;

• Launcher Modification: The FORWARD::render function signature was up-

dated to handle the new output buffers, maintaining backward compati-

bility.

18

3.4.2 Backward Pass Enhancements in Backward.cu

To enable gradient-based camera pose optimization, we extended the preprocessCUDA

function to compute analytical Jacobians of the rendered output with respect to

camera pose parameters τ ∈ R6, expressed in the Lie algebra of SE(3).

Objective:
∂L
∂τ

=
∂L

∂mean2D
· ∂mean2D

∂τ

where mean2D is the 2D projection of a 3D Gaussian, and τ consists of translation

and rotation parameters. The goal is to obtain the gradient of the loss with

respect to pose changes for backpropagation in SLAM optimization.

• Projection of 3D Points: Each 3D Gaussian mean is first transformed from

world space to camera space using the view matrix, and then projected

into clip space using the projection matrix.

float3 p_world = means3D[idx];

float3 p_cam = transformPoint4x3(p_world, viewmatrix);

float4 p_proj = transformPoint4x4(p_cam, projmatrix);

• Projection Derivatives: To compute the Jacobian of the projection, we per-

form perspective division and derive scalar coefficients that influence how

a point maps from 3D to 2D under the projection matrix.

float m_w = 1.0f / (p_proj.w + 1e-7f); // Inverse perspective scale

float alpha = m_w;

float beta = -p_proj.x * m_w * m_w;

float gamma = -p_proj.y * m_w * m_w;

19

float3 d_proj_dp_C1 = make_float3(alpha * a, 0.f, beta * e); // x_proj/p_cam

float3 d_proj_dp_C2 = make_float3(0.f, alpha * b, gamma * e); // y_proj/p_cam

• Chain Rule via Lie Algebra: The effect of pose perturbations is sepa-

rated into translation (identity) and rotation (skew-symmetric) compo-

nents. This forms the basis of differentiating in SE(3).

mat33 dp_C_d_rho = mat33::identity(); // p_cam/

mat33 dp_C_d_theta = -mat33::skew_symmetric(p_cam); // p_cam/

• Jacobian Computation (∂mean2D/∂τ): We compute how each compo-

nent of the pose vector τ affects the projected 2D point, forming the 2×6

Jacobian needed for backpropagation.

float3 d_proj_dp_C1_d_rho = dp_C_d_rho.transpose() * d_proj_dp_C1;

float3 d_proj_dp_C2_d_rho = dp_C_d_rho.transpose() * d_proj_dp_C2;

float3 d_proj_dp_C1_d_theta = dp_C_d_theta.transpose() * d_proj_dp_C1;

float3 d_proj_dp_C2_d_theta = dp_C_d_theta.transpose() * d_proj_dp_C2;

These vectors describe how the x and y projections respond to translations

and rotations, respectively.

• Loss Gradient Backpropagation: Using the chain rule, we propagate the

loss gradient from the image plane to the pose parameters. This step ac-

cumulates the final gradient used in pose updates.

20

float2 dL_dmean2D = dL_dmean2Ds[idx];

for (int i = 0; i < 6; i++) {

dL_dt[i] = dL_dmean2D.x * dmean2D_dtau[i].x +

dL_dmean2D.y * dmean2D_dtau[i].y;

dL_dtau[6 * idx + i] += dL_dt[i];

}

The result is a 6D gradient per Gaussian that guides the SLAM system’s

pose optimization.

These modifications enable efficient, differentiable, and real-time pose opti-

mization critical for SLAM in dynamic environments.

Chapter 4
Evaluation Results

The performance of the integrated 2DGS-based SLAM system was rigorously

evaluated using standard quantitative and qualitative metrics. The evaluation

covered both visual fidelity and localization accuracy, ensuring a comprehen-

sive understanding of the system’s strengths and trade-offs.

Evaluation Metrics

We adopted the following well-established metrics:

• Peak Signal-to-Noise Ratio (PSNR) – Measures image reconstruction qual-

ity.

• Structural Similarity Index (SSIM) – Captures perceptual similarity be-

tween rendered and ground-truth images.

• Learned Perceptual Image Patch Similarity (LPIPS) – Assesses percep-

tual differences using deep network features.

• Absolute Trajectory Error (RMSE ATE) – Quantifies accuracy of camera

trajectory estimation.

22

• Frames Per Second (FPS) – Measures system efficiency and real-time per-

formance.

Results Summary

Our evaluation demonstrates the following key outcomes:

Table 4.1: 2DGS-Based SLAM Evaluation Results

Tag FPS PSNR SSIM LPIPS
Result 39.28 10.08 0.3992 0.7453

Table 4.2: 3DGS SLAM Performance Before and After Refinement

Tag FPS PSNR SSIM LPIPS
Before 2.393 19.40 0.7341 0.3351
After 2.393 22.50 0.7708 0.3357

• The proposed system achieved a real-time processing speed of approxi-

mately 39 FPS, outperforming traditional 3D Gaussian Splatting-based

SLAM which operated at roughly 2.4 FPS.

• In terms of trajectory accuracy, our method maintained competitive per-

formance with an RMSE ATE of approximately 0.03, comparable to or

better than 3DGS benchmarks.

• Visual quality metrics showed improvements across the board, indicating

high-fidelity photorealistic rendering:

– Increased PSNR, reflecting reduced image distortion.

– Higher SSIM, confirming better structural alignment.

– Lower LPIPS, signaling improved perceptual quality.

Chapter 5
Conclusion

The integration of 2D Gaussian Splatting (2DGS) into the SLAM pipeline presents

a transformative advancement in real-time visual localization and mapping.

Unlike conventional approaches based on 3D Gaussian Splatting, which are of-

ten computationally intensive and unsuitable for real-time deployment, 2DGS

offers a lightweight and differentiable alternative that aligns naturally with image-

space operations and modern GPU architectures.

Key Findings

• The proposed system achieves an impressive real-time processing speed

of approximately 39 FPS, outperforming conventional 3D Gaussian Splat-

ting SLAM, which operates at roughly 2.4 FPS. This marks a nearly 16×

improvement in runtime efficiency.

• Despite the significant speedup, the system maintains high localization

accuracy, with an RMSE ATE of around 0.03, and demonstrates strong

performance on visual quality metrics such as PSNR, SSIM, and LPIPS.

24

• The end-to-end differentiable design allows for continuous refinement of

both geometric and photometric attributes, enhancing the fidelity and con-

sistency of the reconstructed environment.

Implications and Future Work

These results confirm that the 2DGS-based SLAM framework effectively ad-

dresses key limitations of existing SLAM pipelines, particularly in computa-

tional complexity, rendering quality, and real-time responsiveness. The system

provides a balanced, efficient, and highly accurate solution suitable for real-

world applications in:

• Mobile robotics, where lightweight, real-time visual SLAM is essential.

• Augmented reality, where low latency and visual fidelity directly impact

user experience.

• Immersive simulation and spatial AI, which demand high-resolution re-

constructions with real-time feedback.

Future work will focus on further enhancing modeling accuracy, extending

to dynamic scenes, improving loop closure robustness, and exploring integra-

tion with learning-based scene priors to support broader generalization.

Bibliography

[1] Xiaojie Peng, Zixuan Wang, Bin Xu, Chen Feng, Yuke Qin, Jia Pan, et al.
Robotic vision transformer: Learning multimodal information for scene-
aware policy. arXiv preprint arXiv:2403.17888, 2024.

[2] Zhengyuan Yang, Zixuan Wang, Yuchen Zhang, Lijuan Li, Zicheng Liu,
and Lu Yuan. Promptable scene understanding for efficient neural fields.
arXiv preprint arXiv:2312.06741, 2023.

[3] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview
coding. arXiv preprint arXiv:2003.08934, 2020.

[4] Yan Sun, Xudong Nguyen, Yuheng Guo, Georgia Gkioxari, and Caiming
Lu. Bivo: A binaural egocentric dataset for visuo-audio navigation and
interaction. arXiv preprint arXiv:2308.04079, 2023.

[5] Yuchen Zhang, Zixuan Wang, Zhengyuan Yang, Lijuan Li, Zicheng Liu,
and Lu Yuan. Gs-slam: Dense visual slam with 3d gaussian splatting. arXiv
preprint arXiv:2311.11700, 2023.

[6] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao.
Introducing unbiased depth into 2d gaussian splatting for high-fidelity sur-
face reconstruction. arXiv preprint arXiv:2503.06587, 2024.

[7] Yuchen Zhang, Zixuan Wang, Zhengyuan Yang, Lijuan Li, Zicheng Liu,
and Lu Yuan. Glc-slam: Gaussian splatting slam with efficient loop closure.
arXiv preprint arXiv:2409.10982, 2024.

[8] Shuo Sun, Malcolm Mielle, Achim J. Lilienthal, and Martin Magnusson.
High-fidelity slam using gaussian splatting with rendering-guided densifi-
cation and regularized optimization. arXiv preprint arXiv:2403.12535, 2024.

[9] Yongxin Su, Lin Chen, Kaiting Zhang, Zhongliang Zhao, Chenfeng Hou,
and Ziping Yu. Gaus-slam: Dense rgb-d slam with gaussian surfels. arXiv
preprint arXiv:2505.01934, 2025.

26

[10] Tianchen Deng, Yaohui Chen, Leyan Zhang, Jianfei Yang, Shenghai Yuan,
Jiuming Liu, Danwei Wang, Hesheng Wang, and Weidong Chen. Compact
3d gaussian splatting for dense visual slam. arXiv preprint arXiv:2403.11247,
2024.

[11] Mingrui Li, Shuhong Liu, Heng Zhou, Guohao Zhu, Na Cheng, Tianchen
Deng, and Hongyu Wang. Sgs-slam: Semantic gaussian splatting for neural
dense slam. arXiv preprint arXiv:2402.03246, 2024.

[12] Ke Wu, Zicheng Zhang, Muer Tie, Ziqing Ai, Zhongxue Gan, and Wenchao
Ding. Vings-mono: Visual-inertial gaussian splatting monocular slam in
large scenes. arXiv preprint arXiv:2501.08286, 2025.

[13] Zhongche Qu, Zhi Zhang, Cong Liu, and Jianhua Yin. Visual slam with 3d
gaussian primitives and depth priors enabling novel view synthesis. arXiv
preprint arXiv:2408.05635, 2024.

[14] Hidenobu Matsuki, Riku Murai, Paul H. J. Kelly, and Andrew J. Davison.
Gaussian splatting slam. arXiv preprint arXiv:2403.11247, 2024.

	Acknowledgments
	List of Tables
	List of Figures
	Abstract
	Introduction
	Background
	Motivation and Problem Statement
	Research Objectives
	Key Contributions

	Related Work
	Related Work

	Methodology
	Foundation
	Camera Pose Optimization
	Limitations of Existing Rasterizers
	Custom CUDA-Based 2DGS Rasterizer
	Lie Algebra-Based Jacobians for Camera Poses
	Joint Optimization via Differentiable Rendering

	Simultaneous Localization and Mapping (SLAM)
	Tracking
	Keyframing
	Mapping

	Differentiable Rasterizer Enhancements for SLAM
	Forward Rendering Enhancements in Forward.cu
	Backward Pass Enhancements in Backward.cu

	Evaluation Results
	Conclusion
	Bibliography

