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Abstract—Quadrupedal robots, with their complex walking
patterns, can traverse difficult terrain where wheeled robots fal-
ter. Creating a controller for these robots presents challenges due
to the necessity to adapt to diverse terrains and the complexity
involved in the walking behavior. Recently, controllers learned
through Deep Reinforcement Learning have made significant
progress by emulating the experiential learning seen in animals.
Past methods relying exclusively on proprioceptive feedback often
depend on predefined motion patterns or gaits, and their reward
mechanisms are often influenced by these motion patterns. Our
study presents a learned controller that depends uniquely on pro-
prioception, achieving strong locomotion in tough environments
without using predefined motion patterns or gaits, relying on
gait-independent rewards.

I. INTRODUCTION

Quadrupedal animals excel in navigating challenging ter-
rains, largely due to the complex walking patterns enabled
by their advanced proprioceptive sensing. Although vision
is crucial for long-term trajectory planning, effective terrain
interaction is vital for achieving stable locomotion and agile
movement. Traditional methods for quadrupedal locomotion
involve complicated dynamic and kinematic modeling of both
robots and environments, requiring significant human effort for
model development and parameter optimization. Additionally,
the simplifying assumptions needed for such models can
restrict the robots’ locomotion abilities. [1]–[4]

Recent approaches using reinforcement learning (RL) for
locomotion control have shown significant advancements by
training in simulations and learning through experience. [5]–
[10] Among these, methods incorporating terrain height infor-
mation in simulations and predicting it via exteroception in
real-world settings perform better in trajectory planning and
obstacle climbing [7], [10]. However, robust use of proprio-
ception remains crucial, as exteroception using RGB cameras
can fail in challenging environments or lighting conditions,
and 3D lidar point clouds may misidentify obstacles like tall
grass or misinterpret pliable surfaces like snow as passable.
In such scenarios, relying on proprioceptive sensing through
IMU and joint encoders is essential due to their lightweight
and dependable nature. [7]

Additionally, locomotion methods relying solely on propri-
oception to navigate difficult terrains, like stairs, often use
motion priors or predefined gaits [5], [11]. However, these pre-
designed gaits or motion priors restrict legged robots’ adapt-

Fig. 1: Top: The Unitree GO2 robot begins ascending stairs approximately
16–17 cm in height. It first interacts with the steps to estimate their height,
then adjusts its fooot trajectory accordingly to initiate the climb. Bottom: The
same robot performs a descent on the same staircase.

ability to challenging terrains and limit the agility needed for
dynamic maneuvers, especially in smaller robots [12]. Thus,
a learning framework capable of achieving robust locomotion
through proprioception without motion priors or predefined
gaits is necessary. Recent studies suggest that by creating gait-
independent rewards based on terrain interactions, it is possible
to develop visually appealing gaits, or by minimizing energy
use, emergent gaits can be formed [6], [12].

This paper introduces a framework leveraging Deep Re-
inforcement Learning to develop a robust locomotion policy
for quadrupedal robots, utilizing gait-independent rewards for
successful transfer to real robots without exteroception. The
contributions are:

1) A reinforcement learning framework designed to work
from simulation to reality with gait-independent rewards,
enabling robust locomotion learning without relying on
external perception.

2) An improved method for enhancing Sim-to-Real transfer
of learned controller results over existing techniques.



Fig. 2: Overview. By learning a locomotion policy in a simulation through gait
independent rewards, the robot can walk through challenging terrains such as
stairs and random obstacle and then this policy can be transferred on a real
robot using Imitation Learning.

II. METHOD

A. Preliminaries

The environment in this paper is modeled as
an infinite-horizon partially observable Markov
decision process (POMDP), represented by the tuple
M = (S,H,A, d0, p, r, γ). The continuous complete state,
partial observation, and action spaces are given by s ∈ S,
h ∈ H, and a ∈ A, respectively. The environment starts with
an initial state distribution d0(s0), evolves according to the
state transition probability p(st+1|st, at), and each transition
is associated with a reward function r : S × A → R. The
discount factor γ is within [0, 1). At time t, a temporal
history observation covering the previous T observations is
described as hT

t =
[
ht ht−1 . . . ht−T

]T
. A privileged vector

pt denotes the subset of the full state information inaccessible
to the real robot, expressed as st = ⟨pt,ht⟩. Furthermore,
the privileged encoding vector lt represents a latent encoding
of the privileged vector pt and the history encoder vector
et, which includes a latent encoding of the temporal history
observations hT

t .

B. Teacher Policy

We develop a teacher policy that operates with access to the
complete state information within a simulated environment.
While this is referred to as a full state, privileged observations
are constrained to enable their latent encoding to be effectively
approximated by a temporal history of partial observations,
specifically proprioceptive history. For example, terrain height
measurements are limited to a 10 cm radius around each foot
rather than a larger rectangle ( 1.6 m x 1 m) utilized by others
employing exteroception. We employ PPO to train the teacher
policy to optimize upon a policy that achieves the maximum
expected returns.

1) Actor-Critic Network: The actor or the policy network,
πθ(at|lt,ht) is a neural network parameterized by θ that infers
an action at, privileged latent vector, lt and partial observation
ht, where pt is computed using privileged encoder MLP µ(.)
Formally,

µ(pt) = lt (1)

πθ(lt,ht) = at (2)

The critic network is designed similarly, but it outputs the
value of the state st, represented as V(st).

2) Action Space: The action space is a 12 × 1 vector,
at, corresponding to the desired joint angle of the robot. To
facilitate learning, we train the policy to infer the desired joint
angle around the robot’s default stand still pose, θdefault. Hence,
the robot’s desired joint angle is defined as

θtarget = θdefault + at. (3)

The target joint angles are converted to torques by an actu-
ator network that has been specifically trained for the robot
intended for policy deployment.

3) Rewards: We define reward functions and their coeffi-
cients as shown in the table I. The reward function is designed
for following objectives:

1) To follow the given velocity and turning commands.
2) To achieve a good foot clearance for the terrain obstacles

surrounding the feet.
3) To achieve a efficient and natural walking behavior.

The linear and angular velocity rewards are related to the
first objectives. Instead of making it follow the exact velocity
commands we give it a velocity direction in XY plane and
compute MSE of the the projected velocity in that direction
vpr with 0.6. This type of velocity reward closely follows [5].
The foot clearance reward pertains to the second objective,
following [5], but it is defined in a gait-independent way. A key
insight is that foot swing can be determined through terrain
interaction, allowing the use of this reward without motion
priors or predefined gaits. We define Swing as the time period
between two consecutive foot contacts with the terrain, which
can be easily retrieved from the simulation environment. This
swing definition has been previously utilized for feet airtime
reward [6], and we extend it to the feet clearance reward.
To our knowledge, this work is the first to define a gait-
independent foot clearance reward.
The additional rewards focus on the third objective, with feet
airtime and power consumption being pivotal for achieving
a natural and efficient gait. The airtime reward encourages a
more natural gait appearance, while the power consumption
reward promotes symmetry and efficiency in gait. The feet
airtime reward closely resembles the approach in [6], and
the power consumption reward is akin to [12]. Most of the
remaining reward functions are influenced by the rewards in
[6].

In Table I, cmd stands for command, and i denotes a foot
index. The variable tair,f indicates the time elapsed since the
last takeoff, resetting to zero at each touchdown. In the foot
slip reward, Cf,i is the contact state for each foot. For the foot
clearance reward, Iswing represents the number of feet in the
Swing phase, and the set of collision-free feet is defined as
Fclear = {i : rf,i > max(Hscan,i), i ∈ Iswing}, with Hscan,i

being the set of scanned heights around the i-th foot.
We define a positive reward sum as rpos = rv +
rω +

∑3
i=0 rair,i and a negative reward sum as rneg =



TABLE I: Reward Functions

Reward Expression

Linear velocity rlv =


exp

(
− 4.0 (vpr − 0.6)2

)
, vpr < 0.6

1.0, vpr ≥ 0.6

0.0, zero command

Angular velocity rω = kωexp(−4.0(cmdωz − ωz)2)

Airtime rair =
∑4

f=0

(
tair,f − 0.5

)
Foot slip rslip,i = kslipCf,i||Vf,xy,i||2

Foot clearance rfc = kcl

(∑
i∈Iswing

1Fclear
(i)

|Iswing|

)
∥Vxy∥0.5

Orientation rori = kori(angle(ϕbody,z , ϕworld,z))
2

Joint torque rτ = kτ ||τ ||2

Joint position rq = kq ||qt − qnominal||2

Joint speed rq̇ = kq̇ ||q̇t||2

Joint acceleration rq̈ = kq̈ ||q̇t − q̇t−1||2

Joint power rP = kP
∣∣τ ·θ̇

∣∣
Action smoothness 1 rs1 = ks1||qdest − qdest−1||2

Action smoothness 2 rs2 = ks2||qdest − 2qdest−1 + qdest−2||2

Base motion rbase = kbase(0.8V
2
z + 0.2|ωx|+ 0.2|ωy |)

Reward Coefficients
kv 3.0 kcl .45 kq̇ , kq̈ -6e-4,-

0.02

kω 1.5 kori -3.0 kp -2e-5

ka 0.15 kτ -6e-4 ks1, ks2 -2.5, -1.2

kslip -0.08 kq -0.75 kbase -1.5

∑3
i=0(rslip,i + rcl,i) + rori + rτ + rq + rq̇ + rq̈ + rp + rs1 +

rs2 + rbase. The total reward is defined as

rtot = rpos · exp(0.2rneg) (4)

This form of a reward function ensures that the resulting
reward is always positive and discourages the policy to choose
an early termination.

4) Simulation Environment: We employed a game-inspired
curriculum [6] to facilitate the progressive learning of lo-
comotion policies across challenging terrains. The terrains
included smooth, rough, random obstacles, and stair terrains,
with random obstacles being the most prevalent, followed by
stair terrains. The terrain features ten levels of inclination
ranging from 0 to 22 degrees, with increasing difficulty. We
sample terrain height points from a circle with a radius of
10 cm around each foot. We also use foot contact force and
contact normal as privileged information to understand the
terrain. Additionally, thigh and shank contact states, friction
coefficients, and base linear velocity are utilized. A significant
function of the simulation environment is defining the swing
phase for each foot, for which we use foot contact states.

C. Student Policy

The student’s policy network is directly replicated from
the teacher policy. The student’s history encoder is trained to
approximate the privileged latent, enabling the student policy
to produce actions that closely align with the teacher’s policy.
This history encoder is a TCN encoder, which processes partial

Fig. 3: Actual Velocity, Joint Positions, and Privileged Latent measured from
teacher policy deployed in simulation

Fig. 4: Teacher Policy deployed in simulation climbing stairs.

observation history, specifically proprioceptive history hT
t , and

generates a history encoding et. Training from teacher to
student employs Imitation Learning conducted online using
DAgger. The history encoder is trained with the MSE loss
between privileged and history encoding, as well as between
student and teacher actions.

L := (āt(lt, ht)− at(et, ht))
2 + (l̄t(pt)− lt(h

T
t ))

2. (5)

Quantities indicated with a bar (̄·) represent the target values
derived from the teacher. We utilize the dataset aggregation
method (DAgger) [13]. In particular, training data is produced
by executing trajectories using the student policy. For each
state encountered, the teacher policy calculates its embedding
and action vectors (̄·). These outputs from the teacher policy
serve as guidance for the respective states.

III. EXPERIMENTS AND RESULTS

We conducted experiments using both the teacher and
student policies in a simulation environment and deployed the
student policy on a physical robot.

A. Simulation

1) Teacher Policy: In the simulation, the teacher policy
exhibits natural walking behavior, where the feet are lifted to a
small height on a flat surface. When approaching an obstacle
or stair, the feet are raised appropriately for climbing. The
teacher policy in the simulation can ascend stairs up to 23
cm in height with an inclination of up to 38 degrees and can
navigate random obstacles up to 30 cm high.

2) Student Policy: In simulations, the student policy dis-
plays a natural walking behavior, lifting its feet slightly when
on flat surfaces. Upon approaching an obstacle or stair, it
estimates the height through repeated contact and adjusts its
steps accordingly to climb. Better behavior cloning is achieved



Fig. 5: Velocity and foot clearance rewards acheived in simulation

Fig. 6: Student Policy deployed in simulation climbing stairs

by incorporating an additional linear layer and layer normal-
ization after the TCN encoder, which improves convergence to
approximate the privileged latent. In simulations, the student
policy successfully climbs stairs up to 18 cm high with an
inclination of up to 30 degrees and navigates random obstacles
up to 23 cm.

3) Emergent Behavior: The learned policy exhibits inter-
esting emergent behavior when the robot is commanded to
climb stairs backward. It climbs the first stair normally, but
upon reaching the second stair, it quickly turns its head 180
degrees to face the terrain. This adjustment may help prevent
falls by providing better stability during backward climbing.
We believe this occurs because the robot’s perception is limited
to its feet, as it cannot use height points beyond a small circle
around them. With no motion priors, the locomotion is guided
solely by rewards, allowing the policy to choose behaviors that
maximize survival or returns. This specific behavior is absent
with discrete obstacles or the first stair, only manifesting once
it encounters the second step.

B. Real Robot

The Sim-to-Real transfer is effective due to our comprehen-
sive domain randomization, resulting in the deployed policy
on the actual robot demonstrating comparable natural and
symmetrical walking behavior.

1) Obstacles and Stairs: Upon encountering an obstacle,
the robot demonstrates a similar behavior by assessing the
terrain’s height and adjusting its gait and foot clearance
accordingly. It was tested with a wooden block 10 cm high,
which it can climb from any direction with ease. When tested
on stairs, the robot can ascend steps between 15 and 18 cm

Fig. 7: Mean Terrain Levels achieved during training

Fig. 8: Policy deployed on real robot demonstrating the emergent behavior

in height. If the steps have an inclination of more than 25
to 30 degrees, it discontinues climbing and maintains balance
effectively. In such cases, it can ascend the stairs sideways or
at an angle by placing its body on the last step before making
the next ascent.

2) Random Push and Friction: The robot is capable of
adapting effectively to random pushes and varying friction
conditions. We evaluated its performance by pushing it multi-
ple times during walking, demonstrating its resilience to such
disturbances. Additionally, it adjusts well to friction changes,
as evidenced by its behavior on different surfaces like high-
friction carpets and low-friction tiles.

3) Emergent Behavior: The real robot exhibits similar
emergent behavior by quickly turning its head towards the
stairs when encountering the second stair.

IV. CONCLUSION

This research demonstrates that effective quadrupedal loco-
motion relying solely on proprioception can be accomplished
without using motion priors by leveraging gait-independent
interaction-based rewards. However, a limitation of this ap-
proach is that the resulting gaits lack visual appeal and merely
focusing on energy minimization is insufficient in challenging
training environments. A promising future direction is to test
different foot clearance rewards that are known to produce
natural-looking gaits. Another area for improvement is incor-
porating a command curriculum to enhance terrain exploration
and refine the robot’s control precision.
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