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Abstract—With the rise of social media, people are sharing
content in many different forms like text, audio, and video,
at an unprecedented scale. Although this has allowed greater
expression and connection, it has also led to an increase in
harmful and hateful content online. Most existing research
focuses on hate speech detection in text, overlooking the rich and
complex signals embedded in videos. In this project, we present
a multimodal deep learning approach to detect hate speech in
videos by combining visual, audio, and textual features. Using the
HateMM dataset, we extract features from video frames using
a Vision Transformer (ViT), audio using MFCCs, and spoken
content using automatic speech recognition followed by BERT
embeddings. A key strength of our model is its flexibility, It is
designed to operate not only with all three modalities, but also
in scenarios where one or more modalities are missing. Whether
only text, only audio, or partial combinations are available, the
system still delivers strong performance. Our evaluation with 5-
fold cross-validation shows that this adaptable, fused architecture
outperforms unimodal baselines and represents a step toward
robust and scalable hate speech detection across different types
of media content.
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I. INTRODUCTION

Nowadays, social media platforms have evolved into
powerful communication channels where users express
opinions through a variety of formats through text, images,
audio, and video. This explosion of content brings with it the
increased risk of online hate speech dissemination. Although
automated detection of hate speech in text has received
substantial attention in recent years, hateful content in video,
where abusive cues may lie in tone, visuals, or transcribed
speech, remains an underexplored but critical challenge [15]
[12].

Traditional hate speech detection systems primarily focus
on textual data, which often misses important clues like the
tone someone uses when speaking, or aggressive expressions
in a video. This limitation makes such models ineffective
for platforms like BitChute or YouTube, where hate is often
masked in sarcasm, emotionally charged speech, or visual
symbols [5] [12] [14]. Moreover, real-world video data
often suffers from missing or noisy data, such as failed

speech transcription or poor frame quality—posing additional
challenges that many traditional models are not designed to
handle [1] [8].

A major challenge in multimodal hate speech detection is
the lack of large-scale high-quality datasets, especially those
focused on video content. Although many existing datasets
target textual hate speech, few include the synchronized
audio and visual elements needed to understand how hate
is conveyed in real-world multimedia posts [1] [4] [14].
This has limited the development and evaluation of models
that go beyond simple text classification. In this context,
the HateMM dataset introduced by Das et al. [2] provides a
valuable foundation. It includes diverse and annotated video
content collected from BitChute, enabling research on how
hate manifests itself in visual, audio, and text modalities.
Building on this resource, we propose a deep learning-based
model that integrates features from all three modalities,
visual, audio, and text, to detect hate speech more effectively.

Previous work has shown the value of incorporating multiple
modalities into hate speech detection and sentiment analysis
tasks [3] [4] [6], but few models explicitly support flexible
modality configurations. To overcome these issues, we adopt
a modular architecture that builds separate unimodal branches
for text, audio, and visual inputs, along with a fusion mech-
anism that can gracefully handle missing modalities during
inference. This design results in several key contributions:

• A flexible deep learning model that can work with any
available combination of text, audio, or video, making it
practical and reliable even when some parts of the input
are missing or noisy.

• A fusion strategy that improves reliability across diverse
content types and enhances moderation capabilities at
scale.

• Strong performance gains over unimodal baselines, val-
idated through comprehensive 5-fold cross-validation on
a real-world dataset.

Together, these contributions help pave the way for more
inclusive, scalable, and context-aware hate speech detection
systems.



II. RELATED WORK

Hate speech detection has been a widely studied area in
natural language processing (NLP), especially for platforms
like Twitter and Facebook. Early methods relied on traditional
machine learning techniques using manually crafted features
from text data [14] [15]. More recently, deep learning models
such as CNNs, RNNs, and transformer-based architectures
like BERT have demonstrated strong performance on various
hate speech benchmarks [5] [6] [11].

While these models perform well on text data, they fall
short in handling scenarios where hate speech can also be
conveyed through tone, facial expressions, or visual context.
Recognizing this gap, researchers have begun to explore
multimodal detection approaches. Boishakhi et al. [3] and
Khera et al. [4] proposed models that combine audio and text,
or visual and text cues, to detect hate speech more accurately.
However, these approaches often assume all modalities
are available during inference, which limits their practical
application due to the noisy data in a real-world scenario.

The HateMM dataset introduced by Das et al. [2] is among
the first to provide a well-annotated, real-world video dataset
for hate speech detection with multimodal. Their baseline
models showed improved performance using a combination
of modalities, thus confirming the benefit of multimodal
learning in this space.

Further studies like Malik et al. [8] and Mnassri et al.
[9] benchmark deep learning architectures across multiple
hate speech datasets and show how pre-trained models and
ensemble strategies can further boost performance. Fonseca
et al. [10] delve into hate speech dynamics on Twitter,
suggesting that user interactions and conversational threads
also contribute to effective detection.

While these contributions advance the field, few works
directly address the issue of modality dropout or flexible input
fusion, which is crucial for scalable deployment. Our model
closes this gap by allowing inference with any combination
of available modalities like text, audio, or video, making it
highly practical for real-world scenarios.

III. DATASET

For this study, we use the HateMM dataset introduced by
Das et al. [2], a multimodal benchmark specifically curated
for hate speech detection in online videos. The dataset
consists of approximately 1,083 videos (around 43 hours)
collected from BitChute, a video-sharing platform known for
hosting controversial and minimally moderated content. Each
video is manually annotated as either Hate or Non-Hate.
For hate-labeled videos, annotators have also marked time-
stamped segments where hate speech occurs and identified

the target group or community. These target groups include
Blacks, Jews, Whites, Asians, LGBTQ individuals, and others.

Fig. 1. Distribution of Video Labels

To better understand the composition of the dataset,
Figure 1 presents the distribution of hate and non-hate
videos. While there is a moderate imbalance with non-hate
videos forming the majority, this distribution is beneficial
for practical applications. Identifying non-hate content often
requires more nuanced judgment, as it involves verifying
context and intent, whereas hate speech can sometimes
be easily recognized by the presence of explicit slurs or
aggressive language. Therefore, having a larger proportion of
non-hate examples not only reflects real-world data but also
supports the development of models that are more cautious
and precise in distinguishing between offensive and benign
content.

Fig. 2. Target Groups in Hate-Labeled Videos

Figure 2 provides insights into the demographic groups
targeted in hate-labeled videos. The chart shows that hate
speech is disproportionately directed at the Black community,
which accounts for 67.8% of the hateful content. This is
followed by content targeting Jews (17.3%) and others
(10.4%), with smaller proportions aimed at Whites (3.6%)
and LGBTQ individuals (0.9%).

IV. METHODOLOGY

Our multimodal hate speech detection model is designed
to process and integrate information from three modalities:
visual, audio, and textual. The architecture is built in a modular



Fig. 3. The Workflow

way, where each modality is handled separately using its
own feature extractor. Once the individual embeddings
are generated, they are brought together through a fusion
mechanism that combines them for the final classification.
The model is designed to remain functional even when one or
more modalities are missing or corrupted, which is often the
case in real-world video data. An overview of the workflow
is illustrated in Figure 3.

A. Preprocessing
Each video is first segmented into fixed-length clips of 10

seconds. For each clip, we perform initial preprocessing by
extracting frames and audio:

• Frame Extraction: Using OpenCV, we extract 100
frames at a rate of 1 frame per second and store them
as images.

• Audio Extraction: Using MoviePy, we extract the audio
track from each video clip and save it as a WAV file.

These raw modality components are then processed through
their respective feature extraction pipelines, as described
below.

1) Text Embeddings: We convert the extracted audio into
text using the Vosk automatic speech recognition (ASR)
model. The transcriptions are cleaned by removing filler
words, special characters, and punctuation. We tokenize the
cleaned text using the BERT-base-uncased tokenizer and feed
the tokens into a pre-trained BERT model.

The [CLS] token from the final layer is used as the semantic
representation of the clip, resulting in a 768-dimensional
text embedding. If no valid transcription is produced due to
silence, poor audio quality, or ASR failure, we replace the
text embedding with a zero vector of size 768, and the model
receives a flag indicating the modality is missing.

2) Audio Embeddings: We use the previously extracted
audio tracks and compute Mel-Frequency Cepstral Coefficients
(MFCCs) using the Librosa library. These features effectively
capture speech characteristics such as tone, pitch, and vocal
timbre.

For each clip, we extract 20 MFCC coefficients over time
and aggregate them by computing the mean and standard
deviation, resulting in a (20, 2) matrix per clip and then
flattened into a 40-dimensional vector. These embeddings
summarize the acoustic signature of the audio and help
identify emotional cues commonly associated with hate
speech, such as anger or sarcasm. If the audio is missing
or fails to process, we use a zero vector of size 40 in place
of the audio embedding, and the model is informed that the
audio modality is absent

3) Vision Embeddings: For each video clip, we extract
100 frames at 1 frame per second using OpenCV. These
frames are resized to 224×224 pixels and normalized with
ImageNet statistics. Each frame is then passed through a
pre-trained Vision Transformer (ViT-B/16) using Hugging
Face’s implementation, and we extract the [CLS] token



(768-dimensional) from the final layer for each frame.

This results in a sequence of 100 frame-level embeddings,
each of size 768, which captures temporal visual context
including gestures, facial expressions, and scene-level
features. If fewer than 100 frames are successfully extracted,
the missing embeddings are padded with zero vectors to
maintain a consistent input shape of (100, 768). A modality
flag is also set to indicate whether the visual input is complete
or partially missing.

B. Model Architecture
Once we obtain the final embeddings from each modality

they are passed through dedicated neural network modules
tailored to transform them into a uniform representation space.
These transformed embeddings are then fused and used for
classification. Each sub-model is designed to be lightweight
yet expressive, and the overall architecture supports flexible
combinations of modalities during inference.

1) Text Model: The text model is a fully connected neural
network that takes the 768-dimensional embedding produced
by the BERT model as input. It consists of three linear
layers with Layer Normalization, Leaky ReLU activation,
and Dropout for regularization. The first layer reduces the
dimensionality from 768 to a hidden size, followed by another
reduction, and finally maps to a fixed 64-dimensional output
embedding. This 64-dimensional representation is used in the
final fusion step.

2) Audio Model: The audio model shares the exact same
architecture as the text model. It takes the 40-dimensional
MFCC-based audio embedding as input and processes it
through the same sequence of linear layers, normalization,
activations, and dropout. This design choice allows the model
to treat audio and text features uniformly during fusion,
simplifying integration while maintaining modality-specific
learning.

3) Vision Model: The vision model is implemented using
a bidirectional LSTM with attention. It takes the (100,
768) sequence of frame-level embeddings obtained from the
Vision Transformer (ViT). The LSTM processes this temporal
sequence and outputs contextualized hidden states for each
frame. An attention mechanism is applied to weigh the
importance of each frame, and a context vector is generated
via a weighted sum. This vector is then passed through a
two-layer feedforward network with Layer Normalization,
ReLU, and Dropout, resulting in a 64-dimensional visual
embedding.

4) Final Model: The final classification model,
Combined model, takes the 64-dimensional embeddings
from the text, audio, and vision models and combines them. It
also accepts flags indicating whether each modality is present.

These flags are used to assign normalized weights to the
modality outputs. Each embedding is scaled accordingly, and
the three embeddings are concatenated into a 192-dimensional
fused vector.

This fused representation is passed through a feedforward
classification head consisting of Layer Normalization, a
hidden layer with ReLU activation and Dropout, and a
final linear layer that outputs class logits (e.g., Hate vs.
Non-Hate). This design ensures the model remains functional
and accurate even when one or more modalities are missing
during inference.

V. RESULTS

In this section, we present the training setup, evaluation
metrics, and comparative performance analysis of our
multimodal hate speech detection system. Our experiments
are designed to assess not only the individual and combined
performance of different modalities but also the model’s
robustness across varying data splits. To ensure reliability
and generalizability, we employ 5-fold cross-validation and
perform final evaluation using ensemble predictions based on
majority voting.

A. Training

Fig. 4. 5-Fold Cross Validation techinque

To validate the performance of our model, we adopt a
5-fold cross-validation strategy using StratifiedKFold from
scikit-learn [16]. As illustrated in Figure 4, the entire dataset
is first merged and then split into five stratified folds. This
ensures that each fold maintains the original class distribution,
preserving the balance between hate and non-hate samples.

For each fold, we reserve a portion of the training data as
a validation split (10% of the training fold), resulting in three
subsets per fold: training, validation, and test. This procedure
helps ensure that the model is evaluated under consistent
and balanced conditions while making optimal use of the
available data.

We train the model independently on each fold using a
batch-based training loop and an Adam optimizer. For each
epoch, the model is evaluated on both the validation and test



sets. The best performing model (in terms of macro F1-score
on the validation set) is selected and its corresponding test
set performance is saved.

After all five folds are completed, we save fold-wise
predictions and metrics. These are later used for majority
voting during ensemble evaluation. This cross-validation
approach provides a more reliable estimate of model
performance compared to a single train-test split. It helps
reduce variance in evaluation, ensures better use of limited
labeled data, and allows us to observe how consistent the
model is across different data partitions.

B. Evaluation and Comparison
We evaluate our multimodal hate speech detection model

using both 5-fold cross-validation and hold-out validation
strategies. The model integrates features from text (BERT),
audio (MFCC), and video (ViT) modalities and is assessed
using commonly used performance metrics: accuracy, macro-
F1 score, F1 score, precision, recall, and area under the curve
(AUC).

Fig. 5. Performance across 5-fold Cross Validation

Figure 5 shows the performance of our model across the
five cross-validation folds. Each line in the graph represents
a different evaluation metric: accuracy, macro-F1, AUC,
precision, and recall. As shown, the metrics remain relatively
consistent across folds, with minimal fluctuation. Accuracy
and macro-F1 consistently remain above 75%, while AUC
maintains stability close to 0.76. Although some variance is
observed in precision and recall, especially between folds 2
and 4, the overall trend demonstrates the model’s robustness
across different data splits.

The recall scores are slightly lower and more variable
compared to other metrics, which suggests the model is
slightly conservative in flagging hate speech—favoring
precision over false positives. Despite this, the high macro-F1
score indicates balanced performance across both hate and
non-hate classes. Overall, these results confirm that our
multimodal architecture performs reliably and generalizes
well, even when evaluated across different test subsets.

1) Unimodal vs Multimodal Comparison: To further vali-
date the strength of our multimodal fusion approach, we com-
pare the performance of the final combined model with each
of its unimodal components. Table I presents this comparison.

TABLE I
UNIMODAL VS MULTIMODAL PERFORMANCE

Model Accuracy Precision Recall F1 Score
Text (BERT) 79.13% 0.78 0.65 0.71
Audio (MFCC) 67.50% 0.73 0.65 0.62
Video (ViT) 75.60% 0.69 0.65 0.73
Multimodal (BERT + ViT + MFCC) 83.37% 0.84 0.74 0.75

As observed, the combined model clearly outperforms
the individual modality models in every metric. Notably, it
achieves a significantly higher precision of 0.84 and overall
accuracy of 83.37%, indicating that integrating features from
all three modalities enables the model to make more confident
and correct predictions. This supports the conclusion that
multimodal fusion leads to more context-aware and accurate
hate speech detection.

2) Benchmark Comparison: To further validate the ef-
fectiveness of our approach, we compare our final model’s
performance against several baseline models reported in the
HateMM dataset paper. These include both unimodal and mul-
timodal configurations that use combinations of textual, audio,
and visual features. Table II summarizes this comparison.

TABLE II
IMPROVEMENT OVER HATEMM BENCHMARK MODELS

Model Type Benchmark Accuracy Our Accuracy Improvement
Text (fastText) 68.7% 79.13% +10.43%
Text (BERT) 73.5% 79.13% +5.63%
Audio (MFCC) 67.5% 67.50% +0.00%
Vision (ViT) 74.8% 75.60% +0.80%
Multimodal (BERT ViT MFCC) 79.8% 83.37% +3.57%

As shown in Table II, our model consistently outperforms
several key baselines reported in the HateMM benchmark.
The most significant gain is observed over the text-only
fastText model, where we achieve an improvement of over
10.43% in accuracy. Our BERT-based text model also
surpasses the benchmark BERT baseline by 5.63%. For the
vision modality (ViT), we improve slightly by 0.80%, and
match the audio (MFCC) performance exactly, confirming
alignment in modality-specific feature extraction.

Most notably, our full multimodal system surpasses the
strongest baseline (M1: BERT ViT MFCC) by 3.57% in
accuracy and 2.89 points in macro-F1 score, underscoring
the effectiveness of our fusion strategy. Unlike many
benchmark models, our architecture is designed to flexibly
accommodate missing modalities during inference, making
it more robust and applicable to real-world scenarios where
data incompleteness is common.

These improvements reflect the benefits of our modular
design, which leverages specialized encoders for each
modality, a bidirectional attention-based video model, and a



dynamic fusion mechanism. Together, they enable the system
to integrate multimodal signals more effectively, leading to
better generalization and more reliable hate speech detection
in diverse multimedia content.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented a robust and flexible multimodal
deep learning approach for hate speech detection in video
content. By integrating features from text, audio, and vision
using modality-specific encoders and a dynamic fusion
strategy, our model outperforms several strong unimodal and
multimodal baselines on the HateMM dataset. The system
demonstrates consistent performance across 5-fold cross-
validation and maintains effectiveness even under missing
modality conditions, making it well-suited for real-world
deployment.

Future Work: While our results are promising, there are
several avenues for improvement. First, the HateMM dataset,
despite being one of the few multimodal video-based hate
speech benchmarks, is relatively limited in scale, with only
1,083 annotated videos. Expanding this dataset with a broader
and more balanced representation of targeted communities
would help improve generalizability and reduce dataset bias,
especially given the current skew toward certain demographic
groups.

Second, our current visual processing approach extracts uni-
formly sampled frames from each clip, which may not always
capture the exact segments where hate speech is conveyed.
A promising direction is to enhance the model to localize
hateful segments more precisely within the video, essentially
identifying the specific timestamps where hate occurs. This
would not only improve classification accuracy but also offer
significant practical value for real-time content moderation
platforms such as YouTube, Instagram, or TikTok by allowing
targeted review and removal of hateful content.

These extensions would further elevate the effectiveness and
applicability of our system in building safer and more inclusive
online platforms.
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