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Abstract

Parsing transforms raw input into a structured representation using a set of rules. For exam-

ple, in compilers, a parser converts a stream of characters into an intermediate representation

like a Parse Tree or an Abstract Syntax Tree. Parser combinators are a popular way of build-

ing parsers, which use the tools in the host programming language to build small parsers

and compose them into more complex parsers. Parser combinators are usually built using

a recursive descent approach with backtracking and multiple lookahead tokens, resulting in

poor worst-case time complexities. In this thesis, we have implemented a parser combinator

library in Idris2 using a typed, algebraic approach. Internally, the library uses a custom type

system defined for context-free expressions to identify ambiguous grammars. Furthermore,

a typed grammar is deterministically parsed with no backtracking and a single lookahead

token, guaranteeing linear-time performance. To demonstrate the practical application of

the library, we have implemented parsers for S-expression, JSON, and the IMP program-

ming language. These examples showcase the expressiveness of parser combinators and the

robustness of the type checker without sacrificing performance.
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Chapter 1

Introduction

1.1 Parser Generators

Parser generators are one of the most popular ways of writing parsers in the programming

domain. As the name suggests, parser generators accept a formal grammar as input and

automatically produce source code for the corresponding parser. Typically, the parsing

process involves three distinct stages. First, a set of lexical tokens is defined in a parser

file, using a domain-specific language different from the host language. Second, the rules for

parsing the string to match the respective tokens are defined in a lexer file. The grammar

rules are specified in the Backus-Naur Form [12] to correspond to programming language

structures. Finally, the parser generator produces code in the host language and can be used

directly for parsing. The output of parsers is ideally some sort of structured data type, such

as Abstract Syntax Tree [9] in the host programming language.

Internally, most parser generators use table-driven bottom-up parsing techniques like

shift-reduce [12] and its variations. These techniques offer significant efficiency benefits,

particularly due to their deterministic nature, avoidance of backtracking, and ability to

statically detect ambiguities in the provided grammar. Some examples of parser generators

include Menhir [26] in Ocaml, and Happy [11] in Haskell. These tools are battle-tested and
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widely used in industry; The official parsers for both the Ocaml compiler [24] and the Haskell

GHC compiler [10] are implemented using them.

Despite their strengths, parser generators exhibit certain limitations. One among them is

using a separate domain-specific language to define the lexer and parser rules. Though these

DSLs have a clear declarative reading, they restrict usage of host language abstractions and

features such as modularity, type systems, higher-order composition, etc.

1.2 Parser Combinators

Many modern programming languages support higher-order functions in which a function

can accept another function as an argument and return a function as a result. This is a

powerful feature for building more abstractions and composability, and it helps to keep the

code clean. Combinators are very similar, but instead of functions, they accept parsers as

input and can produce parsers as output. In this approach, small parsers are defined and

then composed with combinators like choice, sequence, repetition, etc, to build complex

parsers. Recursive descent is a top-down parsing approach [12], where each rule in the

grammar is implemented as a recursive function. Parser combinators use backtracking to

deal with ambiguous grammars, although these can result in exponential time complexity in

the worst case. An alternative approach uses lookahead tokens to decide which rules to use

in a grammar; parses using this strategy are called predictive parsers and are limited to LL

grammars.

Angstrom [7] in OCaml, Parsec [19] in Haskell are some of the popular parser combinator

libraries. The high-performance web server Http/af [8] in OCaml uses Angstrom to parse

HTTP requests and responses. Similarly, Pandoc[21], one of the popular tools for universal

markup conversion, uses Parsec for parsing a variety of formats. Despite the low performance

compared to the parser generators, parser combinators excel in building modular and compo-

sitional parsers. Performance can be improved with the use of better predictive algorithms,
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the use of laziness, and meta-programming techniques. Furthermore, in the languages with

advanced type systems like Idris2 [5], Agda [22], and Rocq [29], parsers correctness can be

formally verified.

1.3 State Of Parsers in Idris2

In this section, we examine the ecosystem of parsers available in Idris2. Unlike many other

programming languages, Idris2 currently doesn’t have parser generator tools. Most of the

available libraries are designed in a parser-combinator style.

1.3.1 Data.String.Parser

Data.String.Parser [28] is a simple parser combinator framework provided by the Idris2 con-

trib library, primarily used for parsing string inputs. It is inspired by Haskell’s Attoparsec

Zepto library [23]. Internally, the parser operates on a given string input and, upon success,

returns a tuple consisting of the parsed result and the position at which parsing concluded.

In case of failure, an error is produced. The parsers are built as small combinators by imple-

menting the Monad and Applicative interfaces. These combinators are used in a recursive

descent style to construct bigger and complex parsers. There is no special mechanism in the

framework to avoid ambiguous grammars (like left recursion), and the parser gets trapped

in infinite recursion.

1.3.2 Lightyear

Lightyear [27] is a parser combinator library in Idris2 inspired by Haskell’s Parsec. It builds

upon the well-established observation that parsers form an instance of Monads [14]. Writing

parsers in monadic style has a lot of practical benefits, such as simplifying lexical analysis,

facilitating the implementation of layout-sensitive syntax (e.g., the offside rule), and enabling

the use of comprehension syntax for more readable and concise definitions. Parsec[18], de-
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signed as one of the industrial-strength monadic parser combinators focused on efficiency. It

supports parsing context-sensitive grammars with infinite lookahead tokens. Parsec combi-

nators don’t backtrack by default, but use try for explicit backtracking. Lightyear follows

the same parsing strategy but inverts backtrack behaviour. Lightyear parsers backtrack by

default, but use commitTo combinator to explicitly commit to a branch.

For example, if we take an alternate parser, a <|> b,

In Parsec,

1. If a succeeds against an input, the result is returned.

2. If a fails without consuming the input, then parser b is tried.

3. If a fails after consuming the input, then it returns a failure message without trying

b. But, if we need to try b, even after consuming some part of input in a, we need

backtracking, and it is handled with try

But in lightyear, it takes a different approach.

1. If a succeeds against an input, the result is returned.

2. If a fails without consuming the input, then parser b is tried.

3. If a fails after consuming the input, then it backtracks to the input and tries b. But, if

we want to avoid backtracking and continue on the same branch after consuming some

prefix, commitTo combinator is used.

In both of these libraries, the user is given control over the use of backtracking. The

use of backtracking can lead to exponential time complexity. Neither library incorporates

a dedicated mechanism to detect or eliminate left recursion. Consequently, issues such as

infinite recursion or parser failure due to left-recursive rules can only be identified at runtime,

when the parser is executed on actual input.
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1.3.3 TParsec

TParsec [2] is a direct port of Agdarsec, originally developed in Agda, a dependently typed

functional language like Idris2. The parser combinators used in languages like Haskell,

OCaml don’t guarantee termination, especially when writing parsers for recursive grammars.

The motivation behind these libraries is to use the more advanced type system and totality

checker available in a dependently typed language to enforce constraints at the type level.

The parsers are built on top of indexed sets and inductive relations [1]; these help in con-

vincing the totality checker that inputs are always consumed. In left-recursive grammars,

a recursive call is attempted without consuming any input; such definitions are statically

rejected by the compiler, as they violate the constraints enforced by the type system.

While the advanced usage of type systems and tracking input sizes helps in writing parsers

that are guaranteed to terminate, the core idea is to build the parsers using the recursive

descent with backtracking. TParsec focuses mainly on correctness, particularly termination

guarantees, rather than raw performance. Furthermore, this is originally written in Idris1,

and as of now, there is no active available port for Idris2.

1.3.4 Text.Lexer and Text.Parser

This is a higher-order parser combinator library from the official Idris2 contrib package and

follows a two-stage process

1. Lexer - transforms a string into a list of tokens.

2. Parser - consumes a list of tokens to produce a structured result, typically an abstract

syntax tree (AST).

The purpose of a lexer is to scan the input of strings to produce a list of tokens and

simplify the parsing process while dealing with whitespaces or comments. The core of the

Lexer is the Recognizer combinator, a Generalized Algebraic Data Type(GADT) indexed
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with a boolean. The index specifies whether the recognizer can consume input or not, which

helps the Idris2 totality checker in verifying that lexers are safe and terminating. Lexers

are built using the constructors of Recognizer in a combinator-style fashion. Lexers are

constructed by composing Recognizer constructors in a combinator-style fashion. Once

the individual recognizers are defined, a TokenMap is created to associate recognizers with

corresponding tokens. The actual lexing is performed by the lex function, which takes

a TokenMap and an input string, returning a list of matched tokens. Input is processed

linearly, and at each step, the lexer attempts to match against the rules defined in the map.

If a match succeeds, the corresponding token is emitted. If a recognizer fails after partially

consuming input, backtracking occurs to attempt other alternatives in the TokenMap.

The core of the Parser is a Grammar combinator structure, similar to a Recognizer in

Lexer. This is also a GADT indexed with three parameters: the type of tokens, a boolean to

specify whether the language can be empty or not, and the output type of a parser. First, we

build smaller primitives using the constructors from the Grammar data type, and then we

build larger ones using the recursive descent approach. As in Parsec, parsers only backtrack

if no input has been consumed. If backtracking is desired after partial consumption, the

try combinator must be used explicitly. The library provides the necessary constructs to do

controlled backtracking and lookahead tokens to deal with ambiguous grammars, but it is

mostly left to the user and doesn’t enforce any constraints on the grammar.

Due to the complexity in understanding Recognizer and Grammar data types, it is

typically used in larger projects. It is an actively maintained library as part of the Idris2

ecosystem. The Idris2 compiler, written in Idris2 (i.e., it is bootstrapped), uses Text.Lexer

and Text.Parser for its parsing logic.

1.3.5 idris2-parser

idris2-parser describes itself as a library for writing provably total lexers and parsers [13].

Unlike the other libraries, this is not a combinator-first library. Although it provides a
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domain-specific language of combinators in the style of existing libraries, the primary way to

build parsers is through explicit mutual recursion. The motivation to choose this style is to

have greater control over error messages, improved performance compared to combinators,

and to make manual writing of parsers as nice as possible. Similar to the official parsing

library in Idris2, this also separates the lexing and parsing into two different stages for better

error handling and dealing with spaces, comments, etc.

The lexer and parser DSLs are implemented in a similar way to Text.Lexer and Text.Parser

from the contrib library using Recognizer andGrammar combinator structures. The main

interest of this library lies in writing the lexers and parsers using mutually recursive func-

tions, which must be total. But proving the recursive functions as total requires some sort

of well-founded relation encoded at the type level to satisfy the compiler. For this purpose,

the library provides a few utility functions on the bounded lists, which help establish proofs

that input is consumed during parsing.

Writing parsers in idris2-parser feels more like a handwritten parser using language con-

structs like if−else, higher-order functions. But the main complexity lies in proving the type

checker that the functions are always total. Left-recursive grammars are disallowed by con-

struction, as they violate totality constraints by failing to demonstrate input consumption.

However, other forms of ambiguity must be addressed explicitly by the user.

1.4 Problem Definition

One of the main advantages of using parser generators is their performance and the ability

to express grammars in a declarative style close to Backus–Naur Form. In traditional parser

combinators, the parsers are treated as first-class values in a programming language and

can be composed with other language features to build more complex parsers. While this

composability offers significant expressive power, such libraries are typically implemented

using recursive descent with backtracking, which can lead to exponential time complexity.
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It is good to have the power of abstractions from parser combinators and the performance

of parser generators. In this thesis, we have used the typed, algebraic approach [16] to build

a parser combinator library in Idris2. In contrast to the above libraries, our library builds an

internal type system to reject unambiguous grammars before parsing any input. The static

type information gathered from the grammars is then used in the parsing algorithm to avoid

backtracking with a single lookahead token, which guarantees the linear-time performance.
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Chapter 2

Library Overview and Implementation

2.1 API Overview

Before delving into the implementation details, we present a high-level overview of the com-

binator API interface.

mutual

public export

data GrammarType : {n : Nat}

-> (ct : Vect n Type)

-> (a : Type)

-> (tagType : Type -> Type)

-> Type

where

Eps : a -> GrammarType ct a tagType

Tok : tagType a -> GrammarType ct a tagType

Bot : GrammarType ct a tagType

9



Seq : Grammar ct a tagType

-> Grammar ct b tagType

-> GrammarType ct (a, b) tagType

Alt : Grammar ct a tagType

-> Grammar ct a tagType

-> GrammarType ct a tagType

Map : {a : Type}

-> Grammar ct a tagType

-> (a -> b)

-> GrammarType ct b tagType

Fix : {a : Type}

-> Grammar (a :: ct) a tagType

-> GrammarType ct a tagType

Var : Var a ct -> GrammarType ct a tagType

public export

record Grammar (ct : Vect n Type) (a : Type) (tagType : Type -> Type) where

constructor MkGrammar

lang : LangType (TokenType tagType)

gram : GrammarType ct a tagType

This is a mutually recursive type definition. We begin by examining the Grammar data

type, which is a record with two fields:

1. lang - encodes the type of language that is described by grammar.
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2. gram - A value of type GrammarType, which is used to construct and compose grammars.

In addition to these fields, the Grammar type is indexed by three parameters: ct, a, and

tagType. Here, ct represents a context that tracks the return types of the parser; a is the

return type of the parser; and tagType is a type constructor used to create tags (in other

words, it determines the type of the tags used in the grammar).

The GrammarType is a generalized algebraic data type (GADT) indexed by the same three

parameters as Grammar.

1. Eps v - A grammar that parses an empty token.

2. Tok t - A grammar that parses matching the token with tag t.

3. Bot - A grammar for the parser that never succeeds.

4. Seq l r - A sequential combinator that parses the tokens with a prefix parsed by l

and a suffix by r grammars.

5. Alt l r - An alternative combinator that parses the tokens parsed by either l and r

grammars.

6. Map g f - A map combinator that generates a grammar by applying function f to the

given grammar g.

7. Fix g - A fix combinator for constructing the recursive grammars using the variables

represented in de Bruijn [3] fashion.

8. Var i - Variable used in combination Fix to build recursive grammars.

Along with the main grammar data types, the library also provides two other important

functions.

export

typeCheck : {a : Type}
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-> {tagType : Type -> Type}

-> {auto _ : Tag tagType}

-> Grammar Nil a tagType

-> Either String (Grammar Nil a tagType)

typeCheck gram = typeof [] gram

The typeCheck function takes a grammar as input, performs type checking, and returns

either a type error or a successfully type-checked grammar.

public export

generateParser : {a: Type}

-> {tagType : Type -> Type}

-> {auto _ : Tag tagType}

-> Grammar Nil a tagType

-> Parser a tagType

generateParser function takes the type-checked grammar as input and builds the actual

parser.

The type of Parser a tagType is a function that takes a list of tokens and returns either

an error or a pair of parsed values, remaining tokens.

We begin by constructing grammars using the grammar data types provided in the com-

binator style. Once the grammar is defined, it is passed to the typeCheck function, which

performs type checking. If the grammar is well-typed, we then use the result to build the

corresponding parser.

While constructing grammars using these types can be somewhat verbose, we present a

simplified and more ergonomic API in the examples section. This reduced API demonstrates

how grammars can be composed more concisely and intuitively.

Note about the syntax - Arguments defined in {} are called implicit arguments, and those

with auto keyword are called auto-implicit arguments. Implicit arguments are generally
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inferred by the type checker. Auto-implicit arguments go one step further and are inferred

from the proof search context. Therefore, these arguments usually do not need to be explicitly

supplied during function application, unless required by the type checker.

2.2 Context Free Expressions

We begin by recalling the definitions of formal grammars and formal languages.

A formal language is the set of all possible finite-length words defined over the set of

alphabet.

A formal grammar is defined as valid strings from the formal language according to the

syntax of the language. Usually, the formal grammar is defined using a set of production

rules.

Chomsky defined the formal grammar using the four tuples - G = (N,Σ, P, S).

1. N is the set of non-terminal symbols.

2. Σ is the set of terminal symbols disjoint from N .

3. P is the production rules, and is of the form (Σ ∪N)∗N (Σ ∪N)∗ → (Σ ∪N)∗.

4. S ∈ N is a start symbol.

Chomsky’s hierarchy [6] classifies formal grammars into four types: unrestricted gram-

mars, context-sensitive grammars, context-free grammars, and regular grammars.

Our main interest is in context-free grammars(CFGs), which generate context-free lan-

guages. A CFG is also defined in 4 tuples G = (N,Σ, P, S), where N, Σ, and S retain

the same interpretation as in the above definition. The production rule P in this case is

restricted in the form N → (Σ ∪N)∗. Each rule has a single non-terminal on the left-hand

side and a sequence of terminals and non-terminals on the right-hand side. The application

of a rule is independent of the surrounding context, which gives rise to the term context-free.
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Context-free expressions are observed as an extension to regular expressions with a least

fixed-point operator and the variables [20]. Below, we describe the formal definitions of the

context-free expression from the typed, algebraic approach to parsing [16].

g ::= ⊥ | g ∨ g′ | ε | c | g · g′ | x | µx. g

Given a finite set of characters σ and a set of variables V , context-free expressions are

interpreted as a language. ⊥ represents empty language, g∨g′ is the union of two languages, ε

is the language with empty string, c is the language with one element, g ·g′ is a concatenation

of two languages. These constructs closely resemble those found in regular expressions. x

and µx. g are variable reference and least fixed point operator, respectively. Concepts such as

variable scoping, binding, and the distinction between free and bound variables are analogous

to those in programming languages like Idris2. The concept of the variable and fixed-point

operators captures the notion of non-terminal in formal grammars, and is as expressive as

Backus-Naur form[12]. For the semantics and untyped equational theory for the context-free

expressions, refer to the typed, algebraic approach [16]. The syntax of these expressions

closely resembles the first-order combinator API provided by our library.

For example, consider a context-free grammar, S ::= ε | aS. The language contains an

empty string and any number of occurrences of the character a in it. The same can be

expressed in the context-free expressions as µx. (ε | ax).

Now, let’s take the following simple examples in context-free grammars,

1. S ::= ab | ac

2. S ::= ε | Sa

In the first grammar, if we encounter the character a, it is unclear which production to

choose, as both branches begin with the same symbol. In the second grammar, expanding

the non-terminal in the second branch introduces ambiguity as well—we may choose ε, or

we may continue expanding the non-terminal indefinitely. Both cases exemplify ambiguous
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grammars. In the first example, we can use backtracking to avoid ambiguity, but it might

become exponential in time complexity. In the second example, the parser may enter into

infinite recursion without making progress.

In the next section, we describe the type system to restrict the ambiguous grammars in

the context-free expression.

2.3 Type System for Context Free Expressions

First, we need a few properties on languages to disallow ambiguous grammars and help

during the parsing.

1. Null - A boolean to represent whether the language allows an empty string or not.

2. First - represents the set of characters that any string will have in a language.

3. Follow - represents the set of characters that can follow the last character of a string

in a language.

These three properties together form a type of language.

public export

record LangType (token : Type) where

constructor MkLangType

null : Bool

first : SortedSet token

follow : SortedSet token

guarded : Bool

In Idris2, we can define them as a record with the required fields. We have null of

type boolean, first, and follow are of type sets over a token. The parsers are not limited

to parsing strings, we can parse any type of tokens. Hence, the record is indexed with
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the generic token with type Type. The only constraint on the token type is that it must

implement the Ord interface, as this is required by SortedSet to support token comparison.

We have an extra field called guarded to specify whether the record is in the normal or

a guarded context. We will discuss more about guarded field during the type checking of

grammars in the later section.

Now, we will define the types for each of the possible grammars that can be constructed

with our API. Once we have the types, then we will move on to type checking.

export

tok : {auto _ : Ord token} -> token -> LangType token

tok c =

MkLangType

{ null = False

, first = singleton c

, follow = empty

, guarded = True

}

tok c is the type of language with a single token c and there is no empty token, hence

the null is False.

export

eps : {auto _ : Ord token} -> LangType token

eps =

MkLangType

{ null = True

, first = empty

, follow = empty

, guarded = True

}
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export

bot : {auto _ : Ord token} -> LangType token

bot =

MkLangType

{ null = False

, first = empty

, follow = empty

, guarded = True

}

eps is the type of language with just an empty token, hence the null is True. Whereas

bot is the type of an empty language. Both of them have no other tokens in languages, so

the empty first and follow sets.

export

seq : {auto _ : Show token}

-> {auto _ : Ord token}

-> LangType token

-> LangType token

-> Either String (LangType token)

seq t1 t2 =

if apart t1 t2 then

Right(

MkLangType

{

null = t1.null && t2.null

, first = if t1.null then union t1.first t2.first else t1.first

, follow =

if t2.null then union t2.follow (union t2.first t1.follow)
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else t2.follow

, guarded = t1.guarded

}

)

else Left ("""

The Languages

\{show t1}

\{show t2}

are not apart!

""")

where

apart : LangType token -> LangType token -> Bool

apart t1 t2 = not (t1.null) && (intersection t1.follow t2.first == empty)

If we try to parse a string against g · g′, then we have to divide the parsed string into two

pieces s1 and s2 such that s1 is in g and s2 is in g′. This decomposition should be unique.

So, before building a type for this sequential grammar, we need to check whether the

types of the two concatenating languages are apart.

We say the two languages are apart when the prefix language is not nullable and there

are no common tokens between the tokens followed in the prefix language and the tokens

starting in the suffix language. If we find that two languages are not apart, we just return

an error. Hence, the type is Either String (LangType token).

Once we know the languages are apart, then we build the type of g · g′. The resultant

language has an empty string only if both languages have an empty token. The first and

follow sets are determined depending upon whether the language has an empty token or not.

export

alt : {auto _ : Show token}
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-> {auto _ : Ord token}

-> LangType token

-> LangType token

-> Either String (LangType token)

alt t1 t2 =

if disjoint t1 t2 then

Right(

MkLangType

{ null = t1.null || t2.null

, first = union t1.first t2.first

, follow = union t1.follow t2.follow

, guarded = t1.guarded && t2.guarded

}

)

else

Left ("""

The Languages

\{show t1}

\{show t2}

are not disjoint!

""")

where

disjoint : LangType token -> LangType token -> Bool

disjoint t1 t2 =

not (t1.null && t2.null) && (intersection t1.first t2.first == empty)

If we try to parse a string against g ∨ g′, then we have to decide whether to parse with g

or g′. This is one ambiguities we discussed earlier.

So, before building a type for this alternate grammar, we need to check whether the types
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of the two languages are disjoint.

We say the two languages are disjoint when neither language has an empty token and

neither language don’t starts with the same set of tokens.

Once we know the languages are disjoint, then we build the type of g ∨ g′. The resultant

language has an empty string if any of the languages have an empty token. The first and

follow sets are simply the union of respective sets from both languages.

export

fix : {auto _ : Ord token}

-> (f : Either String (LangType token) -> Either String (LangType token))

-> Either String (LangType token)

fix f = fixHelper $ Right min

where

fixHelper : Either String (LangType token) -> Either String (LangType token)

fixHelper t =

let t' = f t in

if t' == t then t else fixHelper t'

min : LangType token

min =

MkLangType

{ null = False

, first = empty

, follow = empty

, guarded = False

}

For the fix, we have to find the least fixed point of f . So, we start with the mini-

mum language and then try to expand the language by applying the function f till it stops
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changing.

This is the implementation of a type system on context-free in Idris2, for the formal type

systems and proofs refer to [16].

2.4 Token Type and Tag Interface

Before going into the details of type checking. Let’s discuss about the Token and Tag.

public export

data Token : (tagType : Type -> Type) -> Type where

Tok : {a : Type} -> (tag : tagType a) -> a -> Token tagType

public export

data TokenType : (tagType : Type -> Type) -> Type where

TokType : {a : Type} -> (tag : tagType a) -> TokenType tagType

Token tagType is a container that:

1. Carries a tag of type tagType a

2. And a value of that type a

TokenType tagType is pretty much similar to Token, but it carries just the tag and not

the value.

public export

data Cmp : Type -> Type -> Type where

Leq : Cmp a b

Eql : Cmp a a

Geq : Cmp a b

public export
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interface Tag (tagType : Type -> Type) where

compare : tagType a -> tagType b -> Cmp a b

show : tagType a -> String

This is a type-indexed comparison result, not just Ordering like in Idris2. Cmp encodes

not only comparison results but also type relations.

For example, Eql only constructs when both types are equal. This is very useful when

comparing tokens during the parsing, and the reason we need this is discussed in section 2.6

Tag is an interface on tagType, a type constructor that takes some type a and returns of

type tagType a.

1. compare defines a comparison relation over type-indexed tags.

2. show gives a string representation for printing.

2.5 Type Checking

Once we build the grammars with our API, we need to check whether the grammar is

ambiguous or not. For this, we will be using the type system mentioned in section 2.3.

The whole typing rules, along with the proofs for weakening, transfer, and soundness,

are given here [16].

export

typeof : {a : Type }

-> {ct : Vect n Type}

-> {tagType : Type -> Type}

-> {auto _ : Tag tagType}

-> (env : Vect n (LangType (TokenType tagType)))

-> Grammar ct a tagType

-> Either String (Grammar ct a tagType)
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First, let’s see the type of typeof function. There are two arguments: env is a context to

store type information of a language, and the second one is a grammar to type check. The

result will be either the typed checked grammar, or if type checking fails, it returns an error.

The typing requires two contexts, one for ordinary variables and the other for guarded

variables. Guarded variables are variables that must occur to the right of a non-empty

string not containing that variable. This helps in identifying the left-recursive grammars.

But instead of maintaining two contexts, we can have another field called guarded in the

type of language to see whether the variable is guarded or not.

typeof env (MkGrammar _ (Eps x)) = Right (MkGrammar eps (Eps x))

typeof env (MkGrammar _ (Tok c)) = Right (MkGrammar (tok (TokType c)) (Tok c))

typeof env (MkGrammar _ Bot) = Right (MkGrammar bot Bot)

Building the type information for Eps, Bot is simply updating the lang field with type

information by using the respective function from the above type system module.

For Tok c, first we build the token type from tag type c and use the tok function to

construct the type information of the grammar.

typeof env (MkGrammar _ (Alt g1 g2)) =

do

g1' <- typeof env g1

g2' <- typeof env g2

altRes <- alt (g1'.lang) (g2'.lang)

Right (MkGrammar altRes (Alt g1' g2'))

typeof env (MkGrammar _ (Map g f)) =

do

g' <- typeof env g
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Right (MkGrammar g'.lang (Map g' f))

typeof env (MkGrammar _ (Seq g1 g2)) =

do

g1' <- typeof env g1

g2' <- typeof (map addGaurd env) g2

seqRes <- seq (g1'.lang) (g2'.lang)

Right (MkGrammar seqRes (Seq g1' g2'))

For the grammar type of Alt g1 g2, first type check the g1, g2 under the same context.

After that, verify both grammars are disjoint and build the type for Alt using the alt from

the above type system.

The type information of Map g f is just the type information of g, we just type check g

and update the lang of the grammar with new type information.

The interesting case is Seq g1 g2. We first type check the g1, g2, and verify that the

grammars are apart. As we already know that g1 should not be empty, which means every

variable can be in a guarded context for g2; Hence, we update the context while type checking

g2.

typeof env (MkGrammar _ (Fix g)) =

do

l <- fix (\lt => do

lt' <- lt

res <- (typeof (lt' :: env) g)

Right (res.lang))

(if (not l.guarded) then (Left "Error!")

else

do

g' <- typeof (l :: env) g
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Right (MkGrammar g'.lang (Fix g')))

typeof env (MkGrammar _ (Var x)) =

Right (MkGrammar (index (varToFin x) env) (Var x))

Type checking Var x is just looking up the variable at x in the context. But the x is a

de Bruijn variable, so we convert the variable to Nat.

2.6 Parsing Algorithm

In this section, we will go over the algorithm to parse the typed grammar without backtrack-

ing.

public export

Parser : Type -> (Type -> Type) -> Type

Parser a tagType =

List (Token tagType) -> Either String (a, List (Token tagType))

This defines a type alias Parser which takes two parameters:

1. a : Type is the type of the result the parser will produce.

2. tagType : Type -> Type is a higher-kinded type representing the tag associated with

each token.

This function takes:

1. A list of tagged tokens (List (Token tagType)) as input.

2. Returns either:

(a) Left String: a parsing failure with an error message, or
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(b) Right (a, rest): a successful parse result of type a, and the remaining unparsed

tokens.

parse : {a : Type}

-> {ct : Vect n Type}

-> {tagType : Type -> Type}

-> {auto _ : Tag tagType}

-> Grammar ct a tagType

-> ParseEnv tagType ct

-> Parser a tagType

parse (MkGrammar _ (Eps g)) penv = eps g

parse (MkGrammar _ (Tok c)) penv = token c

parse (MkGrammar _ Bot) penv = bot

parse (MkGrammar _ (Seq g1 g2)) penv =

let p1 = parse g1 penv

p2 = parse g2 penv

in

seq p1 p2

parse (MkGrammar _ (Alt g1 g2)) penv =

let p1 = parse g1 penv

p2 = parse g2 penv

in

alt g1.lang p1 g2.lang p2

parse (MkGrammar _ (Map g f)) penv = map f $ parse g penv

parse (MkGrammar _ (Fix g)) penv = fix (\p => parse g (p :: penv))

parse (MkGrammar _ (Var var)) penv = lookup var penv

parse function takes a typed grammar, a parser environment to store parser types( as

grammar also contains the variables that can refer to context ), and then returns a parser.

The function pattern matches the grammar structure and calls the respective combinator to
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construct the parser.

bot : Parser a tagType

bot _ = Left "Impossible"

eps : a -> Parser a tagType

eps v rest = Right (v, rest)

bot is a parser that never succeeds, so it takes the input and returns an error. eps takes

a default value, a list of tokens, and returns the tuple of value and input list of tokens.

token : {a : Type}

-> {tagType : Type -> Type}

-> {auto _ : Tag tagType}

-> (tag : tagType a)

-> Parser a tagType

token tag [] = Left "Expected \{Token.show tag}, reached end of the stream"

token tag (Tok tag' value :: rest) =

case (compare tag tag') of

Eql => Right(value, rest)

_ => Left "Expected \{Token.show tag}, got \{Token.show tag'}"

token builds the parser to parse a token with tag tag. If the input token list is empty,

the parser fails immediately. Otherwise, it compares the expected tag tag with the tag in

the token tag' using the Tag interface’s compare. This is where the compare from the Tag

interface differs from compare from the Ord interface. The compare from the Tag interface

guarantees that the tags are of the same type, and the value that tags carry is also of the

same type.

alt : {tagType : Type -> Type}

-> {auto _ : Tag tagType}
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-> LangType (TokenType tagType)

-> Parser a tagType

-> LangType (TokenType tagType)

-> Parser a tagType

-> Parser a tagType

alt l1 p1 l2 p2 cs =

case head' cs of

Nothing => if l1.null then p1 cs

else if l2.null then p2 cs

else Left "Unexpected end of stream"

Just (Tok tag v) =>

if contains (TokType tag) l1.first then

p1 cs

else if contains (TokType tag) l2.first then

p2 cs

else if l1.null then

p1 cs

else if l2.null then

p2 cs

else

Left "No Progress possible, unexpected token - \{Token.show tag}"

alt is most interesting of all the combinators. It uses the static type information on the

languages formed by the grammar and decides which parser to use. If there is empty input,

it checks which parser can parse an empty token. Otherwise, it sees which parser grammar

starts with the given tag tag and will parse with that parser.

As we can see, it uses just a single lookahead token.

seq : Parser a tagType -> Parser b tagType -> Parser (a, b) tagType

seq p1 p2 cs =
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do

(a, rest) <- p1 cs

(b, rest) <- p2 rest

Right ((a, b), rest)

map : (a -> b) -> Parser a tagType -> Parser b tagType

map f p cs =

do

(a, rest) <- p cs

Right (f a , rest)

fix : (Parser a tagType -> Parser a tagType) -> Parser a tagType

fix f input = f (fix f) input

seq parses the input sequentially in order with the given parsers. map parses the input

with the given parser and then applies the function. fix is the classic fixed-point combinator.

As we know, Idris2 is a strict language unlike Haskell, hence an extra argument (input) is

added to the usual fix implementation to avoid an infinite call sequence.

Full implementation of the library along with documentation is here [4].
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Chapter 3

Examples

Before presenting the examples, we first examine the reduced API to avoid redundant code.

3.1 Reduced API

export

eps : {ct : Vect n Type}

-> {tagType : Type -> Type}

-> {auto _ : Tag tagType}

-> a

-> Grammar ct a tagType

eps v = MkGrammar bot (Eps v)

For example, if we want to build a grammar that parses an empty token, we need to write

MkGrammar bot (Eps v). However, this syntax is verbose and cumbersome when used repeat-

edly. To address this, we define a helper function that abstracts this pattern. Therefore, we

can use eps v instead of more verbose MkGrammar bot (Eps v).

export

bot : {ct : Vect n Type}
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-> {tagType : Type -> Type}

-> {auto _ : Tag tagType}

-> Grammar ct a tagType

bot = MkGrammar bot Bot

export

tok : {ct : Vect n Type}

-> {tagType : Type -> Type}

-> {auto _ : Tag tagType}

-> (tagType a)

-> Grammar ct a tagType

tok tag = MkGrammar bot (Tok tag)

Similarly, we can use bot to build a parser that always fails and tok tag to build a parser

that parses the tokens of tag type.

export

infixl 6 <|>

export

(<|>) : {ct : Vect n Type}

-> {tagType : Type -> Type}

-> {auto _ : Tag tagType}

-> Grammar ct a tagType

-> Grammar ct a tagType

-> Grammar ct a tagType

(<|>) a b = MkGrammar bot (Alt a b)

export

infixl 6 >>>

export
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(>>>) : {ct : Vect n Type}

-> {tagType : Type -> Type}

-> {auto _ : Tag tagType}

-> Grammar ct a tagType

-> Grammar ct b tagType

-> Grammar ct (a, b) tagType

(>>>) a b = MkGrammar bot (Seq a b)

export

infixl 6 $$

export

($$) : {a : Type}

-> {ct : Vect n Type}

-> {tagType : Type -> Type}

-> {auto _ : Tag tagType}

-> Grammar ct a tagType

-> (a -> b)

-> Grammar ct b tagType

($$) a f = MkGrammar bot (Map a f)

For convenience and clear readability, infix operators are used for grammars that have

two arguments. <|> is used for building alternate grammars, a <|> b is very concise and

readable than MkGrammar bot (Alt a b). In the same way, >>> is used for sequencing the

grammars and $$ for the map.

export

fix : {a : Type}

-> {ct : Vect n Type}

-> {tagType : Type -> Type}

-> {auto _ : Tag tagType}
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-> Grammar (a :: ct) a tagType

-> Grammar ct a tagType

fix x = MkGrammar bot (Fix x)

export

var : {a : Type}

-> {ct : Vect n Type}

-> {tagType : Type -> Type}

-> {auto _ : Tag tagType}

-> Var a ct

-> Grammar ct a tagType

var x = MkGrammar bot (Var x)

Finally, we will use fix x and var x instead of long definitions.

3.2 Helper Functions

Let’s define a few helper combinators that can be used across examples.

export

star : {a : Type}

-> {n : Nat}

-> {ct : Vect n Type}

-> {tagType : Type -> Type}

-> {auto _ : Tag tagType}

-> Grammar ct a tagType

-> Grammar ct (List a) tagType

star g = fix (star' g)

where
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star' : Grammar ct a tagType -> Grammar (List a :: ct) (List a) tagType

star' g = eps [] <|> (wekeanGrammar g >>> var Z $$ (\(x, xs) => x :: xs))

First, we will go over the Kleene star function. The combinator star g builds that

grammar that parses either an empty list or it first parses g and then sequentially parses

star g (basically zero or more instances of g). As we mentioned earlier, we will use de

Bruijn indices to refer to the recursive definitions of the functions. Here, var Z refers to

the zeroth grammar in the context. We can observe from the type definition of star', the

zeroth element in context just refers to star g definition(hence the prepended element has

type List a).

export

plus : {a : Type}

-> {n : Nat}

-> {ct : Vect n Type}

-> {tagType : Type -> Type}

-> {auto _ : Tag tagType}

-> Grammar ct a tagType

-> Grammar ct (List a) tagType

plus g = (g >>> star g) $$ (\(x, xs) => x :: xs)

plus g, parses one or more instances of g, which is just a sequence of g and star g. As

star g returns a list, we will prepend the result of g to that list.

export

any : {ct : Vect n Type}

-> {tagType : Type -> Type}

-> {auto _ : Tag tagType}

-> List (Grammar ct a tagType)

-> Grammar ct a tagType
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any gs = foldl (<|>) bot gs

export

maybe : {a : Type}

-> {tagType : Type -> Type}

-> {auto _ : Tag tagType}

-> {ct : Vect n Type}

-> Grammar ct a tagType

-> Grammar ct (Maybe a) tagType

maybe p = any [p $$ Just, eps Nothing ]

export

between : {a, b, c : Type}

-> {ct : Vect n Type}

-> {tagType : Type -> Type}

-> {auto _ : Tag tagType}

-> Grammar ct a tagType

-> Grammar ct b tagType

-> Grammar ct c tagType

-> Grammar ct b tagType

between left p right = (left >>> p >>> right) $$ (\((_, b), _) => b)

These are some frequently used combinators and are self-explanatory by the name, but

here is a short description.

1. any gs - An n-ary version of <|>.

2. maybe p - Tries to parse with p and returns a result on success or nothing.

3. between a b c - Sequentially parses a, b, c in order and then returns between result

ignoring ends.
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Let’s define a few more grammars for parsing characters as tokens. As we have already

seen, the parser takes a list of Token tagType, first, we will give tags to represent characters.

export

data CharTag : Type -> Type where

CT : Char -> CharTag Char

public export

Tag CharTag where

compare (CT x) (CT y) =

case (compare x y) of

LT => Leq

EQ => Eql

GT => Geq

show (CT c) = show c

Here, we use CharTag GADT with one constructor CT that carries a value of type Char.

CharTag will be tagType and CT is the actual tag for a character type. Then we implement

the Tag interface for our char tag type. The compare is straightforward, we just compare the

actual character that the tag carries.

export

char : {ct : Vect n Type} -> Char -> Grammar ct Char CharTag

char c = tok (CT c) $$ always c

export

charSet : {ct : Vect n Type} -> String -> Grammar ct Char CharTag

charSet str = charSet' (unpack str)

where
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charSet' : List Char -> Grammar ct Char CharTag

charSet' [] = bot

charSet' (x :: xs) = char x <|> charSet' xs

char c build a grammar that accepts the character c. For example, char 'a' parses only

if the first token of input matches with character 'a'.

charSet str builds the grammar that accepts any of the characters in the given string.

Below, we present a few more helper grammars built on top of char and charSet.

export

digit : {ct : Vect n Type} -> Grammar ct Char CharTag

digit = charSet "0123456789"

export

lower : {ct : Vect n Type} -> Grammar ct Char CharTag

lower = charSet "abcdefghijklmnopqrstuvwxyz"

export

upper : {ct : Vect n Type} -> Grammar ct Char CharTag

upper = charSet "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

export

word : {n : Nat} -> {ct : Vect n Type} -> Grammar ct (List Char) CharTag

word = (upper >>> star lower) $$ (\(c, cs) => c :: cs)

digit is a grammar that can parse any digit. lower for parsing lower case alphabets and

upper for upper case alphabets.

Similarly, word parses an uppercase letter followed by zero or more lowercase letters.

export

whitespace : {n : Nat} -> {ct : Vect n Type} -> Grammar ct Char CharTag
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whitespace = charSet " \t\n\r"

export

skipSpace : {a : Type}

-> {n : Nat}

-> {ct : Vect n Type}

-> Grammar ct a CharTag

-> Grammar ct a CharTag

skipSpace g = (whitespace >>> g) $$ snd

whitespace parses whitespace, tab, newline, or carriage return. Then skipSpace g skips

if there is any whitespace before g.

3.3 S-expressions

In this section, we will build a parser to parse S-expressions. It is better to separate the

process of lexing and parsing. By having it in separate stages, it becomes easier to handle

things like whitespace, comments, etc.

Whenever we want to build a parser, the suggested flow is

1. Define a data type to represent tokens.

2. Define grammars to parse each token.

3. Combine all the token grammars to write a lexer grammar.

4. Write a parser grammar following the grammar rules.

5. Type check the lexer grammar and use the typed grammar to generate a parser that

takes a string and returns a list of tokens.

38



6. Type check the parser grammar and use the typed grammar to generate a parser that

takes a list of tokens and returns a result(usually an intermediate representation like

AST).

The parsers are generated from the built grammars using the generateParser function

from the library.

For this example, we describe an S-expression as either a word or a list of S-expressions

between left and right parentheses.

export

data SToken : Type -> Type where

Symbol : SToken String

LParen : SToken ()

RParen : SToken ()

Tokens are constructed using the Token constructor from the library. To build the tokens,

we need to define tags. We represent the tags as a GADT, where the tag type is SToken and

tags are just Symbol, LParen, RParen constructors.

So, the type of s-expression tokens is Token SToken and Tag interface is implemented for

the tokens(for code refer Appendix A.1).

symbol : {n : Nat} -> {ct : Vect n Type} -> Grammar ct (Token SToken) CharTag

symbol = word $$ (\s => (Tok Symbol (pack s)))

lparen : {n : Nat} -> {ct : Vect n Type} -> Grammar ct (Token SToken) CharTag

lparen = char '(' $$ always (Tok LParen ())

rparen : {n : Nat} -> {ct : Vect n Type} -> Grammar ct (Token SToken) CharTag

rparen = char ')' $$ always (Tok RParen ())
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symbol recognizes a word and builds a token with Symbol tag and parsed string as value.

lparen recognizes a left parenthesis and builds a token with LParen tag and unit value.

Similarly, rparen recognizes a right parenthesis and builds a token with RParen tag and unit

value.

always p just returns a function which always return p irrespective of the argument.

sexpToken : Grammar Nil (Token SToken) CharTag

sexpToken = fix sexpToken'

where

sexpToken' : Grammar [Token SToken] (Token SToken) CharTag

sexpToken' =

any

[ symbol

, lparen

, rparen

, skipSpace (var Z)

]

We can use the above grammars to build a lexer. The lexer for S-expressions is any of the

symbol, left parenthesis, or right parenthesis. Whitespace between tokens can be skipped

with skipSpace (var Z), which basically parses a whitespace and then refers to the lexer

recursively using the variable.

public export

data Sexp = Sym String | Sequence (List Sexp)

We are going to represent the parsed s-expressions as an ADT Sexp. This is almost the

same as the grammar rules of S-expression, except this is represented in Idris2 data types.

sexpression : Grammar Nil Sexp SToken

sexpression = fix sexpression'
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where

sexpression' : Grammar [Sexp] Sexp SToken

sexpression' =

(tok Symbol $$ Sym) <|>

((between (tok LParen) (plus (var Z)) (tok RParen)) $$ Sequence)

sexpression is the grammar for s-expression parser, which parses either a Symbol token

or a list of s-expressions(at least one) between parentheses.

As we already know from the tag types, a token with Symbol tag returns a value of type

String. So, we map the parsed string to Sym constructor.

In the same way, the plus (var Z) returns a list of parsed s-expressions, which is mapped

to Sequence constructor.

3.4 JSON

We are going to use the following grammar rules, similar to one mentioned here [25], to build

the JSON parser.

value ::= object | array | number | stringLiteral

| "null" | "true" | "false"

obj ::= "{" [members] "}"

arr ::= "[" [values] "]"

members ::= member {"," member}

member ::= stringLiteral ":" value

values ::= value {"," value}

number ::= integerValue | decimalValue

As usual, the first step is to define the tokens. Similar to the S-expressions, we are going

to use a GADT to represent the tags for JSON tokens and then build a grammar to parse

each token.
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public export

data Number = Decimal Double | In Int

data JsonToken : Type -> Type where

TNull : JsonToken ()

TTrue : JsonToken ()

TFalse : JsonToken ()

TNumber : JsonToken Number

TString : JsonToken String

TLBrace : JsonToken ()

TRBrace : JsonToken ()

TLBracket : JsonToken ()

TRBracket : JsonToken ()

TColon : JsonToken ()

TComma : JsonToken ()

JsonToken GADT represents the tag type, and each constructor represents the tag.

Tag interface is implemented for the tokens(for code refer Appendix A.3).

For tokens with tags like TNumber, TString also specifies what value types they are going

to return while parsing in the type of their tag itself. If tokens don’t have any value to carry,

we represent them via the unit type.

lbracket : {ct : Vect n Type} -> Grammar ct (Token JsonToken) CharTag

lbracket = char '[' $$ always (Tok TLBracket ())

rbracket : {ct : Vect n Type} -> Grammar ct (Token JsonToken) CharTag

rbracket = char ']' $$ always (Tok TRBracket ())

lbrace : {ct : Vect n Type} -> Grammar ct (Token JsonToken) CharTag

lbrace = char '{' $$ always (Tok TLBrace ())
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rbrace : {ct : Vect n Type} -> Grammar ct (Token JsonToken) CharTag

rbrace = char '}' $$ always (Tok TRBrace ())

comma : {ct : Vect n Type} -> Grammar ct (Token JsonToken) CharTag

comma = char ',' $$ always (Tok TComma ())

colon : {ct : Vect n Type} -> Grammar ct (Token JsonToken) CharTag

colon = char ':' $$ always (Tok TColon ())

char '[' parses left bracket. In the lbracket, after parsing the left bracket, builds the

token with TLBracket tag, and as we don’t need any value for the left bracket, we use ().

A note about the type Grammar ct (Token JsonToken) CharTag - this means it can take

CharTag as input and returns Token JsonToken as result.

We convert the string to CharTag tokens when passing to a parser, and then it outputs

the JsonToken tokens. It is not a tedious process to convert a string to CharTag tokens, we

have a helper function ‘toTokens‘ that can build character tokens from a string.

Similarly, rbracket, lbrace, rbrace, comma, and colon build the grammars to parse right

bracket, left and right braces, comma separator, and colon respectively.

nullp : {ct : Vect n Type} -> Grammar ct (Token JsonToken) CharTag

nullp = (char 'n' >>> char 'u' >>> char 'l' >>> char 'l') $$

always (Tok TNull ())

truep : {ct : Vect n Type} -> Grammar ct (Token JsonToken) CharTag

truep = (char 't' >>> char 'r' >>> char 'u' >>> char 'e') $$

always (Tok TTrue ())

falsep : {ct : Vect n Type} -> Grammar ct (Token JsonToken) CharTag
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falsep = (char 'f' >>> char 'a' >>> char 'l' >>> char 's' >>> char 'e') $$

always (Tok TFalse ())

nullp builds the grammar that recognizes the four characters n, u, l, l in sequence

and builds the token with tag TNull to represent the null in JSON.

truep, falsep builds the grammars that recognize true, false values, and builds tokens

with respective tags.

fullstringp : {n : Nat}

-> {ct : Vect n Type}

-> Grammar ct (Token JsonToken) CharTag

fullstringp = (char '"' >>> star (compCharSet "\"") >>> char '"') $$

(\((_, s), _) => Tok TString (pack s))

number : {n : Nat}

-> {ct : Vect n Type}

-> Grammar ct (Token JsonToken) CharTag

number = (plus digit >>> maybe (char '.' >>> plus digit)) $$ toNumber

where

toNumber : (List Char, Maybe (Char, List Char)) -> Token JsonToken

toNumber (num, Nothing) = Tok TNumber (In $ cast $ pack num)

toNumber (num, (Just (dot, frac))) =

Tok TNumber (Decimal $ cast $ pack (num ++ [dot] ++ frac))

The interesting grammars are fullstrinp and number

First, fullstringp builds a grammar to recognize a string. A string is anything between

two double quotes. So, we first recognize one double quote, next we sequence with star ( ⌋

compCharSet "\"") which recognizes one or more any ASCII characters other than a double

quote. And then we sequence it to recognize for end double quote. Once it recognizes the
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given thing in order, then it just ignores the end double quotes and builds a token with

TString tag and recognized string value.

star (compCharSet "\"") returns the recognized string as a list of characters, hence we

need to pack using pack to convert to a string while building a token.

In most of the programming we deal the integers and floats separately and have separate

type for them.

For that, a number can be an integer or a floating-point number. So, we represent the

number with Number type, which either contains a double or an integer value.

number first recognizes one or more digits(using plus), then it uses maybe to see if there

is a dot and one or more digits. The maybe grammar can return either a value or nothing.

Depending on that value, we build the token for the number. For example, if maybe returns

nothing, then the recognized number is an integer. We build the token with TNumber and int

value(cast converts the recognized number, which is in string, to an integer in Idris).

jsonToken : Grammar Nil (Token JsonToken) CharTag

jsonToken = fix jsonToken'

where

jsonToken' : Grammar [Token JsonToken] (Token JsonToken) CharTag

jsonToken' =

any

[ lbracket

, rbracket

, lbrace

, rbrace

, comma

, colon

, nullp

, truep

, falsep
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, fullstringp

, number

, skipSpace (var Z)

]

The lexer grammar just assembles the grammars for all JSON tokens and skips any

whitespace between them.

A JSON token can be any of the tokens, one or more whitespace characters followed by

any of the tokens. Recognizing one or more whitespace characters is a recursive grammar,

hence the use of fix and var.

public export

data JsonValue =

JNull

| JBool Bool

| JNumber Number

| JString String

| JArray (List JsonValue)

| JObject (List (String, JsonValue))

We have a lexer that can parse the raw string and construct JSON tokens. Now, we need

to figure out a way to represent JSON values in Idris. We use an ADT to represent the

JSON in Idris.

1. JNull represents the null.

2. JBool Bool represents the boolean values.

3. JNumber represents the number and can have either a double or integer value.

4. JArray (List JsonValue) represents JSON array in a list.
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5. JObject (List (String, JsonValue)) represents JSON object in an association list.

member : {a : Type}

-> {n : Nat}

-> {ct : Vect n Type}

-> Grammar ct a JsonToken

-> Grammar ct (String, a) JsonToken

member x = (tok TString >>> tok TColon >>> x) $$ (\((key, _), val) => (key, val))

json : Grammar Nil JsonValue JsonToken

json = fix json'

where

json' : Grammar [JsonValue] JsonValue JsonToken

json' =

let object = (between

(tok TLBrace)

(sepByComma (member (var Z)))

(tok TRBrace)) $$

JObject

array = (between (tok TLBracket) (sepByComma (var Z)) (tok TRBracket))

$$ JArray

number = tok TNumber $$ JNumber

string = tok TString $$ JString

null = tok TNull $$ always JNull

true = tok TTrue $$ always (JBool True)

false = tok TFalse $$ always (JBool False) in

any [object, array, number, string, null, true, false]

Implementing the actual parser is quite straightforward, it looks almost the same as the

grammar rules, but in a programming language. That’s one of the advantages of representing
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context-free grammars as context-free expressions.

As we already saw from the grammar, we have to parse one or more values, which

automatically suggests using the fix and var to refer to the non-terminal. json is any of the

following JSON values: object, array, number, string, null, true, and false.

number, string, null, true, false are simply parsing the respective tokens and then

mapping them to the respective representation of JSON value.

In the array, the JSON values are separated by commas between the brackets, and the

same is defined using the between helper function. sepByComma g is a helper function that

parses comma-separated values of any grammar g (refer to Appendix A.2 for definition). In

the case of an array, the values are any JSON value, so the recursive definition is referred to

via the variable var Z(first element in context, which is grammar for JSON).

In the object, the members are separated by commas between the braces.

And the member (var Z is a helper combinator to parse the string followed by a colon

before a JSON value.

3.5 IMP Language

For the detailed parser implementation of the IMP language, refer to Appendix A.4.
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Chapter 4

Future Work

Our library provides the combinator API in a first-order style, which simplifies type check-

ing. However, a key drawback of this approach is the need to manually refer to recursive

definitions via variables. This requires careful tracking of types within the context. When

multiple values in the context share similar types, it becomes essential to ensure that the

correct variable is used to reference the appropriate definition.

The original paper [16] also uses a first-order API for grammar construction and type

checking, but its OCaml library [17] exposes a higher-order API. Internally, the library

translates the higher-order API to first-order using the approach described in [3]. While

most combinators were straightforward to translate, we encountered difficulties with the fix

combinator. We were not able to encode enough type information to satisfy the type checker.

In the original OCaml library, this limitation was circumvented by using an unsafe variant

of the combinator.

Although Idris2 provides mechanisms for writing unsafe code, such as believe_me, we

intentionally avoid this approach. We explored various ways of representing types to encode

sufficient information for the type checker, but were ultimately unable to arrive at a working

solution. As such, future work includes identifying a more robust method for translating

higher-order representations to first-order while preserving type safety.
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In addition, we want to explore the meta-programming capabilities available in Idris2 to

enhance the performance of parser combinators. In particular, we are interested in techniques

such as multi-staging [15] as used in the original paper [16].
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Chapter 5

Conclusion

In this thesis, we presented a typed, algebraic parser combinator library for Idris2, offering a

deterministic and performant alternative to traditional backtracking-based combinators. Our

approach enables early detection of ambiguities by leveraging a type system for context-free

expressions. The parsing algorithm from the library uses type information about grammars

to avoid backtracking and ensure linear-time parsing with a single-token lookahead. We

demonstrated the expressiveness and practical utility of the system by implementing parsers

for S-expressions, JSON, and the IMP language. These examples showcased how the type

system not only prevents ambiguous constructions but also aids in constructing complex

parsers through compositional design.
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Appendix A

Related Code

A.1 Tag Implementation for SToken

Tag SToken where

compare Symbol Symbol = Eql

compare Symbol _ = Leq

compare _ Symbol = Geq

compare LParen LParen = Eql

compare LParen _ = Leq

compare _ LParen = Geq

compare RParen RParen = Eql

compare RParen _ = Leq

compare _ RParen = Geq

show Symbol = "Symbol"

show LParen = "LParen"

show RParen = "RParen"
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A.2 Separated By Comma Combinator

sepByComma : {a : Type}

-> {n : Nat}

-> {ct : Vect n Type}

-> Grammar ct a JsonToken

-> Grammar ct (List a) JsonToken

sepByComma g = fix (sepByComma' g)

where

sepByComma' : Grammar ct a JsonToken

-> Grammar (List a :: ct) (List a) JsonToken

sepByComma' g =

eps [] <|> ((wekeanGrammar g >>> maybe (tok TComma >>> var Z)) $$ toList)

where

toList : (a, Maybe ((), List a)) -> List a

toList (x, Nothing) = [x]

toList (x, (Just y)) = x :: (snd y)

A.3 Tag Implementation for JsonToken

Tag JsonToken where

compare TNull TNull = Eql

compare TNull _ = Leq

compare _ TNull = Geq

compare TTrue TTrue = Eql
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compare TTrue _ = Leq

compare _ TTrue = Geq

compare TFalse TFalse = Eql

compare TFalse _ = Leq

compare _ TFalse = Geq

compare TNumber TNumber = Eql

compare TNumber _ = Leq

compare _ TNumber = Geq

compare TString TString = Eql

compare TString _ = Leq

compare _ TString = Geq

compare TLBrace TLBrace = Eql

compare TLBrace _ = Leq

compare _ TLBrace = Geq

compare TRBrace TRBrace = Eql

compare TRBrace _ = Leq

compare _ TRBrace = Geq

compare TLBracket TLBracket = Eql

compare TLBracket _ = Leq

compare _ TLBracket = Geq

compare TRBracket TRBracket = Eql

compare TRBracket _ = Leq
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compare _ TRBracket = Geq

compare TColon TColon = Eql

compare TColon _ = Leq

compare _ TColon = Geq

compare TComma TComma = Eql

compare TComma _ = Leq

compare _ TComma = Geq

show TNull = "TNull"

show TTrue = "TTrue"

show TFalse = "TFalse"

show TNumber = "TNumber"

show TString = "TString"

show TLBrace = "TLBrace"

show TRBrace = "TRBrace"

show TLBracket = "TLBracket"

show TRBracket = "TRBracket"

show TColon = "TColon"

show TComma = "TComma"

A.4 Imp Language Parser

module Examples.Imp

import Data.Vect
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import Data.String

import Grammar

import Var

import Parser

import Token

import Examples.Utils

%hide Prelude.Ops.infixr.(<|>)

{-

Arithmetic Expressions

a ::= n | X | a0 + a1 | a0 - a1 | a0 * a1

Boolean Expressions

b ::= true | false | a0 = a1 | a0 <= a1 | !b | b0 && b1 | b0 || b1 | (b)

Commands

c ::= skip | X := a | c0;c1 | if b then c0 else c1 done

| while b do c done | (c)

-}

keywords : Vect 9 String
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keywords =

["if"

, "then"

, "else"

, "true"

, "false"

, "skip"

, "while"

, "do"

, "done"

]

data Aop = APlus | AMinus | AMult

data Acmp = ALte | AEq

data Bop = BAnd | BOr

data IToken : Type -> Type where

IInt : IToken Int

ILoc : IToken String

IPlus : IToken Aop

IMinus : IToken Aop

IMult : IToken Aop

ITrue : IToken ()

IFalse : IToken ()

IEqual : IToken Acmp

ILTE : IToken Acmp

INot : IToken ()

IAnd : IToken Bop

IOr : IToken Bop
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ISkip : IToken ()

IAssign : IToken ()

ISeq : IToken ()

IIf : IToken ()

IThen : IToken ()

IElse : IToken ()

IDone : IToken ()

IWhile : IToken ()

IDo : IToken ()

ILparen : IToken ()

IRParen : IToken ()

Tag IToken where

compare IInt IInt = Eql

compare IInt _ = Leq

compare _ IInt = Geq

compare ILoc ILoc = Eql

compare ILoc _ = Leq

compare _ ILoc = Geq

compare IPlus IPlus = Eql

compare IPlus _ = Leq

compare _ IPlus = Geq

compare IMinus IMinus = Eql

compare IMinus _ = Leq

compare _ IMinus = Geq
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compare IMult IMult = Eql

compare IMult _ = Leq

compare _ IMult = Geq

compare ITrue ITrue = Eql

compare ITrue _ = Leq

compare _ ITrue = Geq

compare IFalse IFalse = Eql

compare IFalse _ = Leq

compare _ IFalse = Geq

compare IEqual IEqual = Eql

compare IEqual _ = Leq

compare _ IEqual = Geq

compare ILTE ILTE = Eql

compare ILTE _ = Leq

compare _ ILTE = Geq

compare INot INot = Eql

compare INot _ = Leq

compare _ INot = Geq

compare IAnd IAnd = Eql

compare IAnd _ = Leq

compare _ IAnd = Geq

compare IOr IOr = Eql
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compare IOr _ = Leq

compare _ IOr = Geq

compare ISkip ISkip = Eql

compare ISkip _ = Leq

compare _ ISkip = Geq

compare IAssign IAssign = Eql

compare IAssign _ = Leq

compare _ IAssign = Geq

compare ISeq ISeq = Eql

compare ISeq _ = Leq

compare _ ISeq = Geq

compare IIf IIf = Eql

compare IIf _ = Leq

compare _ IIf = Geq

compare IThen IThen = Eql

compare IThen _ = Leq

compare _ IThen = Geq

compare IElse IElse = Eql

compare IElse _ = Leq

compare _ IElse = Geq

compare IDone IDone = Eql

compare IDone _ = Leq
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compare _ IDone = Geq

compare IWhile IWhile = Eql

compare IWhile _ = Leq

compare _ IWhile = Geq

compare IDo IDo = Eql

compare IDo _ = Leq

compare _ IDo = Geq

compare ILparen ILparen = Eql

compare ILparen _ = Leq

compare _ ILparen = Geq

compare IRParen IRParen = Eql

compare IRParen _ = Leq

compare _ IRParen = Geq

show IInt = "IInt"

show ILoc = "ILoc"

show IPlus = "IPlus"

show IMinus = "IMinus"

show IMult = "IMult"

show ITrue = "ITrue"

show IFalse = "IFalse"

show IEqual = "IEqual"

show ILTE = "ILTE"

show INot = "INot"
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show IAnd = "IAnd"

show IOr = "IOr"

show ISkip = "ISkip"

show IAssign = "IAssign"

show ISeq = "ISeq"

show IIf = "IIf"

show IThen = "IThen"

show IElse = "IElse"

show IDone = "IDone"

show IWhile = "IWhile"

show IDo = "IDo"

show ILparen = "ILparen"

show IRParen = "IRParen"

lparen : {ct : Vect n Type} -> Grammar ct (Token IToken) CharTag

lparen = char '(' $$ always (Tok ILparen ())

rparen : {ct : Vect n Type} -> Grammar ct (Token IToken) CharTag

rparen = char ')' $$ always (Tok IRParen ())

intp : {n : Nat} -> {ct : Vect n Type} -> Grammar ct (Token IToken) CharTag

intp = plus digit $$ (\xs => Tok IInt (cast $ pack xs))

stp : {n : Nat} -> {ct : Vect n Type} -> Grammar ct (Token IToken) CharTag

stp = (any [lower, upper] >>> star (any [lower, upper, digit]))

$$ (\((x, xs)) => toToken $ pack (x :: xs))

where
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toToken : String -> Token IToken

toToken "if" = Tok IIf ()

toToken "then" = Tok IThen ()

toToken "else" = Tok IElse ()

toToken "done" = Tok IDone ()

toToken "true" = Tok ITrue ()

toToken "false" = Tok IFalse ()

toToken "skip" = Tok ISkip ()

toToken "while" = Tok IWhile ()

toToken "do" = Tok IDo ()

toToken str = Tok ILoc str

plus : {ct : Vect n Type} -> Grammar ct (Token IToken) CharTag

plus = char '+' $$ always (Tok IPlus APlus)

minus : {n : Nat } -> {ct : Vect n Type} -> Grammar ct (Token IToken) CharTag

minus = ((char '-') >>> (maybe (plus digit))) $$ toToken

where

toToken : (Char, Maybe (List Char)) -> (Token IToken)

toToken (x, Nothing) = Tok IMinus AMinus

toToken (x, (Just rest)) = Tok IInt (cast $ pack (x :: rest))

mult : {ct : Vect n Type} -> Grammar ct (Token IToken) CharTag

mult = char '*' $$ always (Tok IMult AMult)

equal : {ct : Vect n Type} -> Grammar ct (Token IToken) CharTag

equal = char '=' $$ always (Tok IEqual AEq)
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lte : {ct : Vect n Type} -> Grammar ct (Token IToken) CharTag

lte = (char '<' >>> char '=') $$ always (Tok ILTE ALte)

not : {ct : Vect n Type} -> Grammar ct (Token IToken) CharTag

not = char '!' $$ always (Tok INot ())

and : {ct : Vect n Type} -> Grammar ct (Token IToken) CharTag

and = (char '&' >>> char '&') $$ always (Tok IAnd BAnd)

or : {ct : Vect n Type} -> Grammar ct (Token IToken) CharTag

or = (char '|' >>> char '|') $$ always (Tok IOr BOr)

assign : {ct : Vect n Type} -> Grammar ct (Token IToken) CharTag

assign = (char ':' >>> char '=') $$ always (Tok IAssign ())

seq : {ct : Vect n Type} -> Grammar ct (Token IToken) CharTag

seq = char ';' $$ always (Tok ISeq ())

impToken : Grammar Nil (Token IToken) CharTag

impToken = fix impToken'

where

impToken' : Grammar [Token IToken] (Token IToken) CharTag

impToken' =

any

[ lparen

, rparen

, intp

, stp
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, plus

, minus

, mult

, equal

, lte

, not

, and

, or

, assign

, seq

, skipSpace (var Z)

]

public export

data AExp =

VInt Int

| Loc String

| Plus (AExp, AExp)

| Minus (AExp, AExp)

| Mult (AExp, AExp)

Eq AExp where

(VInt i) == (VInt j) = i == j

(Loc id1) == (Loc id2) = id1 == id2

(Plus (a1, a2)) == (Plus (b1, b2)) = (a1 == b1 && a2 == b2)

(Minus (a1, a2)) == (Minus (b1, b2)) = (a1 == b1 && a2 == b2)

(Mult (a1, a2)) == (Mult (b1, b2)) = (a1 == b1 && a2 == b2)

_ == _ = False
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export

Show AExp where

show y = case y of

(VInt i) => "VInt " ++ show i

(Loc id) => "Loc " ++ show id

(Plus x) => "Plus " ++ show' x

(Minus x) => "Minus " ++ show' x

(Mult x) => "Mult " ++ show' x

where

show' : (AExp, AExp) -> String

show' (a1, a2) = "(" ++ show a1 ++ ", " ++ show a2 ++ ")"

public export

data BExp =

VTrue

| VFalse

| Eq (AExp, AExp)

| LTE (AExp, AExp)

| Not BExp

| And (BExp, BExp)

| Or (BExp, BExp)

Eq BExp where

VTrue == VTrue = True

VFalse == VFalse = True

(Eq (a1, a2)) == (Eq (b1, b2)) = (a1 == b1 && a2 == b2)

(LTE (a1, a2)) == (LTE (b1, b2)) = (a1 == b1 && a2 == b2)

(Not x) == (Not y) = x == y
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(And (a1, a2)) == (And (b1, b2)) = (a1 == b1 && a2 == b2)

(Or (a1, a2)) == (Or (b1, b2)) = (a1 == b1 && a2 == b2)

_ == _ = False

export

Show BExp where

show VTrue = "VTrue"

show VFalse = "VFalse"

show (Eq x) = "Eq" ++ showParens True (show x)

show (LTE x) = "LTE " ++ showParens True (show x)

show (Not x) = "Not " ++ showParens True (show x)

show (And x) = "And " ++ show' x where

show' : (BExp, BExp) -> String

show' (b1, b2) = "(" ++ show b1 ++ ", " ++ show b2 ++ ")"

show (Or x) = "Or " ++ show' x where

show' : (BExp, BExp) -> String

show' (b1, b2) = "(" ++ show b1 ++ ", " ++ show b2 ++ ")"

public export

data Command =

Skip

| Assign (String, AExp)

| Seq (Command, Command)

| ITE (BExp, Command, Command)

| While (BExp, Command)

export

Eq Command where

Skip == Skip = True
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(Assign x) == (Assign y) = x == y

(Seq (a1, a2)) == (Seq (b1, b2)) = (a1 == b1 && a2 == b2)

(ITE (b, c1, c2)) == (ITE (b', c3, c4)) = (b == b' && c1 == c3 && c2 == c4)

(While (b1, c1)) == (While (b2, c2)) = (b1 == b2 && c1 == c2)

_ == _ = False

export

Show Command where

show Skip = "Skip"

show (Assign x) = "Assign " ++ show x

show (Seq x) = "Seq " ++ show' x where

show' : (Command, Command) -> String

show' (c1, c2) = "(" ++ show c1 ++ ", " ++ show c2 ++ ")"

show (ITE x) = "ITE " ++ show' x where

show' : (BExp, Command, Command) -> String

show' (b, c1, c2) =

"(" ++ show b ++ ", " ++ show c1 ++ ", " ++ show c2 ++ ")"

show (While x) = "While " ++ show' x where

show' : (BExp, Command) -> String

show' (b, c) = "(" ++ show b ++ ", " ++ show c ++ ")"

paren : {a : Type}

-> {n : Nat}

-> {ct : Vect n Type}

-> Grammar ct a IToken

-> Grammar ct a IToken

paren p = between (tok ILparen) p (tok IRParen)

arith : {n : Nat} -> {ct : Vect n Type} -> Grammar ct AExp IToken
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arith = fix arith'

where

arith' : {n : Nat}

-> {ct' : Vect n Type}

-> Grammar (AExp :: ct') AExp IToken

arith' =

let int = tok IInt $$ VInt

id = tok ILoc $$ Loc

toks = any [int, id]

in (toks >>> maybe (any [tok IPlus, tok IMinus, tok IMult] >>> var Z)) $$

toAExp

where

toAExp : (AExp, Maybe (Aop, AExp)) -> AExp

toAExp (x, Nothing) = x

toAExp (x, Just (APlus, z)) = Plus (x, z)

toAExp (x, Just (AMinus, z)) = Minus (x, z)

toAExp (x, Just (AMult, Plus(a1, a2))) = Plus ((Mult (x, a1), a2))

toAExp (x, Just (AMult, Minus(a1, a2))) = Minus (Mult (x, a1), a2)

toAExp (x, Just (AMult, z)) = Mult (x, z)

bool : {n : Nat} -> {ct : Vect n Type} -> Grammar ct BExp IToken

bool = fix bool'

where

bool' : {n : Nat}

-> {ct' : Vect n Type}

-> Grammar (BExp :: ct') BExp IToken
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bool' =

let true = tok ITrue $$ always VTrue

false = tok IFalse $$ always VFalse

eq = (arith >>> any [tok IEqual, tok ILTE] >>> arith) $$

(\((a1, op), a2) => case op of

AEq => Eq (a1, a2)

ALte => LTE (a1, a2))

te = any [paren (var Z), true, false, eq]

nt = (tok INot >>> te) $$ (\(_, xs) => Not xs)

tes = (te >>> (star (any [tok IAnd, tok IOr] >>> any [te, nt]))) $$

(\(x, xs) =>

foldl (\acc, (op , rem) =>

case op of

BAnd => And (acc, rem)

BOr => Or (acc, rem)) x xs)

ntes = (nt >>> (star (any [tok IAnd, tok IOr] >>> any [te, nt]))) $$

(\(x, xs) =>

foldl (\acc, (op , rem) =>

case op of

BAnd => And (acc, rem)

BOr => Or (acc, rem)) x xs)

in

any [tes, ntes]

command : Grammar Nil Command IToken

command = fix command'

where

command' : Grammar [Command] Command IToken
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command' = (any [baseCommand, paren baseCommand]

>>> maybe (tok ISeq >>> var Z)) $$

(\(b, ms) => case ms of

Nothing => b

Just (_, c) => Seq (b, c))

where

baseCommand : Grammar [Command] Command IToken

baseCommand =

let skip = tok ISkip $$ always Skip

assign = (tok ILoc >>> tok IAssign >>> arith) $$

(\((id, _), aexp) => Assign (id, aexp))

ifelse = (tok IIf >>> bool >>> tok IThen >>> var Z >>> tok IElse >>>

var Z >>> tok IDone) $$

(\(((((((_, b), _), c1), _), c2), _)) => ITE (b, c1, c2))

whiledo = (tok IWhile >>> bool >>> tok IDo >>> var Z >>> tok IDone) $$

(\(((((_, b), _), c), _)) => While (b, c))

in any [skip, assign, whiledo, ifelse]

export

parseArith : String -> Either String AExp

parseArith input = do

lexedTokens <- lexer impToken input

parser arith lexedTokens

export

parseBool : String -> Either String BExp

parseBool input = do

lexedTokens <- lexer impToken input

parser bool lexedTokens
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export

parseCommand : String -> Either String Command

parseCommand input = do

lexedTokens <- lexer impToken (trim input)

parser command lexedTokens

72



Bibliography

[1] Guillaume Allais. “agdarsec – Total Parser Combinators”. In: 2017. url: https://
api.semanticscholar.org/CorpusID:91183833.

[2] Guillaume Allais and idris-tparsec contributors. TParsec — Total Parser Combinators
in Idris. Accessed 30 April 2025. idris-tparsec Project. 2019. url: https://github.
com/gallais/idris-tparsec.

[3] Robert Atkey, Sam Lindley, and Jeremy Yallop. “Unembedding domain-specific lan-
guages”. In: Proceedings of the 2nd ACM SIGPLAN Symposium on Haskell. Haskell
’09. Edinburgh, Scotland: Association for Computing Machinery, 2009, pp. 37–48. isbn:
9781605585086. doi: 10.1145/1596638.1596644. url: https://doi.org/10.1145/
1596638.1596644.

[4] Vamsi Krishna Bellam. idris2-tap — Typed, Algebraic Parser in Idris2. 2025. url:
https://github.com/vamsi-bellam/idris2-tap.

[5] Edwin Brady. Idris 2: Quantitative Type Theory in Practice. 2021. arXiv: 2104.00480
[cs.PL]. url: https://arxiv.org/abs/2104.00480.

[6] N. Chomsky. “Three models for the description of language”. In: IRE Transactions on
Information Theory 2.3 (1956), pp. 113–124. doi: 10.1109/TIT.1956.1056813.

[7] Spiros Eliopoulos and Angstrom contributors. Angstrom — Parser combinators built
for speed and memory efficiency. Accessed 30 April 2025. Inhabited Type LLC. 2016.
url: https://github.com/inhabitedtype/angstrom.

[8] Spiros Eliopoulos and http/af contributors. http/af — High-performance web server
for OCaml. Latest tag v0.7.1 (30 Mar 2021); accessed 30 Apr 2025. Inhabited Type
LLC. 2016. url: https://github.com/inhabitedtype/httpaf.

[9] G. Fischer, J. Lusiardi, and J. Wolff von Gudenberg. “Abstract Syntax Trees - and
their Role in Model Driven Software Development”. In: International Conference on
Software Engineering Advances (ICSEA 2007). 2007, pp. 38–38. doi: 10.1109/ICSEA.
2007.12.

73

https://api.semanticscholar.org/CorpusID:91183833
https://api.semanticscholar.org/CorpusID:91183833
https://github.com/gallais/idris-tparsec
https://github.com/gallais/idris-tparsec
https://doi.org/10.1145/1596638.1596644
https://doi.org/10.1145/1596638.1596644
https://doi.org/10.1145/1596638.1596644
https://github.com/vamsi-bellam/idris2-tap
https://arxiv.org/abs/2104.00480
https://arxiv.org/abs/2104.00480
https://arxiv.org/abs/2104.00480
https://doi.org/10.1109/TIT.1956.1056813
https://github.com/inhabitedtype/angstrom
https://github.com/inhabitedtype/httpaf
https://doi.org/10.1109/ICSEA.2007.12
https://doi.org/10.1109/ICSEA.2007.12


[10] GHC development team. GHC — Glasgow Haskell Compiler. Mirror of the official
repository; accessed 30 April 2025. GHC. 1990. url: https://github.com/ghc/ghc.

[11] Andy Gill and Simon Marlow. Introduction — Happy documentation. Accessed on 30
April 2025. Happy Developers. 2022. url: https://haskell-happy.readthedocs.
io/en/latest/introduction.html.

[12] Dick Grune and Ceriel J. H. Jacobs. Parsing techniques : a practical guide. eng. 2nd
ed. Monographs in computer science. New York: Springer, 2008. isbn: 1-281-10822-7.
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