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Abstract

We study the online food delivery problem with capacity constraints, where requests ar-
rive over time in a metric space and a single server must deliver them while minimizing
the maximum flow time. Flow time, defined as the delay between a request’s release and
completion, is a fundamental but relatively underexplored objective in online vehicle rout-
ing. We focus on structured metric spaces, specifically path graphs, which enable precise
competitive analysis under capacity limitations.

We distinguish between myopic algorithms, which dispatch requests immediately, and
far-sighted algorithms, which delay service to batch future requests. For path graphs with
unit capacity, we analyze two myopic strategies and show that Earliest Released First is
2-competitive while Earliest Anticipation First is 3-competitive. In contrast, we prove that
for capacity 2, no myopic FIFO-based algorithm admits a bounded competitive ratio.

To handle general capacity K, we introduce a far-sighted batching algorithm based on
time-interval partitioning and show that it achieves a constant competitive ratio. These
results demonstrate inherent limitations of myopic dispatch under increasing capacity and
highlight the necessity of anticipation and batching for flow-time optimality in online de-

livery systems.
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Chapter 1

Introduction

Online decision-making problems arise in many real-world systems where inputs arrive
over time and decisions must be made without knowledge of future events. Such problems
are naturally modeled using online algorithms, which process requests incrementally and
are evaluated by comparing their performance against an optimal offline algorithm with full
future information. Applications of online algorithms are particularly prominent in modern
logistics and mobility systems, including food delivery platforms, autonomous delivery
robots, and automated warehouse dispatch systems.

A central performance metric in these systems is flow time, defined as the delay between
a request’s release time and its completion. Minimizing maximum flow time is crucial for
ensuring fairness and responsiveness, as it prevents individual requests from experiencing
excessive delays. Despite its importance, flow-time minimization has received compara-
tively less attention than objectives such as total travel distance or total latency, especially

in online routing and delivery settings.



1.1 Online Food Delivery with Capacity Constraints

The online food delivery problem models a setting in which delivery requests arrive over
time at different locations in a metric space, and a server starting from a depot must deliver
these requests. Each request specifies a release time and a delivery location, and the server
must decide when to depart from the depot and which subset of pending requests to serve
on each trip. The challenge lies in making these decisions online while minimizing the
maximum flow time over all requests.

In practice, delivery vehicles are subject to capacity constraints, limiting the number of
requests that can be served in a single trip. Capacity fundamentally changes the structure of
the problem by introducing batching decisions and tradeoffs between waiting to accumulate
requests and dispatching early to reduce delay. Understanding how capacity affects the
performance of online algorithms is therefore essential for both theoretical analysis and

practical system design.

1.1.1 Motivation and Challenges

Capacity constraints introduce several challenges that do not arise in uncapacitated settings.
Myopic algorithms that immediately serve available requests may perform well when ca-
pacity is limited to one, but can become highly inefficient as capacity increases. Conversely,
delaying service to batch requests can reduce travel overhead but risks increasing flow time
for early arrivals.

Another key difficulty is that optimal offline solutions can coordinate batching decisions
using future knowledge, while online algorithms must operate without such information.
This asymmetry makes it nontrivial to design online strategies with provable guarantees,
particularly for minimizing maximum flow time. As a result, it is unclear whether simple
dispatch policies can remain competitive as capacity grows, or whether more sophisticated,

far-sighted strategies are required.



1.2 Algorithmic Perspectives

Online algorithms for delivery problems can be broadly classified based on how they react
to arriving requests. A natural class of strategies consists of myopic algorithms, which
dispatch the server whenever pending requests are available and the vehicle is at the depot,
without intentionally waiting for future arrivals. These algorithms are simple, intuitive, and
easy to implement, making them attractive in real-time systems.

In contrast, far-sighted algorithms intentionally delay service in order to batch requests,
trading off increased waiting time for improved utilization of capacity. While such strate-
gies can potentially reduce travel overhead, they also risk increasing the flow time of early
requests. Analyzing this tradeoff is particularly important in capacitated settings, where

batching decisions directly affect performance.

1.2.1 Myopic vs. Far-Sighted Strategies

The distinction between myopic and far-sighted strategies plays a central role in this thesis.
Myopic algorithms tend to prioritize immediacy and fairness for early requests, while far-
sighted algorithms exploit future arrivals to improve overall efficiency. Capacity amplifies
the tension between these approaches, as higher capacity increases the potential benefits of
batching but also increases the risk of excessive delay.

A key question we address is whether myopic strategies can achieve bounded compet-
itive ratios under capacity constraints, or whether anticipation is fundamentally necessary
once capacity exceeds one. This question is explored through a detailed analysis of specific

myopic policies and the design of batching-based far-sighted algorithms.



1.3 Our Contributions

This thesis presents a systematic study of the online food delivery problem under capacity
constraints on structured metric spaces. Our main contributions can be summarized as

follows:

* We analyze myopic algorithms on path graphs and show that for unit capacity, simple

policies achieve constant competitive ratios for minimizing maximum flow time.

* We prove that for capacity two, no myopic FIFO-based algorithm admits a bounded

competitive ratio on path graphs.

* We introduce and analyze a far-sighted batching algorithm for general capacity K,

and show that it achieves a constant competitive ratio for path graphs.

These results reveal sharp separations between algorithmic strategies as capacity in-
creases and provide insight into the structural role of batching and anticipation in online

delivery systems.

1.4 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 introduces the necessary
preliminaries and reviews related work. Chapter 3 formally defines the online food de-
livery model and problem setting. Chapter 4 analyzes myopic algorithms under capacity
constraints. Chapter 5 presents a far-sighted batching algorithm and its theoretical analysis.
Chapter 6 concludes with a discussion of implications, limitations, and directions for future

work.



Chapter 2

Literature Review

This chapter reviews prior work related to online delivery and routing problems, with a
focus on flow-time minimization and capacity constraints. We first discuss classical online
scheduling and routing models, and then survey work specific to online food delivery and
related vehicle routing problems. Finally, we highlight how existing results motivate the

questions studied in this thesis.

2.1 Online Algorithms and Flow-Time Objectives

Online algorithms have been extensively studied in settings where decisions must be made
without knowledge of future inputs. A standard framework for analyzing online algorithms
is competitive analysis, in which the performance of an online algorithm is compared to
that of an optimal offline algorithm that has full knowledge of the request sequence.

Flow time is a fundamental objective in online scheduling and routing problems. In
classical scheduling settings, minimizing maximum flow time has been studied on single
and multiple machines, often under release times and processing constraints. These prob-
lems highlight the inherent tension between fairness and efficiency, as algorithms must
balance early service against waiting for better schedules.

In routing and mobility problems, flow-time objectives are more challenging due to



travel times and spatial constraints. While objectives such as total distance or total la-
tency have received significant attention, maximum flow time has been comparatively less
explored, particularly in online metric routing settings.

Beyond classical competitive analysis, flow-time objectives have been extensively stud-
ied in online scheduling under various machine models. Hall et al. (1997) studied mini-
mizing maximum flow time on parallel machines and highlighted the inherent difficulty
of achieving fairness without delaying service. Chekuri et al. (2001) further investigated
flow-time minimization with release times and showed that even small relaxations in model
assumptions can drastically change achievable guarantees. These results emphasize that
flow time behaves fundamentally differently from completion time or makespan.

More recent work has explored resource augmentation as a means to overcome impos-
sibility results for flow-time objectives. Phillips et al. (1997) and Kalyanasundaram and
Pruhs (2000) demonstrated that modest speed augmentation can yield strong guarantees
for maximum flow time, suggesting that exact competitiveness may be unattainable with-
out additional power. These insights strongly influence later work in routing and delivery,

where spatial constraints further complicate flow-time optimization.

2.2 Online Routing and Vehicle Routing Problems

Vehicle routing problems have a long history in operations research and theoretical com-
puter science. In offline settings, classical problems such as the Traveling Salesman Prob-
lem (TSP), the Vehicle Routing Problem (VRP), and the Capacitated Vehicle Routing Prob-
lem (CVRP) have been studied extensively, leading to a rich body of approximation algo-
rithms and heuristics. Foundational surveys and algorithmic treatments of these problems
can be found in the work of Toth and Vigo (2002) and Laporte (2009), which highlight the
algorithmic challenges introduced by capacity constraints, routing costs, and combinatorial

structure.



Online variants of routing problems introduce additional complexity due to the lack of
future information. Early work on online routing focused primarily on minimizing total dis-
tance, makespan, or completion time. Ausiello et al. (2001) studied online versions of the
Traveling Salesman Problem and established competitive bounds under various assump-
tions on the metric space. Similarly, Irani et al. (2001) analyzed online routing problems
with time-dependent requests, showing that constant competitive ratios are achievable for
distance-based objectives in restricted settings.

The k-server problem provides a closely related abstraction for online routing in met-
ric spaces. The seminal work of Manasse, McGeoch, and Sleator (1990) introduced the
k-server problem and demonstrated its fundamental role in online algorithm design. Subse-
quent work by Koutsoupias and Papadimitriou (1995) established tight competitive bounds
for general metrics, while Chrobak and Larmore (1991) and Hammar and Nilsson (2002)
showed that restricting the metric to trees or paths enables significantly stronger guarantees.
These results underscore the importance of structured metric spaces in obtaining meaning-
ful competitive analysis for online routing problems.

Despite these advances, most online routing results focus on objectives such as total
distance traveled or completion time. Flow-time objectives, particularly minimizing the
maximum flow time, are considerably more challenging due to their sensitivity to waiting
decisions and batching effects. In scheduling settings, flow time has been studied exten-
sively as a fairness-oriented objective, but incorporating spatial constraints and routing de-
cisions substantially complicates the analysis. As shown by Bansal and Pruhs (2010), flow-
time minimization often requires fundamentally different algorithmic techniques compared
to distance-based objectives.

The online food delivery problem can be viewed as a special case of the Dial-a-Ride
Problem, where all requests originate from a common depot and only delivery locations
vary. This structural simplification eliminates pickup-routing interactions and allows the

analysis to focus on the interaction between waiting, routing, and capacity constraints.



Dial-a-ride problems have been studied extensively in offline settings, but their online coun-
terparts remain relatively underexplored, especially under flow-time objectives.

Recent work has begun to address these gaps by studying online food delivery and
related problems on structured metric spaces. Guo, Kesselheim, and Radke (2021) showed
that minimizing maximum flow time is intractable in general metrics, even for a single
uncapacitated vehicle, and identified tree metrics as a tractable class. In subsequent work,
Guo, Kesselheim, and Radke (2023) analyzed the problem on star graphs and demonstrated
that simple FIFO-based strategies are suboptimal, motivating anticipation-based algorithms
such as Earliest Anticipation First. These results highlight both the necessity of restricting
the metric space and the limitations of purely myopic routing strategies.

Overall, prior work indicates that while online routing with distance-based objectives
is well understood, online routing under flow-time objectives—particularly in the presence
of capacity constraints—remains poorly characterized. Existing results either assume unit
capacity, uncapacitated vehicles, or focus on specific metric structures. This motivates
a systematic study of how capacity constraints affect the competitiveness of online algo-
rithms for minimizing maximum flow time, particularly on structured metric spaces such
as path graphs.

In addition to TSP-style formulations, online routing has been studied through variants
of the Dial-a-Ride and Pickup-and-Delivery problems. Psaraftis (1988) provided early
formulations of dynamic dial-a-ride problems, identifying the tradeoff between waiting
for future requests and serving current demand. Mitrovic-Minic and Laporte (2004) later
proposed dynamic routing strategies for real-time transportation systems, though without
worst-case guarantees on flow time.

Theoretical work on online vehicle routing has also examined lower bounds and struc-
tural limitations. Blum et al. (1994) studied online routing under adversarial arrivals and
showed that unrestricted metrics lead to poor competitive performance. As a result, sub-

sequent work increasingly focused on tree, line, and star metrics, where geometry can be



exploited algorithmically. These findings reinforce the importance of structured metric
spaces in enabling meaningful competitive analysis.

Additional work on online routing has explored alternative problem formulations and
competitive limits under adversarial arrivals. Bartal et al. (2001) introduced probabilistic
metric embeddings to analyze online routing problems, showing that general metrics can be
reduced to tree metrics at the cost of logarithmic distortion. While this technique enables
stronger guarantees for distance-based objectives, it remains insufficient for controlling
worst-case flow time, reinforcing the need for problem-specific structural assumptions.

Online routing has also been studied under deadline and time-window constraints.
Bansal et al. (2004) analyzed online scheduling and routing with deadlines, demonstrating
that feasibility and delay guarantees often require rejecting or postponing requests. Such
results highlight the intrinsic tension between immediacy and fairness in online routing
systems.

Several works investigate online routing with multiple vehicles or servers. Feuerstein
and Stougie (2001) studied online vehicle routing with multiple servers and showed that co-
ordination between vehicles is necessary to avoid poor competitive performance. Similarly,
Fagin and Raghavan (1996) analyzed online routing with parallel servers and established
lower bounds that persist even when multiple vehicles are available.

More recent work has examined online routing under resource augmentation and speed
scaling. Chan et al. (2012) studied online routing with speed augmentation and showed
that modest increases in speed can significantly improve competitive ratios. These results
parallel similar findings in scheduling and suggest that augmentation-based models may be
necessary to overcome impossibility results in capacitated routing.

Finally, online routing problems have been connected to real-time transportation sys-
tems and dynamic logistics. Ichoua et al. (2006) studied dynamic vehicle routing with
real-time information, identifying batching and delayed dispatch as essential mechanisms

for stabilizing system performance. Although these models focus primarily on empirical



and heuristic performance, they provide further evidence that immediate service is often

suboptimal in dynamic routing environments.

2.3 Online Food Delivery on Structured Graphs

Recent work has studied the online food delivery problem on structured metric spaces
like star graphs. These settings capture important geometric constraints while remaining
analytically tractable. Prior results show that for uncapacitated or unit-capacity servers,
simple online algorithms can achieve constant competitive ratios for minimizing maximum
flow time.

A representative example of this line of work is the study by Guo et al. [21], which
formalizes the Online Food Delivery Problem (OFDP) with the objective of minimizing
the maximum flow time under online request arrivals. The authors study the problem on
star graphs, where all delivery locations are leaves connected to a central depot, capturing
a restaurant-centric delivery structure while remaining analytically tractable. Under this
setting, they show that simple FIFO-based strategies are suboptimal and instead analyze
anticipation-based algorithms that prioritize requests using the sum of release time and
travel distance.

In particular, they prove that the Earliest Anticipation First (EAF) algorithm achieves
a tight competitive ratio of 3 among all myopic algorithms. By allowing limited waiting
through a far-sighted strategy, they further propose the Postpone and Anticipation First
(PAF) algorithm, which improves the competitive ratio to 8 /3. These results demonstrate
that even limited anticipation and controlled waiting can significantly improve worst-case
flow-time performance in structured metric spaces such as star graphs.

Guo et al. [20] significantly extend the study of the Online Food Delivery Problem by
considering general tree metrics, multiple vehicles, and both capacitated and uncapacitated

settings. The paper shows that minimizing maximum flow time is inherently hard in general
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metrics: even for a single uncapacitated vehicle, the offline problem is NP-hard to approxi-
mate and no o(n)-competitive online algorithm exists. These strong lower bounds highlight
that the maximum flow-time objective is substantially more challenging than makespan or
total travel distance objectives commonly studied in vehicle routing.

To overcome these negative results, the authors identify tree metrics as a tractable class
and design an O(1)-competitive online algorithm for the uncapacitated problem on trees.
Their approach groups requests arriving within bounded time windows into carefully con-
structed bundles, which are then served using subtree traversals with controlled backlog.
The paper further shows that finite vehicle capacity fundamentally alters the problem: even
on small trees, no constant-competitive algorithm exists without additional assumptions. To
address this, the authors analyze a speed-augmentation model and prove near-tight tradeoffs
between vehicle speed and competitive ratio. These results establish a sharp boundary be-
tween tractable and intractable regimes for online food delivery under maximum flow-time
objectives and motivate the focus on structured metrics and relaxed models in subsequent
work.

Structured metrics such as lines, cycles, and trees have received particular attention
due to their relevance in transportation and logistics. Sitters (2004) studied online routing
on the line and demonstrated that batching decisions are unavoidable for fairness-oriented
objectives. Englert and Roglin (2017) further examined online routing on paths and trees,
showing that delaying service can be provably necessary to control maximum delay.

Recent work has also explored stochastic and hybrid models. Jaillet and Wagner (2008)
studied online vehicle routing under stochastic arrivals, highlighting qualitative similarities
with adversarial flow-time models. Although these results focus on expected performance
rather than worst-case guarantees, they provide additional motivation for understanding

how anticipation and batching affect delay-sensitive objectives.
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2.4 Capacity Constraints and Batching

Capacity constraints fundamentally alter the behavior of online delivery systems. While
batching requests can reduce travel overhead, it can also increase waiting times for indi-
vidual requests. In offline settings, batching under capacity constraints is well understood
through CVRP formulations, but online batching remains much less explored.

Capacity constraints introduce an additional layer of complexity by coupling routing
decisions across requests. As shown by Ascheuer et al. (2000), batching decisions in
capacitated routing can dramatically alter optimal schedules even in offline settings. In
online models, these effects are amplified: serving requests greedily may lead to unbounded
delays when capacity exceeds one.

Related insights arise from online load balancing and batching problems. Azar et al.
(1999) studied online batching under capacity constraints and showed that myopic strate-
gies can fail catastrophically under adversarial arrivals. These results suggest that explicit
waiting and coordinated batching are often necessary to control worst-case flow time.

Beyond routing, similar phenomena have been observed in online scheduling with batch
processing. Coffman et al. (1996) studied batch scheduling models in which jobs can
be processed together, showing that batching introduces a fundamental tradeoff between
throughput and delay. Their results highlight that naive batching rules may significantly
increase flow time, motivating more carefully controlled delay mechanisms.

Impossibility results for greedy service also appear in queueing-inspired online models.
Bertsimas and van Ryzin (1991) analyzed dynamic vehicle routing with stochastic arrivals
and showed that immediate dispatch policies can be suboptimal even under probabilistic
assumptions, as delaying service allows the system to exploit spatial clustering. Although
their analysis is stochastic rather than adversarial, it reinforces the importance of batching
for stabilizing delay.

From a worst-case perspective, Megow et al. (2012) studied online scheduling with

12



commitment and rejection and showed that delaying acceptance decisions is often unavoid-
able to achieve bounded flow-time guarantees. These insights parallel the need for delayed
dispatch in capacitated routing, where committing too early to serve requests can block
future batching opportunities.

Additional lower bounds arise from online admission control and congestion models.
Andrews et al. (2001) showed that without controlled waiting or rejection, online algo-
rithms with capacity constraints suffer unbounded delay under adversarial arrivals. While
their work focuses on network congestion, the underlying mechanism—capacity-induced
coupling across requests—closely mirrors challenges in online delivery.

Recent work has also examined batching through the lens of competitive queueing the-
ory. Leonardi and Raz (2014) studied online service systems with batching and demon-
strated that bounded waiting often requires coordinated service policies that intentionally
delay individual jobs. These results provide further evidence that immediate service is
incompatible with fairness-oriented objectives under capacity constraints.

Finally, online matching with delays provides a related abstraction. Akbarpour et al.
(2020) studied dynamic matching markets and showed that allowing limited waiting dra-
matically improves performance and stability. Although their setting differs from routing,
the core insight—that strategic delay enables better global outcomes under capacity con-
straints—directly informs batching strategies in online delivery.

Together, these results indicate that capacity constraints fundamentally change the na-
ture of online decision-making. Simple greedy or myopic strategies are insufficient once
capacity exceeds one, and far-sighted algorithms that explicitly delay service and coordi-
nate batching become necessary. These observations motivate the focus of this thesis on
capacity-aware online algorithms with provable guarantees on maximum flow time.

Some prior work considers delayed dispatch or batching heuristics, but often without
rigorous guarantees on maximum flow time. In particular, it is unclear whether simple my-

opic strategies remain effective once capacity exceeds one, or whether far-sighted strategies

13



Table 2.1: Summary of prior work related to online routing, food delivery, and flow-time

objectives
Reference Problem Setting Metric/ Model = Main Result
Ausiello et al. (2001) Online TSP General metrics Constant  competitive

ratios for distance-

based objectives
Manasse et al. (1990) k-server problem  General metrics  Introduced competitive

framework for online

routing
Koutsoupias and Pa- k-server problem General metrics  Tight competitive
padimitriou (1995) bounds
Hammar and Nilsson k-server problem Tree metrics Improved competitive-
(2002) ness on structured met-
rics
Bansal and Pruhs Online schedul- Machine models Flow-time minimiza-
(2010) ing tion requires different
techniques
Guo et al. (2021) Online food de- Tree metrics O(1)-competitive algo-
livery rithm; hardness in gen-
eral metrics
Guo et al. (2022) Online food de- Star graphs FIFO suboptimal; EAF
livery achieves tight competi-
tive ratio
Guo et al. (2023) Online food de- Star graphs Far-sighted  strategies
livery improve flow-time
bounds

that explicitly delay service are necessary.
These questions motivate a closer examination of capacity-aware online algorithms and

their limitations.

2.5 Positioning of This Work

This thesis builds on prior work in online food delivery and flow-time minimization, while
addressing gaps related to capacity constraints. Unlike earlier studies that focus primarily
on unit-capacity servers, we analyze how competitiveness changes as capacity increases.

We provide both impossibility results for myopic algorithms and constructive guarantees

14



for far-sighted strategies.

By focusing on structured metric spaces, we obtain sharp competitive bounds that clar-
ify when anticipation and batching are unavoidable. Our results complement existing work
on online routing and contribute new insights into the design of real-time delivery algo-

rithms under capacity limitations.
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Chapter 3

Problem Formulation and Algorithm

Framework

In this chapter, we formally describe the online food delivery problem studied in this thesis.
We introduce the underlying metric space, define requests, flow time, capacity constraints,
and feasible schedules, and specify the algorithmic framework used throughout the analy-

sis. These definitions form the basis for the results presented in the subsequent chapters.

3.1 Problem Notation

Let (V,d) be a metric space, where V' denotes the set of delivery locations and d(u,v)
represents the distance between locations v and v. We assume |V| = n, where n is the
number of delivery locations. A distinguished node o € V' represents the depot from which
the server originates and to which it must return after completing deliveries

We consider a single server that operates at unit speed. The server has a fixed capacity
K € Z-,, meaning it can carry at most K requests in a single trip. This thesis considers

only one server and it has a unit speed.
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3.2 Online and Offline Solutions

A delivery request is denoted by p = (r,,v,), where r, € Z- is the release time of the
request and v, € V' is the delivery location. Requests arrive online over time, and the server
must make dispatch decisions without knowledge of future arrivals.

If request p is delivered at time ¢, then its flow time is defined as
Fy=t,—r,.

The objective of the online food delivery problem is to minimize the maximum flow time

over all requests.

3.3 Algorithm Framework

The output of an online algorithm is a sequence of trips. A trip is defined as a tuple
(ta (07 V1, V2, - .. 70)7 R/)J

where t is the departure time of the trip, (0, v1,vs, ..., 0) is the route taken by the server
starting and ending at the depot, and R’ C R is the set of requests served in the trip.

Each trip must satisfy:

* For every request p € R',t > r,.

c R <K

* Once a trip begins, it must be completed without interruption.

Trips are executed sequentially. If C';_; is the completion time of trip £ — 1, then the

departure time ¢, of trip k£ must satisfy ¢, > Cj_;.

17



If a request p is served in a trip departing at time O, then its completion time is
tp = Op + d(o, Up)»

and its flow time is

F,=0,+d(o,v,) — ).

3.4 Structured Graphs

This thesis focuses on structured metric spaces that allow precise competitive analysis.

3.4.1 Path Graphs

In the path graph setting, the metric space forms a path with the depot located at left end.

The server must travel along the path to serve requests and return to the depot.

3.5 Online and Offline Solutions

An offline optimal solution has full knowledge of the entire request sequence in advance
and can schedule trips to minimize the maximum flow time. Let F'* denote the maximum
flow time achieved by such an optimal offline algorithm.

An online algorithm produces a schedule without future knowledge and achieves max-
imum flow time F'. Performance is measured using competitive analysis. An online algo-
rithm is c-competitive if

F<a-F7

for all input instances.

18



3.6 Algorithmic Framework

We study two broad classes of online algorithms.

3.6.1 Myopic Algorithms

Myopic algorithms dispatch the server immediately whenever there are pending requests at
the depot, without waiting for future arrivals. We consider the following myopic dispatch

policies:

* First-In-First-Out (FIFO), which serves the request with the earliest release time.

That is, among all available requests, FIFO prioritizes the oldest request.

» Earliest Release First (ERF), which serves the request with the latest release time. In
contrast to FIFO, ERF prioritizes the most recently released request and is therefore

the exact opposite of FIFO.

» Earliest Anticipation First (EAF), which serves the request with the smallest antici-

pation time.

For a request p = (r,,v,), the anticipation time is defined as
TP + d<07 UP)7

where 7, is the release time of the request and d(o, v,) denotes the distance from the depot

o to the delivery location v,,.

3.6.2 Far-Sighted Algorithms

Far-sighted algorithms intentionally delay service in order to batch requests and better uti-
lize capacity. We guess the optimal maximum flow time (£ and divide the time into

intervals of F™* and group requests from consecutive intervals.
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Chapter 4

Algorithm Analysis

This chapter presents the main theoretical results of the thesis. We analyze online algo-
rithms for minimizing the maximum flow time under capacity constraints on structured
metric spaces. We begin with myopic algorithms on path graphs for small capacities, estab-
lish impossibility results, and then introduce a far-sighted algorithm that achieves bounded

competitive ratios for general capacity.

4.1 Path Graphs with Capacity One

We begin by analyzing myopic algorithms on path graphs when the server has unit capacity.

4.1.1 FIFO Algorithm

We first establish a structural lemma for the offline optimal solution.

Lemma 1. If request py, has the maximum flow time in the optimal offline solution, then all

requests released before py, are served before it.

Proof. Assume for contradiction that p; has the maximum flow time in the optimal solu-

tion, but there exists a request p; with ¢ < L that is not served before py .
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Let 7;,d; denote the release time and distance of request p;, and let O denote the
departure time of the trip serving p; in the optimal solution. Since p; is served after py, its
flow time satisfies

Fr > OF +2d;, +d; — ;.

On the other hand, the flow time of pj, is

* *

Since r;, > r;, we obtain

F;*ze+dL+di+rL_ri>an

which contradicts the assumption that p; has the maximum flow time. Therefore, all re-

quests released before p;, must be served before py, in the optimal solution. 0
Theorem 1. For path graphs with capacity one, the FIFO algorithm is 2-competitive.

Proof. In order to simplify the analysis, we restrict attention to work-conserving instances.
That is, we assume that whenever the vehicle returns to the depot, there exists at least one
pending request, and hence the vehicle departs immediately without idling. We divide the
proof into 4 subparts.

Let ‘I° be the maximum flow time in OPT.

Let ‘i‘ be the maximum flow time in ALG.

If there are a total of K requests, then we can divide the proof into 4 cases and use

mathematical induction to show that:

The four cases are:
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<K, 1<K

We will use mathematical induction to prove this. We will assume that our algorithm is
true for K — 1 and try to prove it for /.

1. Forl < K, < K: We can use induction to prove that our theorem holds.
2.Il< K,1=K:

Fl*ZOl*—Fdl—tl

F =0 +d;,—t; (all requests that came before [ are served)

-1
Fr=0;+2) di+d— 1t
i=1
Now, if there was no request that was served whose ¢; > [, then the above F* is the
same for myopic. But our assumption is that f;, is the max and not F}*. So, 3 at least one
request such that ¢; > ¢; has been served.

-1

Fr >t +2) di+d -t
i=1

-1

Fr>2) ditdi+ (s —t) (+ve)

i=1
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-1 l
Frz2y di+d>2) d (1)
=1 =1

Below is the flow time for our myopic algorithm for case 2

Fr, = Ok +di — 1y,

Fk<0k+dk

k-1
=1

k
i=1
Suppose z*, is the last req that is served in the optimal.

-1 k
Fy=07+) 2di+di+di+ > 2di+d,—t,

=1 i=l+1,i#x

-1
F}*:OI—FZQdi—Fdl—tl

=1

k
Fr=F+d+ Y 2di+d,—t,+1
i=l+1,i#n

‘We know that
Fr<F'F;>0

F>di+2 ) ditditti—t,
I+1,i#z

23



In the above t; — ¢, is negative

k
Fr>2) d 2
l

Using the above 1,2, 3 we get

l k
1

I+1

F, < QE*

Case3:=K,i< K

Because of the assumption we know that

The above is true for all [ < K and ¢ < K. So it will also be true for / = kand i < K
because Fy > I where i < K. Case 4: | = KK, 1 = K We now compare both sides against

the same quantity.

« ALG:
K
Fy <2 Z d;.
i=1
e OPT:
K
Fr>2) d.
i=1
Therefore,

24



4.1.2 EAF Algorithm

For EAF and ERF we use standard simplification rules to make the proof easier.
Instance Simplification
We make the following assumptions on the input instance to simplify the proof. Without

loss of generality we only need to focus on these kinds of input instance.
¢ The maximum flow time is obtained at the last served request: max F), = [,
* EAF serves one request at each time.

We use the legal definition and the properties from paper!!l. The definitions and properites

are listed below

Definition(Legal Pair) We say an ordered request pair (a, b), where O, < Oy, is legal if:

Ty +d, <1+ dp

Properties of Legal Pairs:
* In EAF, if O, < O, and r, < O,, then r, + d, < 1, + d, and (a, b) is legal.

* (Reward Property): If (a, b) is legal, then we have:

F<F +C;—C:

Let C' andC* be the completion time of the online algorithm and the optimal algorithm.
Then we have the following

Lemma: C — C* < F*

The OPT starts at the same time or later than the departure time of ALG.

Assume (¢, t") be the last idle time made by EAF before its completion time.
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After ¢/, EAF finds at least one request waiting when it returns to the depot, so it departs
immediately.
EAF after t’ serves requests pri1, Prt2, - - - Pn

Let S:={p;: 1>k}

S:={p;:ri >t}

C=t+) (Ci—Ci)

peS

C=t+2-Y di+d,

peS

For OPT, we cannot start before ¢/

C* >t +2-) di+dy

pES

—CF < — (t’+2-2d,~+dp*>

PES

C-C"<d, —dy <F~
Theorem 2. For path graphs with single capacity the EAF algorithm is 3 competitive

For EAF we will divide the pairs into legal and non-legal pair and find the competitive

ratio for both the legal and non-legal pair.

Legal Pair
Lemma 2. For legal pairs in EAF, the competitive ratio is 2F™.

Proof. We use the reward property to prove this.
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Reward property is : F, < F + Cy — C

FSF"+F*

F < 2F*

Non-Legal Pairs

Lemma 3. For non-legal pairs, the competitive ratio is 3.

Proof. (p*, p) is not a legal pair. So 7, + d,« > 1, +d,,.
O, < O,,, because p, is the last request served in EAF.
Claim: r,- <7, and O, <r,,

Reason: If not, then because of EAF, p,, should have been served first.

We have:
C,, — Cp < F7
Opn S CP* + F*
Cp, <2F" +dy + 1)
Now, using:
Fpn = Cpn - dﬂn ~Tpn

(substituting this above)

F, <2F, + F, (becauser, > 1, andd; < F})
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F < 3F*

4.1.3 EREF Algorithm

Lemmad. C — C* < F*

We can use this lemma for all the cases with capacity 1 as in the above proof we don’t

use the algorithm but only the condition that the capacity is 1. [
Theorem 3. For path graphs with single capacity ERF algorithm is 4 competitive

Proof. (a) Maximum Flow Time:

The bound on the completion time doesn’t depend on the algorithm:
C—-—C*"<F* forcap=1

After t;

C'=0,+2da+2) d,

pEQ

C*>0,+2> d,

Fy=C)—d,—r,

C*—TP*ZF;—i—dp* SQF*

r,, 18 at most r,,, because p,, is lastly served in ERF.
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C*—r,, <C*—r, <2F"

F, =Cp —d, —1, <2F +C—d, —r, <2F +2F —d, <4F*

n

F < A4F*

4.2 Path Graphs with Capacity Two

We now show that increasing capacity fundamentally changes the performance of myopic

algorithms.

Theorem 4. For path graphs with capacity two, no myopic FIFO-based algorithm admits

a bounded competitive ratio.

Proof. We prove this by giving example of an instance where the competitive ratio is un-

bounded.

[0, T7[0, 1][T, T][1,T] ... (nsuch requests)
FIFO: When we follow the FIFO algorithm the total completion time it takes to com-
plete the requests is 2n’T" Total completion time = 2nT’
Flow Time.x = 2nT — T — (n — )T =nT

OPT: In optimal case we can wait for time T and then club the same requests together.

Then the total completion time will be n + nT + T
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Total completion time = 7" + (% T+ g] 2=T4+nT+n

Flow Timeyox =T +nT4+n—-T—-(n—1)T=n+T

nT

Competitive ratio =
P n-+1T

If n =T, then

Competitive ratio = 5 — unbounded

]

This result demonstrates that myopic strategies that perform well for unit capacity fail
once capacity exceeds one as capacity is not properly utilised as they cannot wait and group

requests together.

4.3 Far-Sighted Algorithm for General Capacity

To handle larger capacities, we introduce a far-sighted batching algorithm. The above ERF
and EAF algorithms work for single capacity and are not generalizable when we increase
capacity, and as such we use a far-sighted algorithm to find a bounded competitive ratio.
We propose a far sighted algoritm in which we assume that we know the optimal maximum
flow time which is F*. We will divide our time range into intervals of F like [(i — 1) F, i F|
where i € [0, co] and we call the interval [(i — 1)F,iF] as iF". The requests that arrive in
the interval i /" will be defined as R; and will be served at the beginning of (i + 2)F. To
better use the capacity that the server has we will try to batch the requests in the interval

with some of the requests in the adjacent intervals we will call them R'“/* and R

Let’s define R, = {pe R:(i—1)F <r, <iF'}. We bundle request together and
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generate R, for R; which bundles requests R;, R./* and R"*"". We will generate the

bundles for odd i’s. The cost function that we will use for this algorithm is defined as
Cr(S) = dnjx
j=0

We will sort the elements in S in decreasing order and we will use the cost function to

partition the requests in R;_; and R, and to bundle them and create R,.

Below figure illustrates the high-level structure of the far-sighted batching algorithm.
Requests arriving in interval /; are not necessarily served immediately; instead, they may be
bundled with carefully chosen requests from neighboring intervals. This controlled delay
enables more efficient use of server capacity while ensuring that the maximum flow time

remains bounded.

Far-5Sighted Strategy: Interval Bateching

Algorithm batches 8™ u R, .3 v R,

Ria A, Rian
(Reguests in 7, ) ] {Requests in 7,) (Requests |

N ‘ -

e =

Optimized Batch 7
(Released at 7...,..)

Figure 4.1: Far-sighted interval batching strategy for general capacity. Requests arriving
in interval /; are batched together with selected requests from adjacent intervals to better
utilize server capacity while controlling maximum flow time.

We partition R; into (R'/*, R7"9"") such that we minimise Cj,( R U R;_;)+Cj(RI'™™ U
R;11). For every requestin p € R; the algorithm will check if Cy(R;_1Up) < Ci(R;11Up)
and if it is true then the request p € R/ else p € R,

For every trip the server will need to deliver all the requests and for this it will travel to
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Algorithm 1 Partition of Requests into Bundles
1: fori=2,4,6,8,... do
2: wait until time (i + 1)F
3; let R, ={p€e R:r,e[(i—1)F,iF")} as defined in the text
4 partition R; into R and R}*" so as to minimize
Co(R¥ U Ri_y) + Cu(R™™ U R,.)
5: end for
6: release the bundle
R, | =R UR,_ UR""
:attime (i + 1)F

~

the furthest distance among the batch of request and then it will also need to return to the
depot so it travels a distance of 2d,,, ..

We will first prove the theorem for capacity 2 and then generalise it for capacity K. We

need the following lemmas to prove our theorem.

Lemma 5.

S is sorted in non-increasing order

52{812822...}

Proof. Let’s define

k=ng(t)=#{z €Sz >t}

for a threshold t.
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Since the sequence is non-increasing,
Z; >t = j < k.

Thus,

S ay > th =) 1{j <k} =#{oddj € {1,2,... k}}.

J J
odd odd

Now, how many odd integers are < k?

k=2¢ = #{oddj<k}=q=4%,
k=2¢+1 = #{oddj<k}=qg+1="5"L

Therefore, in both cases,

#{odd j < k) = m .

Hence,

Sz =",

J
odd

— Oy(S) =/OOo [”52(% dt

Lemma 6. For any subsets A, B, C':

Co(AUBUC) < Co(AUB) + Co(BUC) — Cx(B) + Ag

where A = min(max A, max B, max C')
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Proof. For any t > 0, let

We want to prove:

2255 1] 132 e

Let

a=2r+a, b=2y+p, c=2z247v, (a,8,7) €{0,1}.

Then we will have

2k
[ ;6—‘ =k+e

Let’s define ¢(¢) as below
(1) = at+b+c| Jatb] [b+c L b
R 2 2 2|

e e N N e s

If 3 =0 (i.e. bis even), then

‘We have

Thus,

q(t) € {0,—1} <0

If 3 =1 (i.e. bis odd), then

q(t) € {0,1}.
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Explicitly,

a+vy+1 a+1 v+1
t) = - — == +1
e e e
If a =v=1(soa,b,care all odd), then

q(t) = 1.

Therefore:

q(t) <0 ifbiseven,

and

q(t) =1 ifa,b,careodd.

=1

The above holds if for every ¢ > 0 there does not exist a ¢ such that b(t) = np(t) is

So,

odd, a(t) = na(t) is odd, and c(t) = nc(t) is also odd.

= when all three are odd, ¢(t) requires one extra trip.

So when a, b, ¢ are odd, how do we bound the extra trip?
We know

q(t) =1 when all a,b, c are odd.

The threshold  is

t <max(A), t<max(B), t<max(C).
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Therefore,

t < min (maXA, maXB,maXC).

We consider
/ 1{t < min(max A, max B, max C')} dt = min(max A, max B, max ().
0

Thus,

[M—;ﬂ B [aﬂ - Pﬂ + m — 1{t < min(max A, max B, max C)} < 0.

Integrating over ¢, we obtain
Cy(AUBUC) —Cy(AUB) — Cy(BUC) + Cy(B) — min(max A, max B, max (') < 0.
Hence,
Co(AUBUC) < Cy(AUB) + Cy(BUC) — Cy(B) + min(max A, max B, max C').

and we have the last term only when there exists a 't such that b(t) = np(t) is odd,
a(t) =na(t) is odd, and c(t) = ne(t) is also odd.

]

Let’s assume the below assumptions and let’s now prove the bound for the time interval

A=R®™ B=R, C=R"  RI'=R*™URURT

> Cy(RT) = Co(RPE U R, URED)

i odd i odd
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D Co(R]) <> Co(RPE U Ry) + Co(R; U REL) — Ca(Ry)

i odd i odd

Let’s change the indexing from odd to even

S [Co(RE U Ry + Co(R; U B

i odd

=Y [cg(Ri_lLJR;e“)+02(R§ightuRi+1)}+02(R§;g“{uR )+Cy(RyUREY) ZOQ

7 even

[a,]

Let A C R; and Let f;(A) be
fi(A) = Co(Ri-1 UA) + Co((Ri \ A) U Riyq)
R ¢ arg min fi(A), ACR;
fi(REY) < fi(A)

Let R’ be the new request after we make the request transfer to remove the all parity

Let S be the partition of requests that depends on the offline optimum trip.

R = (SiNnR;) U (S;NR,,)
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A?pt = -1 N R,/L

f(Rgleft) < f(A;-)pt>

Co(Ri_1 U R®™™) + Co(R™™ U R},,) < Co((Si—1 N R}) U Ri_y) + Ca((S; N RY) UR,,)

Co(Ri_y UR™) + Co(R™M™ U R., ) < Co(Sim1 UR]) + Co(S; U RY,)

Because after the transfer of request triple odd doesn’t exist the below condition still

holds

o DGR < ) Oo( B URIT)ACo(RIMUR, ) +Co By "M UR)+Co RYURG, M) =)

i odd 7 even i odd

ZCEU%TZ') < Z [02((5i—1ﬂR§)URL1)+Cz((SiﬂRQ)URQH) +Cy(R,,_""UR,)+Co(RyUR;,"")-

i odd 7 even

Co(R™™ UR') < Cy(Sq—s MR, ;) + Cy(Say UR.)
R/afl = (Saf2 N R/afl) U (Safl N R/afl)

Co(R'y U R'Y) < Co(R'y U Sy) + C(Spia U R'yi1)
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NACAEDS [OQ(Si_l UR, )+ Cy(S;URL,)

i odd i even
a,b]

4+ Co(Sa—a N R}, 1) + Co(Sa—1 U Ry) + Co(Sp U Ry) + Co(Spe1 U Ry )

We will reindex from even to odd again. We get

202(3/?) < Z [02(SZUR/¢)+02(SF1UR/¢) +C5(Sa—2NR' 1—1)+C2(S,—1UR',)+Co(Sp11UR 1) -

i odd i odd

For reindexing we use the following

Let’s use

F'j = CQ(Sj U R;), Gj = CQ(Sj_l U R;)

Then
Z Cz(R/iTi) < Z (Fi—1 + Gig1)

i odd i even

After reindexing, we get the expression below:

S GRT) <Y [Cz(SiUR’Z-)JrCQ(Si_lUR’i) +C(SamaNRl_ )+ Ca(Sp1URy )~ Co(R))

i odd i odd i odd

Now because of our initial assumption we know that R} doesn’t have a triple odd so we

don’t need the extra trip. So our theorem becomes

Cy(AUBUC) < Co(AUB) + Cy(BUC) — Cy(B)

When (7,7 + 1) is not a triple odd, we have(proved below)
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CQ(Sz;l U Rll) + 02(51 U R/z) < CQ(Sz;l) + CQ(Sz) + CQ(RII)

Z Cy(RIY) < Z [02(51‘—1) + C2<Si)] + Cy(Sa—2 N R a—1) + Co(Sp1 N R'pi1)

7 odd i odd

<(b—a+4)F

This will add an additional F to the flow time as the request might start one F early
because of the extra trip.

So for the total size of requests released in [t,t’] the most time it takes is (t-t”) + 4F for
any t < t’. Therefore for an odd i, R’ has the earliest request belonging to (i-3)F, and thus
all requests in R’ are served by time (i+6)F as they are released at time (i+2)F. So the total
flow time would be 9F.

Generalisation

For a vehicle with capacity K, the cost function is

C(S) = dnjx
j=0

where S = {x; >z > .. .}.

Each trip carries K requests, so you pick every K™ element starting from index 1.

For any nonnegative ;:

0

SO
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CK(S):/OOo > x> t)at.

j=1(mod K)
Let ng(t) = #{x € S : x > t}. The number of indices j = 1 (mod K') with j < ng(t)

is

K

Hence

Cr(S) = /OOO [”’iéﬂ dt.

For capacity K we can generalise this as

a=Kr+a, b=Ky+p, c=Kz+7, (o, B,7v) € {0,1,..., K — 1}.
The cost identity to prove becomes

25055 [42]o [ - [£] ez

where A is the threshold correction analogous to

A = min(max A, max B, max C).

Definition of ¢y ()

wo=[22529-[)- [2]
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Substitute a = Kx +a, b= Ky + 3,c= Kz + ~. Then

alt) = | ] - |2 B 1

where (o, 5,7v) € {0,1,..., K — 1}.

Proof. Let’s analyze the possible values of gk () for integer triples («, 3, 7).

[label=(c)]

1. For most residue triples («, /3, ), the integer parts of each term cancel, and hence

2. The value gk (t) = 1 can occur only under specific overflow conditions. This happens

precisely when

a+p+vy>K and a+f8< K, [f+v<K.

The term ’—%ﬁﬂ-‘ increases by 1 whenever the total sum exceeds a multiple of K. How-
ever, if both partial sums a + [ and /3 +  remain below K, neither of their ceiling terms
increases individually. Thus, the full sum “overflows” one multiple of K even though no
pair does.

This case represents a similar triple-overflow condition, a generalization of the classical

“triple-odd” case for K = 2.

Conclusion: The “extra trip” arises exactly when all three segments together exceed one
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additional multiple of K, while each pair separately does not. Therefore,

1, fa+pf+y>Kanda+ < K, f+v<K,
ax (t) =

0, otherwise.

]

Proof. This “overflow” condition corresponds to the case where the combined contribution
of the three request sets A, B, C' exceeds one additional multiple of K, while each pair

individually does not.

The extra trip is bounded by
t < min(max A, max B, max C) =: Ag.

Hence, gk (t) will have an extra trip when the above condition is met.

Integrating both sides of the identity
Ck(AUBUC)—-Cg(AUB)—Cg(BUC)+ Ckg(B) = /OOO qi (t) dt,
we obtain
Ck(AUBUC) < Cg(AUB)+Cg(BUC) — Ck(B) + Ak.

The additive term A g represents the contribution from the limited range of ¢ < A where

overflow occurs, corresponding to at most one additional capacity-K trip.

Conclusion. The inequality formally captures the bounded deviation from submodularity

introduced by vehicle capacity K:

Cx(AUBUC) < Cx(AUB) + Cx(BUC) — Cx(B) + Ay,
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cddwhere Ax = min(max A, max B, max C') quantifies the threshold of the final joint
overflow.

]

We can use the above lemmas to prove the same bound on the time interval [a,b] and
the flow time will be the same as for capacity 2 which is 9F.

We start by defining:

o[22 ] -2

Use the inequality:

[z +y] < [x] + [y]

Let:
x_oz—i—ﬁ 7
I
Then:
[a+B+7] [a+B F_q
k k — 1k
Hence:

Further Bounding on ¢;

We begin with:
v B+ B
G < {ﬂ B [T-‘ + [E-‘

This simplifies to:
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Lower Bounding Inequality

We use the ceiling addition lower bound:

[z +y] > [z] +[y] -1

Let:

i) o-ff

From the ceiling addition lower bound:

2] 2]

Rearranging gives:

Thus,

This implies:

qx cannot exceed 1
So we will have at most 1 extra trip and we can propogate it and get the above bound.

Theorem S. For path graphs with capacity K there is a far-sighted algorithm that has a

competitive ratio of 9F.

Proof:

Let
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A=R™ B—R, C=R<, R =R*™UR,UR

)

> Ck(RI) = Cx(R® UR;URE)

i odd i odd

Y COk(R) <) Ck(R® URy) + Cx(R; U RSY) — Cie(Ry)

i odd ¢ odd

Let’s change the indexing from odd to even

Z [CK(RZ%? U RZ) =+ CK<R1 U Riiftl)

i odd

= Z [CK(RZ'AURf’ﬁ)%—C’K(Rzigh‘URiH)] —i—CK(Rr‘ghl‘UR )4+Cle ( RbUR%,efl ZCK

i even

[a,]

Let A C R; and Let f;(A) be
fi(A) =Ck(Ri-1UA)+ Ck((R; \ A) U Ri1q)
R € argmin fi(A), AC R
fi(REY) < fi(A)

Let R’ be the new request after we make the request transfer to remove the all parity
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Let S be the partition of requests that depends on the offline optimum trip.

Ry = (SinR)U(SiNR;,,)
A?pt = Sifl N R,/L

f(R;leﬁ) < f(A;)pt)

Cr(R_ UR) + Cx (R UR.,,) < Cr((Siei NR)UR,_) +Cr((SiNR)URL,,)

Cx(Ri_, U R + Ce (R U Ri,1) < Cg(Sic1 UR;) + Cg(S; UR;,,)

Because after the transfer of request triple odd doesn’t exist the below condition still

holds

N Ck(RI) < Cre(RUR)+Cre (R URY, )+ Cic (RUR,) +Cre (RJURSH) =S Cig

i odd i even i odd

> Ck(B) < 37 | Crl(SianRYURL )+ Cre (SNRNURL,) | +Cre (RIS UR,) +Cre(RURSS) -

i odd i even i
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Cr(R™™ UR)) < Cr(Sas NR._|) + Cx(S,1 UR.)
Rlafl = (San N Rlafl) U (Safl N R/afl)

Cx(R'p U R/}if:l) < Ok (R U Sy) + Cr(Spi1 U Rlpy)

Z CK(R/ZTZ) < Z |:CK<S’L—1 U R;—l) + OK(SZ U R§+1)

4 odd i even
[a,b]

+ Cr(Sa—2 N R, _1) + Cx(Sa-1 UR,) 4+ Cx (Sy U Ry) + Cr(Sps1 U Ry 4)

We will reindex from even to odd again. We get

Z CK(R/;‘E) < Z [CK(SiUR/i)+CK(Si—1UR/i)] +Cx (Sa—2NR'4-1)+Ck (Se—1UR' ) +Cr (Sp+1UR",

1 odd 1 0dd

For reindexing we use the following

Let’s use

F}' = CK<S]' U R;), Gj = CK<SJ',1 U R;)

Then

ZCK(R'iTi) < Z(erl + Giy1)

¢ odd 7 even

After reindexing, we get the expression below:

Y Cr(R) <Y [CK(SiUR’Z-)JrCK(SZ-,lUR’i)] +Cx (Sa—2NRl, 1) +Ck (Sp1UR} 1) —>  Ci(R)

i odd ¢ odd 4 odd
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Now because of our initial assumption we know that R doesn’t have a triple odd so we

don’t need the extra trip. So our theorem becomes

Ck(AUBUC)<Cg(AUB)+Cg(BUC) - Ck(B)

When (4,7 + 1) is not a triple odd, we have(proved below)

Cr(Si1URY) + Ck(S;URY) < Ck(Sity) + Cx(S;) + Cx(R)

> C(RF) < Y [Cr(Si1) + Cc(81)| + Cae(Saa N Rlact) + Cic (S 1 Ripia)

i odd i odd

<(b—a+4)F

This will add an additional F' to the flow time as the request might start one F' early
because of the extra trip.

So for the total size of requests released in [¢, ¢'] the most time it takes is (¢t — ') + 4F
for any ¢ < t’. Therefore for an odd i, R’ has the earliest request belonging to (i — 1)F
which ranges from [(i — 2)F, (¢ — 1)F], and thus the oldest request in (i — 2) F will have
to wait 4 F' before it is released at time (i + 2)F" and an extra F' in worst case for ¢(t). So

the total flow time would be 9F'.

4.4 Summary of Results

This chapter establishes sharp separations between online strategies under capacity con-
straints. While myopic algorithms achieve constant competitive ratios for unit capacity,

they fail for higher capacities. Far-sighted batching is necessary to obtain bounded perfor-
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mance as capacity increases.
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Chapter 5

Conclusion

This thesis studied the online food delivery problem under capacity constraints with the
objective of minimizing the maximum flow time. We focused on structured metric spaces,
specifically path graphs which allow precise competitive analysis while capturing essential
features of real-world delivery systems. By systematically analyzing both myopic and far-
sighted algorithms, we characterized how server capacity fundamentally alters the behavior

and performance of online dispatch strategies.

5.1 Summary of Contributions

The main contributions of this thesis can be summarized as follows. First, we analyzed
myopic algorithms on path graphs under unit capacity and showed that simple strategies
achieve constant competitive ratios. In particular, we established tight bounds for FIFO-
based and anticipation-based algorithms, demonstrating that limited anticipation can sig-
nificantly improve flow-time performance.

Second, we showed that increasing capacity introduces qualitative changes in algorith-
mic behavior. For capacity two, we proved that no myopic FIFO-based algorithm admits a
bounded competitive ratio on path graphs. This impossibility result highlights the limita-

tions of immediate dispatch strategies once batching becomes possible.
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Third, to overcome these limitations, we introduced a far-sighted batching algorithm
for general capacity /. By partitioning time into intervals and carefully bundling requests
across adjacent intervals, the proposed algorithm achieves a constant competitive ratio on
path graphs. This result demonstrates that controlled waiting and batching are essential for

maintaining bounded flow time as capacity increases.

5.2 Implications

The results of this thesis provide insight into the design of real-time delivery and dispatch
systems. In low-capacity settings, simple myopic strategies may suffice and are attractive
due to their simplicity and responsiveness. However, as capacity increases, such strategies
can lead to arbitrarily poor performance. Our analysis shows that incorporating anticipa-
tion and batching is not merely an optimization, but a necessity for achieving fairness and
bounded delay.

These findings help clarify the tradeoffs faced by practical delivery platforms, where

decisions must balance immediacy against efficiency under capacity constraints.

5.3 Future Work

Several directions remain open for future research. One natural extension is to study more
general metric spaces beyond paths graphs and to understand how geometric properties
affect the competitiveness of online algorithms. Another direction is to consider multi-
ple servers and analyze how coordination and load balancing interact with capacity con-
straints.We can also look into myopic strategies and how to get bounded competitive ratios
for different algorithms.

It would also be interesting to explore stochastic arrival models or partially predictive
settings, where limited information about future requests is available. Finally, extending

the analysis to other objectives, such as weighted flow time or combined flow-time and
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distance metrics, could further bridge the gap between theoretical models and practical

delivery systems.
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