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Abstract

A key challenge in personalized ubiquitous healthcare is developing
efficient wearable platforms that accurately classify biosignals while re-
maining adaptive to the evolving data patterns particularly highlighting
individual’s personal and other exterior context dynamics. However, sev-
eral challenges plague machine learning applications involving biomedical
signals, including limited data, imbalanced classes, difficulty accessing reli-
able annotated data, and noisy measurements. To this end, we propose an
active learning model ActDiffNet for affective state recognition from mul-
tisensor signals that first leverage only a small annotated data collection
to build an initial classifier, and later iteratively upgrade via a shortlisted
set of synthesized ‘hard’ signals conditionally diffused by those unique
signal patterns, on which the model has not been sufficiently trained yet.
The proposed ActDiffNet converges faster, achieving comparable classifi-
cation performance with 1-2 orders of magnitude fewer labeled samples
than fully supervised approaches to attain a state-of-the-art accuracy of
78%. An effective Context Conditioned Synthetic Signal Generation mod-
ule that employs multiple sensor-specific copies of the conditioned U-Net
to facilitate synthesizing signals that closely mimic the sensor and class-
specific patterns of shortlisted ‘hard’ signals within its generated outputs.
Extensive evaluation using two public datasets WESAD and CASE re-
ports outperformance (e.g., 1.5− 3% improved accuracy) of the proposed
ActDiffNet against state-of-the-art supervised or self-supervised models
while delivering a consistently robust generalization all across.

Keywords: Multisensor Signal, Wearable Device, Emotion Recognition, Data
Augmentation, Diffusion

1 Introduction

In recent years, the research community has shown considerable interest in
biosignal-based approaches to human affective state recognition [4, 5, 6, 18,
23, 31]. The interest extends much beyond Computer Science and emotion AI
[16, 19, 27]. This recent surge of interest in physiological data collection has been
driven by the advent of compact, user-friendly wearable devices, which are capa-
ble of measuring electrocardiogram (ECG), photoplethysmography (PPG), elec-
trodermal activity (EDA), and skin temperature and have therefore facilitated a
streamlined and accelerated process of real-time data collection. Studies show,
that physiological signals, which originate from the autonomic nervous system
(ANS), are often involuntary during certain emotional states, and thereby can
provide more reliable information for emotion recognition than observable phys-
ical expressions [3, 33].

Despite these, the task of continual monitoring of multiple physiological sig-
nals often is presented with several pragmatic challenges. For example, often
the acquired signals are noisy or may as well be missing due to users’ personal
lifestyle choices or environmental interferences. This may impact the system’s
inference performance. While most existing works do not consider such real-
istic challenges into algorithm building, ensuring satisfactory performance in
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several such practical problem-settings continues to face manifold challenges:
First, Emotional perception is subjective and may vary from person to person.
For example, in WESAD dataset, subjects S14 and S17 seem to express their
emotions relatively uniquely compared to other subjects who participated in the
study. However, having a sufficiently large training collection that can deliver
comprehensive representations of all such unique expressions for each emotion
category may not always be guaranteed; Secondly, due to limited annotated
samples, ensuring model generalization is another persistent concern; Finally,
imbalances in datasets (e.g., The CASE dataset shows a severely skewed sam-
ple distribution in its three categories that has 4.44% negative samples; 81.2%
neutral samples; and 14.36% positive samples) may pose as yet another seri-
ous challenge, especially for complex tasks like recognizing and tracking human
emotions; a task that is inherently evolving as well as continually influenced by
an individual’s personal and other exterior context dynamics.

Figure 1: An overview of the proposed ActDiffNet model
To this end, we propose an active learning model ActDiffNet for affective

state recognition from multiple biosensors that first leverages only a small anno-
tated data collection to build an initial classifier and later iteratively upgrade via
a collection of synthesized ‘hard’ signals conditionally diffused by those unique
signal patterns, on which the model has not been sufficiently trained yet. The
proposed multisensor signal augmentation approach is inspired by the recently
proposed Stable Diffusion models[21], which report promising performance in
the multi-channel image synthesis task. In this work, we adopt this approach in
the process of multi-sensor biosignal generation wherein the class and instance-
specific details described using a short text regulate the sensor-specific diffusion
modules to generate signals that closely mimic the patterns of shortlisted ‘hard’
signals (i.e., signals which were not correctly classified by the existing version of
classifier). To summarize, the primary contributions of the proposed ActDiffNet
include:

1. A multisensor affective state recognition framework that is capable of
quickly adapting to rare domain-specific context details using only a short-
listed set of signals, appears more effective in handling the challenges in
an unbalanced training setting.

2



2. An effective iterative multimodal training approach that is particularly
designed to capture instance-level ‘hardness’ both from mode-specific and
multimodal perspectives within the learned model, demonstrates the power
of continual model improvement within an evolving problem environment.

3. Extensive evaluation reporting outperformance of the proposed ActDiffNet
against state-of-the-art supervised or self-supervised models in identifying
various human mental health states like stress and arousal.

2 Related Works

Early emotion recognition research using physiological signals focused on task-
specific feature engineering for effective decision-making. However, these meth-
ods have limited generalizability across different signals, and the task is further
complicated by the high dimensionality of data from multiple wearable devices
[10]. Consequently, recent research has explored deep learning models to predict
emotional states from various physiological signals, including EEG, EMG, EDA,
and ECG [2, 12, 13, 14, 20, 22, 26]. To capture broader temporal contexts, some
studies have also proposed hybrid models for biosignal-based emotion analysis
[9, 15].

Important to note that unlike traditional emotion recognition models that
rely on potentially controllable facial, audio, and textual responses [1, 11], phys-
iological signals are involuntary and less susceptible to manipulation for social
or personal acceptability [37] and thereby have attracted significant attention
from researchers in the last decade. However, due to the lack of a well-balanced
data collection available to train a sophisticated and robust prediction system,
relying exclusively on biosignals has always been challenging.

Recent studies have explored semi-supervised and self-supervised learning
for emotion recognition [7, 28, 34]. These approaches leverage limited labeled
data to define the classification task, while self-supervised contrastive learning
facilitates pre-training. However, data from wearable devices is frequently noisy
and intermittently missing, and existing models often fail to adequately address
these practical challenges. Moreover, designing an optimized SSL framework
in a multisensor data environment is still a challenge. Although a limited set
of existing research[7, 34] propose SSL-based methods for multisensor signals,
data imbalance continues to pose a challenge, which makes these methods less
applicable in real-life problem scenarios.

To this end, we propose an active learning model ActDiffNet for multisensor
biosignal-based affective state recognition that first, leverage a small annotated
data collection to build an initial classifier, and later upgrade using multiple
synthesized samples mimicking the sensor-specific data patterns observed in
a shortlisted set of ‘hard’ signals. An effective context-conditioned diffusion
mechanism that parallelly empowers ActDiffNet to learn multiple sensor-specific
fine-grained data patterns while also enabling the model to preserve the high-
level category details within the generated class-specific multi-sensor biosignals.
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As proved with experimental validations, the backbone U-Net architecture is
sufficiently generic and can seamlessly handle a variety of sensor-specific signal
components without having to rely upon a large annotated and well-balanced
multiclass training collection.

3 Proposed Method

Figure 1 gives an overview of the proposed multisensor fusion network ActD-
iffNet and this section introduces its four modules: Signal Embedding ; Multisen-
sor Classifier ;Active Learning-based Model Training ; and Context Conditioned
Synthetic Signal Generation .

3.1 Problem Definition

Given the dataset D of multisensor signals, where each sample xi ∈ D is repre-
sented by M different sensor-specific signal components and ci is the metadata
specific to xi, the problem objective is to evaluate the emotional state yi of the
subject from whom the multisensor biosignal xi is collected. In our work, sig-
nals generated from three sensors are utilized to represent the emotional state
of an individual. These include: electrodermal activity (EDA), blood volume
pressure (BVP), and skin temperature (TEMP). In particular, each xi as a
multisensor signal is presented as xi = {s1i , s2i , . . . , sMi } and smi ∈ RN×1 repre-
sents a 1D time-domain signal from one of the M different sensors (in our work,
M = 3), where N is the signal length. To ensure notational simplicity, unless
sensor specification is required, we omit the superfix m in smi and denote it as
si instead.

3.2 Signal Embedding

Each normalized si is encoded using a Temporal Convolution Network (TCN)
[17] to obtain its encoded representation ei ∈ RN×de , where de >> 1 is the
embedding dimension determined by the chosen filter length in the last TCN
layer of the network.

Adapted from classical convolutional neural networks (CNNs), temporal con-
volutional networks (TCNs) are specifically designed for sequence modeling.
Their ability to capture long-range temporal dependencies and key signal dy-
namics make them superior to traditional recurrent neural networks (RNNs) for
various time-series analysis tasks and thus well-suited as an encoder network for
our purposes. Each input signal si is processed through a 1 × 1 convolutional
layer followed by two dilated, causal convolutional layers, each with batch nor-
malization, a non-linear activation, and dropout. Residual skip connections
are employed at each layer to maintain consistent input/output dimensionality.
Stacking multiple layers of residual blocks of TCN helps in building multi-level
temporal contexts, as the dilation in each subsequent lth block grows exponen-
tially larger by the factor dl = 2l − 1 and the layer’s convolution is defined
as:
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Fi =

k∑
j=0

f [j]si[t− dl ∗ j] (1)

where f is a convolution filter of size k applied at time t. To preserve the
sequence length, appropriate zero padding is applied at the beginning of the
sequence. The output of the last TCN layer is fed into a pre-projection layer of
dimension 128 to derive ei.

3.3 Multisensor Classifier

Given xi = {e1i , e2i , . . . , eMi }, a multi-sensor signal represented by its sensor-
specific TCN generated encoders, the compact multisensor representation of xi

is defined as ti = e1i ⊕ e2i ⊕ . . . eMi . The collection {ti, yi} is used to train the
classifier head (θ), which is comprised of a three-layer perceptron with GeLU ac-
tivation (followed by dropout) and we apply the Cross Entropy classification loss
on the model’s prediction output P (ti|θ) (where θ represents the classifier pa-

rameter) with ground truth label yi as LCE = CrossEntropyLoss

(
P (ti|θ), yi

)
.

3.4 Active Learning-based Model Training

This paper adopts a classifier-agnostic active learning approach to address the
challenge of unbalanced data collection, where only a limited number of ‘hard’
samples representing certain minority classes or other rare patterns are short-
listed for further explorations. In other words, it establishes an automated
mechanism for selecting a subset of samples, the patterns of which the model
requires revisiting during its later training phase. A simple yet effective un-
certainty sampling mechanism is employed to identify ambiguous data points,
wherein the ‘hard’ samples are selected using one or more of the following cri-
teria: (1) samples that are misclassified by the present classifier; (2) selecting
samples near the classifier’s decision boundary; and (3) choosing samples where
the difference in confidence scores for possible labels is low.

Intuitively, a low maximum confidence score for a sample suggests the model
struggles to understand that type of data. Conversely, a small difference in class
confidence scores indicates the model lacks the discriminative power to identify
those data patterns effectively. Therefore, our interactive sample selection strat-
egy emphasizes updating the model using these ‘hard’ data patterns. To ensure
robustness, we use a high threshold to identify the most relevant ambiguous
samples, which are tagged as ‘hard’. Each of these shortlisted samples is then
passed as input to the following Context Conditioned Synthetic Signal Genera-
tion module (described next) to create synthetic signals of similar types, which
are later used to update the existing version of ActDiffNet end-to-end.

More precisely, the uncertainty scores for an unannotated sample xi ∈ D is
computed as follows:

U1(xi|θ) = max(P (ypi = yi|x), P (ypi ̸= yi|x))
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U2(xi|θ) = |P (ypi = yi|x)− P (ypi ̸= yi|x))|

where ypi represents the predicted class label for xi by the underlying classifier
(θ). Across all experiments conducted, we have identified a sample (xi) as
‘hard’ if U1(xi|θ) < β or U2(xi|θ) < η and we chose β = 0.7 and η = 0.5.
At every iteration of the active learning, we utilize a smaller subset of top-K
‘hard’ samples selected using their total uncertainty score U1 + U2 to upgrade
the existing classifier, and a total of 3 active learning iterations are performed
in all experiments reported in this paper.

3.5 Context Conditioned Synthetic Signal Generation

The proposed context-conditioned synthetic signal generation module extends
the conventional BioDiffusion model [21] by conditioning the model’s uncondi-
tional framework with the BERT embedding (Ci) of a comprehensive metadata
description detailing the unique context (ci) of the input signal (xi). For exam-
ple, a sample in a WESAD dataset is described using text context as ”This is
an EDA signal classified as 0. The subject is a 27-year-old male with a height
of 175 cm and a weight of 80 kg. The subject is right-handed. The signal has a
mean of 0.77, a median of 0.79, and a standard deviation of 0.22. It ranges from
a minimum of 0.39 to a maximum of 1.18. On the day of the study, the subject
had no coffee, not within the last hour, was not in any sports activity, and is a
non-smoker. The subject did not smoke within the last hour and reported feel-
ing healthy on the day of the study.” The inclusion of this detailed description
which also includes its class information, not only regulates the diffusion pro-
cess but also allows for more targeted signal synthesis. Multiple sensor-specific
copies of the U-Net module are designed, wherein each is specialized to syn-
thesize particular sensor and class-specific patterns within its generated output
signal. Given the signal representation provided by the datasets we used for
our experiments, three sensor-specific signal-synthesizing U-nets are used for
the multi-sensor biosignal generation process.

In particular, during forward phase, within a U-Net architecture (detailed
next), each residual block is augmented with both the text embedding vector Ci

and the ongoing diffusion timestep. In the backward phase, the diffusion model
ingests noise drawn from a normal distribution, augmented with two additional
inputs: a text description of the metadata requirement. For example, a sample
from the CASE dataset is described as ”Signal from a participant in 30-34 age
range, who is Female, recorded using BVP signal. Emotional state: 2 arousal,
2 valence. The signal has a mean of -0.01, median of -0.07, and standard
deviation of 0.60. It ranges from a minimum of -1.16 to a maximum of 1.80.”
and an example signal the pattern of which the model is required to mimic while
synthesizing. Following this combination of condition inputs, a convolutional
layer refines the result, ensuring it matches the original signal’s structure. The
rest of the reverse diffusion process focuses on removing the remaining noise and
reconstructing a clean signal that resembles the original.

U-Net Architecture: The U-Net model designed as the backbone of the
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proposed context-conditioned synthetic signal generation module is a convolu-
tional neural network with an encoder-decoder architecture, designed specifically
for effective signal processing. It features a symmetric architecture, consisting of
two main paths: a contraction path (encoder) and an expansion path (decoder).

The encoder uses convolutional and max pooling layers to extract contex-
tual information from the input signal. This compression reduces the input’s
dimensionality, enabling the model to learn inherent patterns and features. The
architecture is composed of several blocks (in our work, we have used 4 encoder
blocks), each with a convolutional layer followed by a residual block. These
residual blocks help learn an identity function and prevent performance degra-
dation as the network deepens. An attention layer follows each residual block,
guiding the model to focus on the most important features for reconstruction.

The decoder pathway expands the compressed feature representation, en-
abling precise signal localization and reconstruction. In a U-Net, upsampling
layers within the decoder increase the resolution of the bottleneck output. Each
upsampling step is followed by a convolutional operation that generates high-
resolution features. A key feature of the U-Net architecture is the use of skip
connections, which concatenate feature maps from the encoder path to the cor-
responding decoder layers. This integration of high-level and low-level features
facilitates accurate localization. By combining the generalized features from
the contraction path with the detailed features from the expansion path, the
network can produce a more precise reconstruction.

The U-Net architecture is central to both training and inference in the pro-
posed signal synthesis module. At each time step, the signal is combined (con-
catenated) with embeddings representing that time step n, and potentially other
conditional information like low-quality signal data or class labels. These em-
beddings provide context, guiding the diffusion process to generate the desired
type of signal. More precisely, the U-Net is trained to reverse the diffusion
process by learning to generate a less noisy signal at time n − 1 from a more
noisy signal at time n. This denoising process is repeated iteratively, stepping
back from the fully noisy state at time N to the original, clean signal at time
n = 0. This reverse process mirrors the forward diffusion, allowing the model
to reconstruct the original signal and complete the U-Net’s training within the
diffusion model framework.

Table 1: Distribution of Samples
Dataset Task Category (no. of samples)

WESAD Emotion-3 baseline (58692), stress (33221), amusement (18584)
CASE Valence-3 negative (3958), neutral (72283), positive (12785)
CASE Arousal-3 low (2228), medium (75738), high (11060)
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Figure 2: The Ablation analysis graphs show the performance improvement of
the proposed ActDiffNet with the increased size of synthetic sample collections
presented via active learning-based training.

4 Experiments

4.1 Datasets

We evaluate our model on the two largest publicly available biosignal-based af-
fective datasets - CASE [30] andWESAD [29]. These datasets exhibit significant
class imbalance across all tasks. The WESAD dataset is primarily composed of
baseline samples, followed by stress samples, with amusement samples being the
least frequent. The CASE dataset shows an even greater imbalance, with neu-
tral samples heavily dominating both valence and arousal tasks, and negative
valence and low arousal categories being significantly underrepresented. This
substantial class imbalance poses a major challenge for building robust emotion
recognition models by the existing methods and thereby prove themselves as
the best testbeds for the proposed ActDiffNet.

4.2 Data Preprocessing

Following the preprocessing protocol followed by Wu et al. [35], CASE and
WESAD dataset signals are collected through sensors with different sampling
frequencies. To have a common sampling frequency, we have downsampled all
signals in these datasets to 4Hz. Then they are segmented into 60s windows,
with 99.5% overlap for WESAD and 99% overlap for CASE dataset. For seg-
ments with multiple labels, the majority label was chosen as the final label,
consistent with previous work [8]. Z-score normalization, as described in [28],
was applied to each subject’s recording to reduce inter-subject variability in
physiological responses. Table 1 shows the class label distribution for the WE-
SAD and CASE datasets, highlighting the representation of each class. The
observed significant class imbalance makes the multi-class classification task,
the focus of this paper, particularly challenging.

The WESAD dataset categorizes physiological responses into three classes:
amusement, stress, and baseline. The CASE dataset supports two distinct clas-
sification tasks: 1) classifying physiological signals into three valence levels (neg-
ative, neutral, positive), and 2) classifying the same signals into three arousal
levels (low, medium, high). These datasets and tasks provide a comprehen-
sive framework for investigating the complex relationships between physiologi-
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cal signals and emotional states, advancing the fields of affective computing and
physiological research.

Table 2: Performance Comparison of the proposed ActDiffNet network model with
multiple state-of-the-art methods using the accuracy and F1-score metrics.

Dataset Task Method Accuracy F1

WESAD Emotion-3

WESAD-Wrist [29] 75.21 64.12
SimpDCNN [24] 78.3 74.59

RF [29] 76.17 66.33
LDA [29] 68.85 58.18
SigRep [8] 78.13 77.35
SSL [35] 78.7 75.98
S&T[25] 69.84 73.86

ActDiffNet (ours) 81.66 79.30

CASE Valence-3

SSL [35] 78.99 76.66
SimpDCNN [24] 59.2 51.95

SigRep [8] 64.83 60.25
MULT [32] 63.14 62.5

CorrNet [36] 65.14 53.00
S&T[25] 70.28 59.87

ActDiffNet (ours) 79.85 78.15

CASE Arousal-3

SSL[35] 85.38 82.63
SimpDCNN [24] 56.8 53.85

SigRep [8] 65.07 61.08
MULT [32] 62.15 58.48

CorrNet [36] 58.22 55.00
S&T[25] 68.36 58.22

ActDiffNet (ours) 85.64 84.37

4.3 Results

We measured model performance using both F1-score and Accuracy metrics, fol-
lowing established evaluation protocols. As outlined in Section 4.1, our analysis
accounts for varying emotion/affective state categories across datasets. Con-
sistent with baseline methodologies (e.g., [8, 29]), our primary evaluation used
Leave-One-Subject-Out (LOSO) cross-validation where P −1 participants’ data
trains the model, with the P th subject’s data reserved for testing - repeated
for all P participants. For the ablation study, we randomly segment the data
collection subject-wise in a 3 : 1 : 1 ratio, a test scenario that imposes a stricter
evaluation condition as it uses data collected from only 60% of subjects for
model training (contrasting with LOSO’s progressive utilization of all but one
participant per iteration), 20% validation, and the remaining 20% subjects for
testing. The tables report the average categorical prediction accuracy and the
average F1 score computed from the set of P iterations.
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Comparative Study The proposed ActDiffNet is evaluated against mul-
tiple state-of-the-art baseline models, which include: SimpDCNN [24]; SigRep
[8]; SSL[35]; MULT[32]; CorrNet [36]; and Sense & Learn framework (S&T)[25].
Table 2 reports the comparative performance of the proposed ActDiffNet against
several state-of-the-art methods. Due to significant class imbalances present in
both datasets, reporting only the Accuracy scores is not enough. There- fore, in
the table, we report the performance details using both the Accuracy and the F1
scores. As observed in the table, compared to SSL [35], the best of the existing
baseline methods, ActDiffNet consistently demonstrates outperformance across
several experiment settings. In particular, ActDiffNet reports around 1.5% (and
2%) improved F1-score in Valence-3 (and Arousal-3) task in CASE dataset and
around 3% (and 2%) improved Accuracy (and F1 scores) in WESAD dataset.

5 Ablation Study:

To evaluate the robustness of ActDiffNet in handling a limited data environ-
ment, in this set of experiments, the initial version of the multisensor classifier
is trained using only a smaller training set that contains 20% less samples com-
pared to the existing methods used as baselines for this work. However, as
observed in Figure 2, this initial classifier quickly upgrades itself via targeted
finetuning on a small number of ‘hard’ samples. For example, compared to the
best baseline SigRep [8], in Emotion-3 task, by using only 1200 additional syn-
thesized samples (which in size forms approximately 2.25% of the total training
collection used by the existing literature), the upgraded model reports a compet-
itive state-of-the-art performance of accuracy (and F1-Score) of 78.18 (77.08).
Finally, with 2000 additional synthesized samples (which in size forms approxi-
mately 3.8% of the total training collection used by the existing literature), the
proposed ActDiffNet attains a competitive accuracy (and F1-Score) of 81.1%
(79.1). A similar performance trend is also observed in Valence-3 and Arousal-3
tasks, where the model requires 900 (which in size forms approximately 1.67%
of the total training collection used by the existing literature) samples to report
a performance equivalent to its best-performing baseline SSL[35]. Finally again,
with 2000 additional synthesized samples, the proposed ActDiffNet attains com-
petitive performance metrics, which exceeds SSL[35], the best-performing base-
line’s performance by around 2− 3%.

6 Conclusion

This paper presents an effective active learning-based framework for multisen-
sor affective state recognition that effectively synthesizes minority patterns via
sensor-specific diffusion modules, conditioned on a text-based description high-
lighting individual’s personal and other exterior context dynamics. The pro-
posed ActDiffNet achieves state-of-the-art performance by significantly outper-
forming existing models, while requiring a considerably smaller data collection
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for training. Despite these advancements, due to its targeted finetuning on the
identified ‘hard samples’ there is a risk of bias in the model’s interpretation of
these patterns. Future work includes adaptive thresholding and signal diversity
analysis for enhanced system robustness.

7 Future Work

While our current approach demonstrates strong performance, there remains
significant room for improvement. In future work, we plan to explore the inte-
gration of large language models (LLMs) for the fair and adaptive synthesis of
biological signals. This will enable the model to better capture underrepresented
and rare data patterns. The main goal is improving generalizability and robust-
ness across diverse subjects and conditions. Additionally, we aim to investigate
advanced self-supervised learning techniques and multi-modal fusion strategies
to further enhance emotion recognition accuracy, particularly in low-resource or
imbalanced settings.
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