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1 Abstract

Concurrent programming often involves writing separate programs for each partici-

pant in the system. However, this entails meticulous matching of sends and receives between

participants and makes reasoning about the order of communications difficult. Choreo-

graphic programming takes a different approach, where the system is implemented by a

single program that directly describes the pattern of communications between participants,

ensuring deadlock freedom by construction.

Since choreographies are an actively evolving research area, it is desirable be able

to rapidly prototype new ideas and features. Yet developing a new choreographic language

from the ground to do this would be time consuming. Instead, a new choreographic lan-

guage could be implemented as a library, allowing reuse of the host language’s features for

greater functionality and correctness. To test this approach, Choret, a library for functional

choreographic programming is implemented.

Traditionally, choreographic semantics are described via projection and merging.

Since projection and merging are operations on the syntax of programs, a host language

needs support for manipulating syntax. LISP macros immediately come to mind for this

task; many LISPs support procedural macros which permit arbitrary operations on syntax.

Racket, a descendant of LISP, has particular features in its macro system that make it a

good choice for implementing Choret.
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2 Introduction – Choreographies as Macros

Traditionally, to implement a system with multiple participants working concurrently,

a programmer must write separate programs for each participant. However, since commu-

nication is coordinated manually by the programmer, it is all too easy to forget a send or

receive, or to encode a pattern of communications that leads to deadlock.

Choreographic programming offers a different approach. A single program, called a

choreography, describes the behavior of the system as a whole, explicitly stating where data is

located and the order of communications among participants [21]. Choreographic programs

are not only easier to understand, but are also provably deadlock-free by construction [14,

18, 21].

This work showcases Choret, a language for writing choreographic programs, which

is implemented entirely as a library in the Racket programming language. Implementing a

choreographic language as a library allows for significant reuse of the host language’s features,

saving time and constructing in a more stable implementation. This is a major benefit since

choreographic programming is an evolving research area and being able to rapidly prototype

new choreographic languages is desirable.

However, implementing choreographic language as a library is not as straightforward

as it sounds, due to issues of syntax. In the choreographic literature, the transformation of

choreographies into local programs is typically in terms of select-and-merge endpoint projec-

tion, which describes transformations in terms of the syntax of programs [18, 20, 21]. This

is a hurdle since it demands a language with sufficiently expressive and flexible tools for

manipulating the syntactic terms of the host language.
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To address the issue of syntax, we turn to LISP, a family of languages that are

well known for their use of macros, which allow arbitrary functions to be written that can

manipulate the syntax of expressions [8, 11, 12]. We chose Racket, a descendant of LISP,

thanks to particular features of its macro and library systems, which made it convenient to

implement Choret.

The rest of this thesis examines the design and implementation details of Choret.

Section 3 is an overview of choreographic programming using Choret. Section 4 goes in-

depth on the syntax and semantics of Choret. Section 5 gives details about how Choret was

implemented on top of Racket’s macro system. Section 6 discusses future work in relation

to parallelism and typing. Section 7 mentions related work and Section 8 concludes.

3 Choreographies and Choret

Concurrent systems are traditionally implemented by writing separate programs for

each participant, which is tedious and error-prone. Choreographic programming’s approach

is different. Choreographic programs are a “global view” of the system that gets split into

separate programs for each participant.

Take, for example, an online bookseller, with a buyer who wants to buy a book from

a seller. The seller has a catalog of books and prices for those books, and the buyer has a

book they want to buy and a budget they must abide by. First, the buyer sends a book title

to the seller. The seller then looks up the book in the catalog, gets its price, and sends it

back to the buyer. The buyer then determines if the cost of the book is within their budget;

if it is, the buyer purchases the book, otherwise the order is canceled. Figure 1 shows this
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Figure 1: Diagram of the bookseller example

transaction in detail.

Note how in either case the buyer must let the seller know which choice was made.

In the choreographic literature, this is known as knowledge of choice [21], and ensuring it is

communicated correctly is an important issue that choreographies must contend with.

Traditionally, to implement the bookseller example, separate programs for the buyer

and seller would be written, as shown in Figure 2.

Writing separate programs makes it difficult to reason about the correctness of the

system. Notice how sends and receives must be carefully matched up (annotated by sub-

scripts) to avoid introducing deadlocks. It is also difficult to reason about the ordering of

communications in the system. Choreographies instead exploit the notion of a global view of

the system, as in Figure 1, by encoding the system’s pattern of communications as a single

3



;; Code at Buyer
(send1 ch title)
(recv2 ch cost)
(if (<= cost budget)

(block
(send3 ch "buy")
(send4a ch address)
(define date (recv5a ch)))

(block
(send3 ch "nevermind")
(define response (recv4b ch)

)))

;; Code at Seller
(define title (recv1 ch))
(send2 ch (catalog title))
(define response (recv3 ch))
(if (eq? response "buy")

(block
(define address (recv4a ch))
(send5a ch (ship title

address))
(block

(send4b ch "goodbye")))

Figure 2: Traditional implementation of bookseller in Racket

(chor (S B)
(define/<~1 (at S title) (at B title))
(define/<~2 (at B cost) (at S (catalog title)))
(if (at B (<= cost budget))

(sel~>3 B ([S 'buy])
(let ()

(define/<~4a (at S address) (at B address))
(define/<~5a (at B date) (at S (ship title address)))))

(sel~>3 B ([S 'do-not-buy])
(define/<~4b (at B response) (at S "goodbye")))))

Figure 3: Implementation of bookseller in Choret

program.

The bookseller example from Figure 2 can be rewritten in Choret, as seen in Figure 3.

The chor expression at the top acts as the entry point to Choret. It declares the names of

the participants that are in the choreography, seller S and buyer B, and its body is where

Choret programs are written. The next two lines define variables that are located at spe-

cific participants. For example, the expression (define/<~ (at S title) (at B title))

sends the value of title evaluated at the buyer and binds it to a new variable title located
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at the seller. Next, the if statement allows a single participant, B, to decide one of two paths

to take depending on whether the cost of the book is within the buyer’s budget. However,

since the choice is made by just one participant, the other participants do not have any

information about which branch needs to be taken. Thus, in each branch, there is a sel~>

expression that manually specifies how knowledge of choice is to be communicated. Looking

at the 'buy branch, (sel~> B ([S 'buy]) E), a 'buy label is sent to participants S from

participant B, then the choreography continues as choreographic expression E. The selections

are important since they inform the seller of how to interact with the buyer going forward.

Writing the bookseller system as a choreography, rather than as separate programs,

makes it much easier to understand and reason about the pattern of communications in

the system. And, thanks to the use of selections to keep track of knowledge of choice,

choreographic programs are deadlock-free by construction [14, 18, 21].

3.1 Higher-Order Choreographies

The choreographic constructs of Choret are inspired by Pirouette, a functional, higher-

order, choreographic programming language [18]. This means that, in addition to the afore-

mentioned constructs, like conditional and communication forms, Choret also has choreo-

graphic functions. Like normal functions, choreographic functions are a form of abstraction

that allow a piece of choreographic code to be invoked later [18, 21].

For example, in the following “Ping-Pong” program in Figure 4, the participants Ping

and Pong endlessly pass an ever-increasing integer back and forth to each other. To do this,

there are two choreographic functions, ping and pong, that each take a local integer as an
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argument, increment the integer, send that value to the other participant, and then calls the

other choreographic function:

(chor (Ping Pong)
(define (ping (at Ping x))

(let ([(at Pong y) (~> (at Ping (add1 x)) Pong)])
(pong (at Pong y))))

(define (pong (at Pong x))
(let ([(at Ping y) (~> (at Pong (add1 x)) Ping)])

(ping (at Ping y))))

;; Start ping -pong
(ping (at Ping 0)))

Figure 4: Ping-Pong Example in Choret

Additionally, the choreographic functions of Choret are higher-order. Like normal

higher-order functions, choreographic functions can be passed to other choreographic func-

tions as parameters and return choreographic functions [18].

For example, the program in Figure 5 defines the function bob-delegates which

takes, as a parameter, another choreographic function, F, which delegates doing some com-

putation to Alice. Additionally, Figure 5 defines two choreographic functions, alice-add

and alice-sub, each has Alice receive two numbers, perform a calculation with those num-

bers, and send the result back to Bob; either of these functions may be passed as a parameter

to the bob-delegates function.

3.2 Extensible Choreographies via Macros

In addition to higher-order functions, Choret also allows abstractions to be created

using plain Racket macros. Choret leans heavily on Racket’s macro expander to compile
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(chor (Alice Bob)
(define (bob-delegates F)

(let ([(at Bob x) (F (at Alice 7) (at Alice 3))])
(at Bob (printf "Bob got ~a" x))))

(define (alice -add (at Alice x) (at Alice y))
(~> (at Alice (+ x y)) Bob))

(define (alice -sub (at Alice x) (at Alice x))
(~> (at Alice (- x y)) Bob))

; Call bob-receives with higher -order parameter
(bob-delegates alice -add) ; Prints "Bob got 10"
(bob-delegates alice -sub) ; Prints "Bob got 4"
)

Figure 5: Higher-Order Choreography

Choret programs into separate programs for each participant. As a consequence, Racket

macros can be used directly in the language of Choret.

(define -syntax -rule (gather~> [(at P E) ...] Q)
(list (~> (at P E) Q) ...))

(chor (A B C)
(define (at A x) (at A 10))
(define (at B x) (at B 10))
(define (at C lst) (at C (gather~> [(at A x) (at B y)]))))
(define (at C sum) (at C (foldl + 0 lst)))

Figure 6: Using macros in Choret

For example, in Figure 6, a new macro of the form (gather~> [(at P E) ...] Q)

can be defined which gathers values from multiple participants and places them in a list on

participant Q. Racket’s define-syntax-rule form is used to introduce a new pattern macro

gather~>, which includes a pattern for how to apply the macro: (gather~> [(at P E)

...] Q), and what the macro should expand into: (list (~>(at P E) Q) ...). Then in
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the Choret program below, the gather~> macro is used to get the values from participants

A and B, and collect them in a list on participant C.

Defining new macros, like gather~> from above, can reduce boilerplate code and

allows new compile time abstractions to be added to Choret.

4 Syntax and Semantics

Choret’s syntax and semantics are inspired by Pirouette, the first functional chore-

ographic language with formalized semantics [18]. One of its attractive design features is

its distinction between expressions of the choreographic language and expressions of a local

language. Pirouette does not prescribe any particular local language and instead treats a

language generically; as long as the local language obeys a certain set of requirements it may

be used as a local language for Pirouette [18]. Following the design of Pirouette, Choret’s

local language is Racket. As for Choret’s choreographic syntax, by using Racket macros

Choret is an extension of Racket’s normal S-expression syntax, with a few changes to the

structure of some of Racket’s built-in forms.

4.1 Choreographic Syntax

Writing a choreographic program begins with using the chor macro, which takes a

list of participant names that are to participate in the choreography, as shown in Figure 7.

Inside the body of a chor form, Choret syntax may be used. For example, the ~>

macro, which mentions the participant names P and Q, and says “evaluate local expression

e at the participant P and send the result to participant Q”.
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Racket Expressions e
Binding Forms B ::= X | (at P x)
Choret Programs P ::= (chor (P …) T …)
Choret Expressions E ::= (at P e …) | (~> (at P e) Q)

| (if (at P e) E1 E2) | (sel~> P ([Q l] …) E)
| (let ([B E1] …) E) | (let* ([B E1] …) E)
| (set! (at P x) E) |

Choret Terms T ::= (define B E) | (define/<~ (at P x) (at Q e))

Figure 7: Choret Syntax

The (at P e ...) form is used to evaluate the expressions e ... at participant P .

Like Racket’s begin form, at is a splicing form, so multiple definitions may be placed in e ...

and they will be “spliced” (made available) to the surrounding internal-definition context

(“splicing” and internal-definition contexts are Racket-specific terms, see the documentation

on internal definitions for more details [5]).

Binding expressions such as let and define are “overloaded” so they may be used

in both choreographic and local expressions. When used in choreographic expressions, let

and define can introduce two kinds of bindings: local bindings and global bindings. For

example, in a local binding of the form (define (at P x) (at P 5), x is a local variable

for participant P and can only be referenced from a local expression at participant P. In

a global binding of the form (define X (at P 5), X is a global variable and can be used

directly as a choreographic expression. Note that a global variable may still hold a value that

is located at a particular participant; due to Choret’s lack of a type system the programmer

is responsible for ensuring that the against any runtime errors that might arise from a value

in global variable being at the wrong participant. Global variables can also be bound to

choreographic functions.
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4.2 Semantics — Endpoint Projection (EPP) and Merging

There are different ways to implement a choreographic program. We treat each par-

ticipant as an independent and concurrent thread of execution, each with its own separate

state (e.g. local variables) and a set of communication primitives for sending and receiving

messages synchronously with other participants. To achieve this, we produce a separate

body of code for each participant (which we will refer to as a program). The collection of

participant programs also need to be compliant with the choreography, that is, the behavior

of each program is in accordance with the what the choreography says it should do [21]. The

process of generating a program for a participant is known as projection and the generated

program is known as a projection [21]. Performing projection for all the participants of a

choreographic program is known as EndPoint Projection (EPP) and the collection of pro-

jections from performing EPP, is known as a network and implements the behavior of the

choreographic program [21]. The projection of a choreographic expression E of process P has

the notation JEKP [20, 21].

For many choreographic forms, projection is relatively straightforward. For example,

for the form E = (~> (at A 5) B) has the projections (send B 5) for A, (recv A) for B,

and (void) otherwise. However, conditional expressions, like the if form, present a problem

due to knowledge of choice. Consider the Choret programs in Figure 9 where participant A

uses x to decide which branch to take.
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JEKA =



e . . . if E = (at A e …)
(void) if E = (at P e ...) where P 6= A
(send Q e) if E = (~> (at A e) Q)
(recv P) if E = (~> (at P e) A)
(void) if E = (~> (at P e) Q) where P 6= A and Q 6= A
(if e JE1KA JE2KA) if E = (if (at A e) E1 E2)
JE1KA t JE2KA if E = (if (at P e) E1 E2) where P 6= A
(let ([X JE1KA] …) JEKA) if E = (let ([X E1] …) E)
(let ([x JE1KA] …) JEKA) if E = (let ([(at A x) E1] …) E)
(let ([_ JE1KA] …) JEKA) if E = (let ([(at P x) E1] …) E)

where P 6= A
(choose! Q1 l1
J(sel~> A ([Q2 l2] …) E)KA)

if E = (sel~> A ([Q1 l1] [Q2 l2] …) E)

(branch? P
([l1 J(sel~> P ([Q2 l2] …) E)KA]))

if E = (sel~> P ([A l1] [Q2 l2] …) E)

J(sel~> P ([Q2 l2] …) E)KA if E = (sel~> P ([Q1 l1] [Q2 l2] …) E)
where P 6= A and Q1 6= A

Figure 8: Definition of Endpoint Projection (Selected Parts)

(chor (A B)
(define (at A x) ...)
(if (at A x)

(at B "Left")
(at B "Right")))

(chor (A B)
(define (at A x) ...)
(if (at A x)

(sel~> A [B 'l]
(at B "Left"))

(sel~> A [B 'r]
(at B "Right"))))

Figure 9: Incorrect (left) and correct (right) use of Knowledge of Choice

On the left in Figure 9, it is not immediately clear how to project the if form

for B, since the projection of B does not know what choice A makes. A naive solution

would be to always communicate knowledge of choice from A to B. However, this is not a

scalable solution when many more participants are involved, since, for n participants, n− 1

communications would be sent even if only a small subset of the participants actually need

to know of A’s choice. Thus, knowledge of choice is traditionally handled by the programmer
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N1tN2 =



recursively merge if N1 and N2 are matching Racket forms
(send P e) if N1 = N2 = (send P e)
(recv P) if N1 = N2 = (recv P)
(choose! P l N ′

1 tN ′
2) if N1 = (choose! P l N ′

1)
and N2 = (choose! P l N ′

2)
(branch? P ( [l1i N1i tN2j] . . .

[l1k N1k] . . .
[l2k N2k]))

if N1 = (branch? P ([l11 N11] …))
and N2 = (branch? P ([l21 N21] …))
and l1i = l2j
and ∀k, k′.l1k 6= l2k′

⊥ otherwise

Figure 10: Definition of Merging

manually specifying knowledge of choice communications using selections (via the sel~>

form in Choret) [20, 21]. To ensure that selections are used to communicate knowledge

of choice where necessary, an operation known as merging is performed, which, in essence,

requires the projected code of each branch of a conditional form to be the same unless there

is a selection which provides information about which branch to take when the code differs.

For example, when an expression of the form (if (at P x) E1 E2) is projected

for any participant other than P, say Q for example, the subexpressions E1 and E2 are

first projected to JE1KQ and JE2KQ. Then the projections are compared syntactically for

differences. If there are no differences, then nothing needs to be done since participant Q

does the same thing regardless of what P decides to do. On the other hand, if there are

differing expressions, then it depends on the labels of each branch. If neither the expressions

are branch? forms, then merging immediately fails. Otherwise, if both expressions are

branch? forms it depends on the set of labels of each branch? form. If the labels are

compatible, then merging succeeds; otherwise merging still fails.
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Network Language N ::= . . . (All other Racket forms)
| (send P e) | (recv P)
| (choose! P l N) | (branch? P ([l N] …))

Figure 11: Network Language Syntax

4.3 Network Language

The projection of each participant is a program that encodes the behavior of a partic-

ipant with respect to the choreography. This work refers to the language of these projections

as the network language, which is analogous to the control language of Pirouette [18]. In the

case of Choret, the network language is simply an extension of Racket, with four new forms:

send, recv, choose!, and branch?, as shown in Figure 11. These forms reflect the message-

passing primitives used in Pirouette’s control language [18] and those used by Montesi [21].

The send and recv forms, as the names suggest, describe how information is transmitted

from one participant to another. The choose! and branch? forms also send and receive

data, but are implemented as distinct forms both for simplicity and, in the case of branch?,

for performing merging.

5 Implementation

Choret is embedded in Racket as a library. Individual Choret forms, such as at and ~>,

are implemented as individual macro definitions, whose resulting expansion is a projection of

the form for a specific participant. The advantage of this approach is twofold. First, it enables

a relatively simple and robust implementation of choreographic programming by reusing

much of the language infrastructure from Racket, enabling Choret’s implementation to focus

13



on the details of choreographic programming. Second, it enables the use of select-and-merge

endpoint projection (S&M EPP), while still allowing for a library-based implementation.

On the latter point, S&M EPP can be difficult to implement at as a library since it

requires manipulating syntax of both the choreographic and local languages. This means

that a host language needs appropriate compile time features for inspecting and manipulating

syntax. Racket’s macro system provides enough power to be able to do compile-time S&M

EPP entirely as a library.

Choret’s major implementation details are implemented in two modules. The threads-

network module provides abstractions for describing networks and synchronous communica-

tion that are defined in terms of Racket threads. The main module implements choreographic

programming in terms of the network abstractions.

5.1 threads-network Module

The threads-network module provides abstractions for building a network, which

are later used when projecting Choret programs. A (define-network BODY ...) macro

acts as the entry point for building a new network, and inside the BODY form(s), uses of

a define-process macro defines the participants of the network. Two macros, send and

recv, perform synchronous communication and keep track of which pairs of participants

communicate with each other so channels only need to be created between participants that

actually communicate with each other.

Currently, the threads-network module is built on top of Racket threads. Racket

threads are a convenient choice since they use synchronous channels to send and receive
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messages. However, one drawback of using Racket threads is that they only run concurrently.

That is, Racket threads can’t exploit parallelism to do work faster than a single-threaded

solution [1, 2]; Section 6.1 mentions alternatives to Racket threads that would allow for true

parallelism.

5.2 main (Choreographic) Module

The main module defines the syntax of Choret programs and implements S&M EPP.

Choret is implemented as a shallowly-embedded language in Racket, with a separate macro

definition for each Choret form. Each of these macros separately defines how the Choret

form should be projected. The interesting consequence of this implementation strategy is

that projection is almost entirely handled by Racket’s normal process of macro expansion

(with the exception of merging, covered in Section 5.2.1).

Since multiple projections are needed, to generate one program for per participant the

body of a choreographic program is macro-expanded multiple times, once per participant.

In Racket, this may be done by using local-expand, which is a function that can be called

by a macro to fully macro expand all uses of macros in a Racket expression [6]. Choret uses

local-expand to expand, and thus project, the body of a Choret program multiple times.

During each expansion, Choret macros need to know which participant is being cur-

rently projected. We communicate this information via Racket syntax parameters. A syntax

parameter is set by using the syntax-parameterize macro, which creates a new dynamic

binding from an identifier to a value that remains visible to any further macro expansion

that occurs in the body of the syntax-parameterize macro [7]. When a Choret macro
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is invoked, it uses syntax-parameter-value to check which participant is currently being

projected.

Encoding projection as macro expansion is what also allows Choret to be extensible

using regular Racket macros; since the Racket macro expander is doing the heavy-lifting

of projection, new forms added by define-syntax will automatically be recognized and

expanded.

5.2.1 Knowledge of Choice and Merging

Knowledge of choice poses a unique challenge for macro expansion. S&M EPP does

some internal bookkeeping using the branch? form, which keeps track of what labels have

been sent by each participant. When merging two branch? forms, the labels attached to

each form are checked to ensure knowledge of choice is properly communicated. However,

this interferes with how projection is encoded as macro expansion. Since merging operates

on projected forms, and projection is performed by macro expansion, our implementation

has to perform merging on Racket core forms. This means that merging can’t directly look

utilize custom syntax defined via macros, since they will be turned into Racket core forms

during macro expansion (i.e. projection).

The solution is to hide branch? forms inside of an existing core form so they remain

intact for merging. We chose the quote-syntax form as it is a Racket core form for which

Racket doesn’t expand the syntax object inside it (Note we could not find explicit mention

of this fact in the Racket documentation, but it appears to be implied by the grammar of

fully expanded programs in the documentation [4]). For example, when expanding (sel~> P

(['l Q]) E) for process Q, it expands to (quote-syntax (branch? P ['l E]) #:local).
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(Note that the expression E is also expanded using local-expand). Later, when merging is

performed, it will specifically look for these hidden branch? forms.

After projection and merging has completed, there may still be hidden branch? forms

left over. This is to be expected, but it would not be correct to leave these hidden forms as-is

since they are still wrapped inside of quote-syntax forms. Thus we make one more pass on

the projections which turns the hidden branch? forms into forms that use the Racket case

macro.

6 Future Work

6.1 Parallelism

Choret currently uses Racket threads to implement concurrency and message passing

among participants. One of the drawbacks of using Racket threads, however, is that they

only perform concurrent, not parallel, execution [1, 2]. While Choret currently only uses

Racket threads, Racket does have two other features, futures and places, that could be used

to support parallelism among participants.

Unlike Racket threads, Racket futures are capable of executing a subset of Racket

computations in parallel [3]. In theory, implementing participants as Racket futures could

enable parallelism in Choret. However, this might be difficult to realize in practice since the

evaluation of a Racket future may become halted due to blocking operations; and once a

future becomes halted, it will not continue to run until the touch function is used to force

the future to evaluate to completion [9]. Worse yet, even when touch is called on a halted
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future, the future will only continue concurrently, not in parallel, with other futures [9].

The limitations of futures would make it difficult to create an implementation that yields

meaningful performance benefits.

In contrast, Racket’s places are a better candidate to use in Choret’s network language

since they allow for much more reliable parallelism than futures. Akin to threads and futures,

places allow for concurrent execution of code. However, unlike threads and futures, a place

is “...effectively a new Racket instance that can run in parallel with other places... ” [10].

Since there is a significant degree of separation among Racket places (e.g. each place has

its own garbage collector) [23] places can reliably run in parallel and continue to do so after

blocking operations, unlike futures.

6.2 Typed Choreographies

Choret is not statically typed, with neither local nor location types. However, adding

typing to choreographic expressions in Choret presents some technical challenges. We discuss

a couple of potential approaches, both with their own trade-offs.

6.2.1 Embedding Choreographic Types in Typed Racket

One approach would be to embed choreographic types in Typed Racket. Typed

Racket is a sister language of Racket that adds static, gradual-typing. The advantage of an

embedding to Typed Racket would be that all of the work of type inference and checking

would be handled by Typed Racket.

However, there is an issue with how Typed Racket is implemented: it fully expands

all the macros in a module before doing type inference [24]. This means that projection,
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which is performed during macro expansion, can’t leverage the types of expressions when

deciding how to project code, since projection happens entirely before type inference.

Take, for example, the interaction between channels in Typed Racket and projection,

and the expression (~> (at P e) Q) whose projection for participant Q is (recv P). The

expression (recv P) would further expand into (channel-get ch-P), where channel-get

is a function that receives a value across the channel ch-P. In Typed Racket, a channel must

have an associated type, but the type can’t be inferred by Choret since type inference is done

by Typed Racket after all other code for the module has be expanded. This would force us

to give it type Any, to allow any type through the channel. However this is still problematic,

since (channel-get ch-P) would have the inferred type Any, which would have to be cast

to the type of the expression e, which Choret does not know. The most feasible solution

would be to require that the local type is always manually specified for communication forms

such as ~> so that Choret can insert the necessary type annotations in the projected Typed

Racket code.

6.2.2 Embedding Type Checking in Macro Expansion

Another approach would be to implement a from-scratch type system for Choret

that performs type checking during macro expansion. There is, in fact, already a Racket

library that supports such a paradigm: Turnstile, a Racket library (and DSL) that does type

checking during macro expansion [15].

Like the current implementation of Choret, all the choreographic forms would be

implemented as separate macros. However, unlike the Typed Racket approach, Turnstile

requires that every macro has explicit rules attached to it for how to type check its subforms
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and how to infer the type of the resulting expanded form.

The advantage of this approach is that projection can take advantage of the inferred

types to determine how to project expressions of the choreographic language. However, one

problem with using Turnstile is that all the forms of the choreographic language need to

be implemented as Turnstile macros. Turnstile can’t be used to infer the types of local

expressions, since they are all arbitrary Racket forms. This means that using Turnstile alone

can only enforce the location types, and not the local types, of expressions. Additionally,

any extensions to Choret could only be made using Turnstile macros, not regular Racket

macros.

6.2.3 Tradeoffs

There are two important trade-offs to consider between a Typed Racket embedding

and a Turnstile-like solution. Turnstile could use the inferred location types of choreographic

expressions to influence projection, whereas Typed Racket embedding seemingly wouldn’t be

able to. On the other hand, with a Typed Racket embedding it would be much more feasible

to typecheck the local types of choreographic expressions, unlike Turnstile. The choice of

which to use depends on which aspect of choreographic typing one wishes to emphasize. For

local types a Typed Racket embedding would be preferable; for location types a Turnstile-like

solution would be preferable.
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7 Related Work

Choret’s choreographic language features are derived from Pirouette [18]. Pirouette

was developed to formalize the semantics of functional choreographies, that is, choreogra-

phies with higher-order choreographic functions. Also of note is Chorλ, another functional

choreographic programming language [16] that was independently developed at the same

time as Pirouette.

Using Pirouette as a foundation, Choret is implemented as a Racket library that uses

macros to compile Choret programs into Racket programs. However, other choreographic

languages take different approaches to implementing choreographic programming.

For example, one approach is to write a custom parser and compiler to transform

the choreographic language to an existing language, such as how Choral compiles to Java

code [17]. This saves a lot of time implementing the lower level features of the language,

like handling machine/byte code generation, basic data structures, and libraries. However,

it still requires considerable effort create a parser and datastructures for representing and

manipulating the AST of the choreographic language.

A more direct approach is to directly embed the choreographic language into the host

language. For example, HasChor is a library written in Haskell [22]. This allows for reuse the

parser of the language itself. However, not all languages have metaprogramming features that

make it feasible to implement traditional select-and-merge projection as a library; HasChor,

in fact, has such a limitation and does projection entirely at runtime [22].

The closest choreographic language to Choret is Klor, which is implemented as an

embedded language in Clojure, another descendant of LISP. Like Choret, Klor performs
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compile-time projection. However, Klor does not use S&M EPP and instead uses agreement

types to ensure that knowledge of choice is followed [13, 19].

8 Conclusion

Choreographies are of interest because they provide a compelling way of writing con-

current programs that is easier and safer than manually writing separate programs for each

participant. However, choreographic language design is still undergoing further development

and experimentation.

To this end, being able to rapidly implement new choreographic language features

would help with developing and testing such features. There are multiple ways to implement

new language features, but, for rapid prototyping, they would ideally be built on top of

existing languages as libraries. Racket’s macro and library systems make it particularly

attractive for implementing choreographic programming with traditional select-and-merge

endpoint projection.

Choret demonstrates the feasibility of this approach by embedding choreographic

programming in Racket using macros. The resulting implementation has only 370 lines of

Racket (excluding comments and tests), while also allowing Choret to easily interact with

the features of Racket. Since Choret relies primarily on Racket’s macro expander to perform

projection, we get extensible choreographies in Choret for free, which may be leveraged to

develop new, syntactic, abstractions for choreographies.
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