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Abstract

Truck–drone delivery systems are increasingly important for last-mile logistics, combining

the flexibility of drones with the capacity of trucks. The studied system involves a truck and

one or more drones operating in a two-dimensional plane to serve a given set of delivery points:

the truck moves along a straight path (the x-axis) at a constant velocity vT = 1, serving as a

mobile launch, recovery, and charging station, while drones move freely at velocity v, subject

to range R and capacity constraints, to serve off-route customers. Depending on the operational

setting, the optimization objective is either to maximize the number of completed deliveries or

to minimize the total completion time.

Building on this foundation, this study examines truck–drone delivery systems across three

scenarios: (1) multi-drone delivery with randomly located points, (2) multi-drone delivery on

structured “proper” instances with geometric constraints, and (3) single-drone delivery where

the truck is allowed to stop and wait to support operations. In addition to theoretical analysis,

we implement and evaluate several algorithms, including Sequential Greedy, Parallel Greedy,

Sequential 1DP, Parallel DP, and Sequential 2DP/2DP* for multi-drone scenarios, as well as

heuristic, dynamic programming, and Dijkstra-based exact methods for the truck-stop scenario.

For randomly located points, Sequential Greedy consistently outperforms Parallel Greedy,

achieving more deliveries, faster execution, and requiring fewer drones, particularly for smaller

fleets. On proper instances, higher-dimensional DP methods (Sequential 2DP*) achieve the

largest number of deliveries for small fleets, while Parallel DP scales more efficiently for larger

fleets; Sequential 1DP offers a fast alternative with moderate coverage. In the single-drone,

truck-stop scenario, a fixed-order bottom-up dynamic programming method minimizes total

delivery time for a given delivery order on a discretized state space, while a Dijkstra-based

exact search validates solution quality for small instances. The proposed heuristic achieves

near-optimal completion times at substantially lower computational cost.
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1 Introduction

1.1 Background and Motivation
In the last ten years, the use of drones has transformed from test trials to practical tools in
delivery operations. This rise in interest is fueled by an increasing need for faster, cheaper
and more sustainable solutions for completing last-mile deliveries. There has been a great
deal of research into exploring how drones and auxiliary equipment supplement or replace
conventional delivery trucks [7, 10].

There are many operational advantages to using drones. They can bypass traffic and save
substantial delivery time in congested urban environments because they fly directly between
depot and delivery points [7]. This makes them useful for time-critical deliveries such as
medicines. Also since they are electrically powered, they consume less energy compared to
vehicles powered by internal combustion engines, thus controlling air and gas pollution [9].
Drones also reduce labor costs associated with last-mile deliveries and analyses have shown
that they can save up to 96.5% compared with traditional methods [7]. In spite of these bene-
fits, there are still many challenges associated with prevalent use of drone delivery. One of the
main hurdles is limited battery endurance and payload capacity, because of which most com-
mercial drones can carry only small packages over short distances [8]. Another major challenge
is related to weather which includes strong winds, heavy rain, or extreme temperatures. All of
these can cause the battery to drain fast, reduce flight stability and even shut off operations
completely that can affect reliability of the service [2].

Flying Sidekick Traveling Salesman Problem (FSTSP) is an efficient truck-drone collabo-
rative model suggested by Murray et al [5]. In this scenario, truck travels in its route, by also
functioning as a mobile platform that recharges and reloads the drones. This parallel operation
reduces the time required to deliver all packages. Experimental results show such a truck-drone
system can reduce delivery time by about 30% to 38% compared to truck-only operations [7].
As an extension to this problem, the Multiple Flying Sidekicks Traveling Salesman Problem
(M-FSTSP) is introduced where multiple drones are managed by a single truck, thus increas-
ing its effectiveness [6]. Another recent extension consider the multi-visit drone capability, in
which a drone can serve multiple customers on a single sortie before returning to the truck [3].

The specific problem addressed in this study is the En Route Truck-Drone Delivery Problem
[4]. This framework models a scenario where the truck travels continuously along a straight
line while in parallel dispatches and retrieves a drone that delivers packages to off-route clients.
The core objective is optimizing the schedule synchronization between the moving truck and
the limited-range drone to maximize the total number of successful deliveries [4]. While the
foundational work established strong theoretical results for a single-drone system, practical
implementation requires a fleet of drones. Our research extends the entire theoretical and al-
gorithmic framework of the En Route Truck-Drone Delivery Problem to a multi-agent system
involving k drones. We derive theoretical performance guarantees for these multi-drone algo-
rithms and validate them through empirical analysis across three distinct logistic scenarios.

1.2 Literature Review
Seidakhmetov and Valilai [8] discuss limitations of drone delivery systems such as battery en-
durance, payload, regulation, and operational safety constraints. Their work is not mainly an
optimization model, but it helps explain why truck–drone cooperation is needed to overcome
limited drone range. This is different from routing papers because the focus is on restrictions
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and feasibility issues more than algorithm design. These constraints also motivate our schedul-
ing assumptions, especially range and service reliability.

Benarbia and Kyamakya [2] provide a literature review of drone-based package deliv-
ery logistics and discuss implementation feasibility. They summarize recurring issues like
safety, regulation, reliability, and integration with existing logistics systems. This differs from
optimization-focused surveys because it emphasizes practical deployment barriers and system-
level challenges. Their discussion supports our motivation that purely theoretical schedules
must be interpreted with real operational constraints in mind.

Saeedi et al. [7] present a systematic review on drones in last-mile delivery with emphasis
on efficiency and sustainability outcomes. They synthesize evidence on time/cost benefits and
also highlight challenges such as accessibility, service reliability, and operational limitations.
This differs from Benarbia and Kyamakya [2] because it is more focused on performance and
sustainability metrics across studies. Their review motivates why hybrid truck–drone systems
can be valuable in practice.

Stolaroff et al. [9] study the energy use and greenhouse gas impacts of drones for commer-
cial package delivery. They show that environmental benefit depends on factors like delivery
distance, payload, electricity source, and how drones replace ground vehicle miles. This is
different from routing literature because it evaluates environmental outcomes rather than op-
timizing routes. The paper supports the broader motivation that well-designed drone logistics
can have sustainability benefits.

Zhang [10] studies economic and environmental impacts of drone delivery in a thesis-level
treatment. The work is broader than one model and discusses tradeoffs between cost, infras-
tructure, and environmental externalities. This differs from journal routing papers because it
provides a long-form analysis across multiple aspects of drone delivery rather than a single
algorithmic contribution. It provides background context for why hybrid delivery systems are
studied in both industry and academia.

Murray and Chu [5] introduced the Flying Sidekick Traveling Salesman Problem (FSTSP),
where a truck follows a route and a drone performs sorties in parallel to reduce total completion
time. Their model captures the core coupling between truck movement and drone missions,
including the need to synchronize launch and recovery with the truck tour. This differs from
later en-route models because rendezvous is typically tied to points along a discrete truck route
rather than a continuously moving reference trajectory. FSTSP is important because it defines
a standard baseline that many later truck–drone models extend.

Murray and Raj [6] extend the FSTSP to the multiple-drone setting (M-FSTSP), where one
truck coordinates more than one drone. The main new difficulty is not only routing but also
multi-drone scheduling conflicts and resource sharing (launch/recovery/coordination). This
differs from single-drone models because parallel sorties create additional coupling constraints
and opportunities for higher throughput. The multi-drone viewpoint is directly relevant to our
thesis since our main goal is to extend a single-drone framework to k drones.

Ha et al. [3] study a variant where a drone can serve multiple customers in one sortie (multi-
visit), instead of the common one-customer-per-sortie assumption. This changes feasibility
because the drone route becomes a small tour rather than a single detour, and it changes how
synchronization is handled with the truck. This differs from FSTSP-style models because one
sortie is no longer a single customer insertion; it becomes a mini-routing problem inside the
global route. It motivates realistic extensions where drone missions are richer than single de-
liveries, even though our thesis keeps a simpler sortie model.

Agatz et al. [18] summarize the Traveling Salesman Problem with Drone (TSP-D) and
related coordinated routing formulations. They explain the typical modeling choices, like

2



launch/recovery rules, endurance constraints, and objective functions, and they review exact
and heuristic solution strategies. This differs from individual algorithm papers because it gives
a structured overview of how TSP-D variants relate to each other. This paper helps position
our work as part of the broader family of synchronized truck–drone routing and scheduling
problems.

Carlsson and Song [19] study coordinated truck–drone logistics from an operations research
perspective and emphasize modeling tradeoffs in synchronization. They clarify how meeting
constraints and timing assumptions influence system performance and optimal structure. This
differs from survey papers because it is not mainly collecting literature; it is analyzing a co-
ordinated system and its decision structure. Their work supports the idea that synchronization
assumptions are central, which is also the core difficulty in the En Route model.

Marinelli et al. [13] study truck–drone delivery with continuous en-route operations where
drone launch and recovery are allowed on arcs of the truck route, not only at nodes. Their
model explicitly includes truck waiting time, which is important because rendezvous timing
affects total cost and feasibility. This differs from node-based models because it increases
operational freedom but also requires more careful synchronization decisions. Their approach
motivates our interest in continuous synchronization, even though our thesis uses a geometric
straight-line truck path rather than a general road-network route.

Li et al. [11] consider synchronization on arcs in a road-network formulation, where ren-
dezvous occurs at specified points along road segments. The focus is on capturing arc-level
synchronization constraints precisely inside a routing formulation. This differs from Marinelli
et al. [13] mainly in how the arc rendezvous is modeled and emphasized (formal arc constraints
versus heuristic insertion viewpoint). Their work supports the idea that allowing arc rendezvous
can improve efficiency compared with strict node-only synchronization.

Krizanc et al. [4] introduce the En Route Truck–Drone Delivery Problem in a geometric
setting where the truck moves continuously along a fixed line and the drone serves off-route
points under range constraints. Unlike VRP-D/TSP-D models that choose the truck route, their
truck trajectory is fixed, so the main decision is the schedule of drone sorties and rendezvous
times. They provide provable algorithmic results, including a greedy 2-approximation and an
optimal dynamic programming algorithm for proper instances. This is the closest paper to our
work, and our thesis extends this framework from one drone to k drones.

Otto et al. [14] survey optimization approaches for civil UAV applications, including logis-
tics, inspection, and other domains. They summarize major constraint types (battery, payload,
safety) and discuss common algorithmic approaches (exact and heuristic). This differs from
truck–drone-only surveys because it is broader and not limited to delivery routing. The paper
gives context for how delivery fits into the wider UAV optimization literature.

Chung et al. [15] review optimization for drone delivery and for combined drone–truck op-
erations. They organize the literature by objectives and constraints and discuss typical solution
methodologies and open challenges such as synchronization and scalability. This differs from
Otto et al. [14] because it is more specialized on delivery and hybrid operations. It helps justify
why synchronization and coordination constraints are repeatedly central in this field.

Macrina et al. [16] review drone-aided routing problems with focus on TSP-D and VRP-
D variants. They compare modeling choices and how different coordination rules change the
mathematical structure and difficulty. This differs from Chung et al. [15] because it is more
routing-formulation centered and less general about delivery systems. It is useful for position-
ing our model relative to common routing variants even though our model is geometric and
schedule-centered.

Dang et al. [17] survey cooperated truck–drone routing and propose a taxonomy based on
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coordination mode, constraints, and objective functions. They explain how different launch/recovery
policies and multi-drone assumptions lead to different computational challenges and solution
patterns. This differs from Macrina et al. [16] by being more focused specifically on truck–
drone cooperation rather than all drone-aided routing. Their taxonomy helps frame our work
as a multi-drone, continuous-synchronization style problem.

Boysen et al. [20] study drone delivery from trucks when the truck route is given and the
main task is to schedule feasible drone missions. They show that conflicts and endurance
constraints create non-trivial scheduling decisions even without truck routing. This differs
from full VRP-D models because it isolates the scheduling layer and removes the complexity
of truck route selection. This perspective is relevant to our work because the En Route model
also fixes the truck path and makes scheduling the main difficulty.

Betti Sorbelli et al. [1] study greedy algorithms for scheduling package delivery with mul-
tiple drones on a fixed truck route. Their emphasis is on selecting and timing missions under
battery constraints and conflict-free operations, often with reward/coverage-style objectives.
This differs from Boysen et al. [20] because it focuses more on greedy algorithm design and
performance for the multi-drone setting. It is related to our thesis since we also analyze greedy-
style approaches in multi-drone scheduling.

Tamke and Buscher [21] develop an exact branch-and-cut approach for VRP-D variants.
Their key contribution is an exact solution methodology that uses strong formulations and cuts
to solve instances to optimality when feasible computationally. This differs from heuristic
frameworks because it targets provable optimal solutions rather than scalable approximate so-
lutions. Exact baselines like this help show the gap between optimality and heuristics, even
though our thesis mainly focuses on approximation and dynamic programming in geometric
settings.

Wang and Sheu [22] formulate a VRP with drones and incorporate additional operational
constraints affecting launch/recovery and coordination. They show how model realism changes
feasibility and also changes the structure of good solutions. This differs from purely theoretical
models because it emphasizes practical constraints inside the routing formulation. It is relevant
because our work also depends strongly on feasibility constraints (range and synchronization),
even though our geometry is simplified.

Zhou et al. [23] consider a two-echelon vehicle routing problem with drones and provide
an exact algorithmic approach. The two-level structure represents a richer logistics chain than
single-route models and changes how coordination decisions are made. This differs from stan-
dard VRP-D because there is an additional distribution layer that affects routing and drone
usage. This work shows how truck–drone coordination is studied even in more complex distri-
bution architectures.

Poikonen et al. [24] develop a branch-and-bound approach for the traveling salesman prob-
lem with a drone. Their work provides exact optimization for a tour-based coordinated routing
model and shows how bounding and search can solve moderate instances optimally. This dif-
fers from VRP-D exact work because TSP-D is a single-tour setting rather than multiple-route
vehicle routing. It is useful as a reference for exact solution techniques on synchronized routing
problems.

Vásquez et al. [25] propose an exact decomposition-based method for TSP-D. The main
idea is to split the global decision into structured subproblems (such as truck route and drone
sortie selection) to improve solvability. This differs from pure branch-and-bound because de-
composition exploits problem structure rather than only search. It motivates using structured
dynamic programming and decomposition ideas, which is also important in our proper-instance
DP algorithms.
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Roberti and Ruthmair [26] study exact methods for TSP-D variants using strengthened
formulations and exact optimization strategies. Their work is broader across exact techniques
and illustrates how formulation strength affects computational performance. This differs from
Vásquez et al. [25] because it is not only one decomposition approach, but more a set of exact
modeling and solution improvements. It gives context that exact optimization is possible for
some instances, but often becomes expensive as constraints grow.

Thomas et al. [12] study a collaborative truck multi-drone delivery system with k ≥ 2
drones and integrate scheduling decisions with en-route operations. Their model explicitly han-
dles parallel sorties and coordination constraints that arise when multiple drones share a truck
platform. This differs from single-drone coordinated routing because conflicts and resource
sharing become central. Their work supports the practical motivation for our multi-drone ex-
tension, although our model is geometric and schedule-centered.

Madani et al. [27] study a hybrid truck–drone system where the drone can serve multiple
customers per dispatch and launch/recovery locations can be flexible. This increases realism but
also increases complexity because one sortie becomes a small routing problem and rendezvous
decisions become less structured. This differs from Thomas et al. [12] because the emphasis is
on richer sortie patterns rather than mainly multi-drone parallelism. It shows another direction
of extension beyond our assumptions, where sorties are not single-customer.

Ren et al. [28] propose a heuristic framework that aims to perform well across multiple
VRP-D variants. The focus is on scalability and robustness to different coordination rules
and objectives, rather than proving optimality or approximation ratios. This differs from exact
methods (e.g., branch-and-cut/branch-and-bound) because it targets large instances and practi-
cal solution quality. Such heuristic frameworks are relevant for benchmarking empirical per-
formance when exact methods are not feasible.

Jeong et al. [29] incorporate payload-dependent energy use and no-fly zones into truck–
drone routing. They show how realistic constraints like restricted airspace and energy con-
sumption change both feasibility and solution structure. This differs from simplified geometric
models because feasibility is shaped by complex geometry and regulation, not only by range
and speed. The work motivates why our theoretical results should be interpreted with practical
constraints in mind.

Dukkanci et al. [30] study range-limited drone deliveries while optimizing drone speed to
reduce energy and cost. Their contribution highlights that operational control variables (like
speed) can be optimized together with routing/scheduling decisions. This differs from Jeong et
al. [29] because it focuses more on energy-speed tradeoffs rather than airspace restrictions. It
motivates future extensions where our model can include speed and energy as decision variables
instead of fixed parameters.

Nemhauser et al. [31] provide the classical analysis for greedy approximation when max-
imizing a monotone submodular function under a cardinality constraint. This is important
because maximum coverage is a standard example of such a function, so many greedy bounds
follow this framework. This differs from truck–drone papers because it is general approxi-
mation theory independent of any routing model. We cite it because our approximation-ratio
reasoning connects to coverage-style greedy analysis.

Chvátal [33] analyzes the greedy heuristic for the set cover minimization problem and de-
rives a logarithmic (harmonic) approximation bound. This differs from Nemhauser et al. [31]
because it is a minimization problem (cover all elements) instead of a maximization problem
(cover as many as possible). It is often used as a baseline theoretical tool when problems have
set cover structure. We use it to relate our arguments to classical coverage bounds.

Khuller et al. [34] study budgeted maximum coverage, where each set has a cost and a
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budget limits the total cost. They provide approximation guarantees and show how budgets
change both the algorithm design and the analysis. This differs from plain maximum coverage
because the constraint is not only the number of chosen sets but also a cost budget. This is
relevant when deliveries or sorties can be viewed as coverage actions under limited resources.

Feige [32] provides hardness results for approximating set cover and shows that improving
substantially beyond logarithmic factors is unlikely under standard complexity assumptions.
This is not an algorithmic contribution but a negative result that sets limits on what approxima-
tion ratios can be expected. This differs from Chvátal [33] because Chvátal analyzes a greedy
algorithm, while Feige establishes near-tight lower bounds on approximability. We cite it to
justify why certain coverage-style approximation guarantees are close to the best possible in
general.

Figure 1: Conceptual diagram of a single-drone mission schedule. The drone launches from
the truck (x-axis), delivers a package, and returns to the moving truck.

1.3 Our Problems
We adopt the En Route geometric model and single-drone feasibility definitions from Krizanc et
al. [4]. Our original contribution is to generalize scheduling—including greedy heuristics and
dynamic programming (DP) approaches to analyze a system involving k drones simultaneously.
(illustrated in Figure 2).

Figure 2: Conceptual diagram of a multi-drone schedule. Two drones are launched from the
moving truck to service different delivery points.
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The project derived theoretical performance guarantees for these multi-drone algorithms and
validated them through extensive empirical analysis across three distinct problem variations:

1.3.1 Truck-Drone Model: k-Drones

This phase addressed the problem of maximizing the total number of deliveries from a set
of randomly located points. The general problem formulation was established (Section 2.1).
We developed two methods—a sequential greedy and a parallel greedy algorithm—and per-
formed theoretical analysis to determine the minimum approximation factor achievable by the
sequential greedy algorithm. Experimental validation confirmed the competitive performance
of the algorithms, demonstrating that the sequential greedy algorithm outperformed the parallel
greedy algorithm in terms of solution quality.

1.3.2 Truck-Drone Model with Restricted Set of Inputs: k-Drones

This phase focused on the more constrained scenario of proper instances (delivery points con-
forming to specific geometric rules), building directly on the theoretical framework in [4]. The
problem formulation for maximizing deliveries on proper instances was established. We de-
veloped four algorithms: Sequential 1DP, Parallel DP, Sequential 2DP and Sequential 2DP*.
The theoretical analysis determined the minimum approximation factor achievable by the se-
quential dynamic programming approach. Empirically, Sequential 2DP* achieved the highest
delivery counts for small to moderate fleets, while Parallel DP scaled best and became the top
performer as fleet size increased. Sequential 1DP, although not matching the solution qual-
ity of the higher-dimensional DP methods, remained computationally feasible and provided a
practical, scalable alternative to the prohibitively expensive Sequential 2DP*.

1.3.3 Truck–Drone Model: Truck Can Stop (Single Drone)

In the final phase, the objective was shifted to minimizing the total time required to serve all
delivery points using a single drone in a scenario where the truck was allowed to stop for drone
operations. The input instances were drawn from the general case, with delivery points placed
arbitrarily in the plane. Four solution methods were implemented: a naive approach that sched-
ules deliveries sequentially without optimization, an iterative heuristic algorithm, a fixed-order
bottom-up dynamic programming (DP) algorithm, and an order-free exact algorithm based on
Dijkstra’s shortest-path search. Experimental results showed that the DP algorithm consis-
tently produces the lowest total delivery time among polynomial-time methods, reflecting its
exact optimization of discretized launch and return positions for a fixed delivery order. The
Dijkstra-based algorithm matches this performance but incurs an exponential increase in ex-
ecution time, limiting its practicality to small instances. The heuristic method, while slightly
suboptimal, achieves near-optimal solutions with significantly lower computational cost. The
naive approach performs worse than all optimized methods but provides a baseline for compar-
ison, illustrating the trade-off between solution quality and computational efficiency.

2 Truck-Drone Model: k-Drones
This section initiates the multi-drone setting by extending the single-drone model to a fleet of
k drones. The objective in this chapter is coverage: maximize the number of deliveries that
can be completed under range and synchronization constraints. We first define the feasibility
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notation used throughout, then present the greedy scheduling strategies, and finally evaluate the
algorithms on randomized instances.

2.1 Problem Notations
The delivery system operates in the two-dimensional Cartesian plane. The warehouse is located
at the origin [0, 0], and the truck starts its journey from there at time 0, fully loaded with all
items. Without loss of generality, we assume that the truck travels rightward along the x-axis
at a constant speed of 1. This establishes that the time elapsed is equal to the distance the truck
has traveled from the origin [4]. The truck travels up to the point called max truck distance.

The drone has a velocity v > 1 and can move freely, but its operation is strictly limited
by a maximum flying range R due to battery capacity. For simplification, the time required
for recharging, picking up, and dropping off items is assumed negligible (zero). We are given
a multi-set of delivery points D = {d1, d2, . . . , dn} in the plane where each point is denoted
by di = [xi, yi]. Since the truck only delivers to clients on the x-axis, all points in D must be
serviced by the drone [4].

2.1.1 Preliminaries

This subsection summarizes feasibility definitions (ellipse parameters and return-time equa-
tion) introduced in [4]. We restate them to make the thesis self-contained.

The feasibility of a drone trip is derived from elliptical equations, defining the set of truck
locations from which a specific delivery point d = [x, y] can be served within the drone’s range
R. All parameters and variables in this section are defined according to the reference work [4].
The key geometric parameters are:

R = Range of drone, v = velocity of drone,

M =
R

2
, m =

R

2v

√
v2 − 1.

For a point d = [x, y], we define an auxiliary variable related to the major axis of the feasibility
ellipse:

x′ = M

(
1− y2

m2

)
.

Based on these, the earliest/latest feasible times for the drone’s launch (s) and return (r) to the
truck are defined as follows:

Earliest Start Time (es(d)): The earliest time the drone can leave the truck (at position
[es(d), 0]) to serve delivery point d and still complete the delivery and rendezvous with the
moving truck within the maximum range R.

es(d) = x− R

2v
− x′

Earliest Return Time (er(d)): The earliest time the drone arrives back at the truck, calculated
assuming it launched at the earliest possible time, es(d).

er(d) = es(d) +
R

v
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Latest Start Time (ls(d)): The latest time the drone can leave the truck (at position [ls(d), 0])
to serve delivery point d and still successfully make the rendezvous with the moving truck
within the maximum range R.

ls(d) = x− R

2v
+ x′

Latest Return Time (lr(d)): The latest time the drone arrives back at the truck, calculated
assuming it launched at the latest possible time, ls(d).

lr(d) = ls(d) +
R

v

These four parameters define the critical scheduling window within which any feasible drone
trip must occur [4].

Drone Return Time Formula The precise time the drone returns to the moving truck, given a
starting time s and delivery point d, is calculated by solving the rendezvous equation derived
in the reference paper [4]:

ret(s, v, d) := s+
s+ av − x+

√
b2 − s(v2 − 1)

(
b+ s+ av − x

)
v2 − 1

,

where the auxiliary variables are:

a = y2 + (s− x)2, b = sv2 + av − x.

Feasible Delivery Schedule Given an instance I = (v,R,D), a delivery schedule SI is an
ordered list of deliveries, defined as:

SI = ((di1 , s1), (di2 , s2), . . . , (dim , sm)), m ≤ n

Here:

• dij is a delivery point served by the drone.

• sj is the time at which the drone leaves the truck, which is then located at position [sj, 0].

• m is the total number of deliveries in the schedule (Note: This variable m is distinct from
the geometric constant m defined earlier).

The schedule is considered feasible if [4]:

• s1 ≥ 0, and

• For each j from 1 to m − 1, the drone’s return time after delivery dij , calculated using
ret(sj, v, dij), must be less than or equal to the start time of the next delivery, sj+1.

2.1.2 Greedy Algorithm

First we state the Greedy Algorithm for the truck-drone model with one drone for complete-
ness. This is the single-drone greedy algorithm (Ag) from [4], we include it only as a baseline
subroutine for our multi-drone extensions. The Greedy Approximation Algorithm (Ag), foun-
dational to the single-drone model by Krizanc et al. [4], is an O(n2) heuristic that provides
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a practical schedule with a guaranteed 2-approximation to the optimal number of deliveries.
Our objective is to adapt and extend this methodology for a system involving k drones. The
core logic operates in two phases: first, Pre-filtering, where for every potential delivery, the
earliest (es) and latest (ls) launch times are calculated based on the drone’s range limit (R) and
speed (v). Deliveries whose ls is less than the truck’s start time (s = 0) are discarded, and
the remaining feasible deliveries are placed in set L and sorted by their es. Second, Iterative
Scheduling begins by checking the current truck time (s); if s is earlier than the next available
delivery’s es, s is advanced to that es. From all deliveries currently launchable (s ≥ es), the
algorithm greedily selects the delivery that minimizes the rendezvous (return) time (rmin) at the
moving truck. The selected delivery is added to the schedule, the truck time s is advanced to
rmin, and the set L is immediately pruned to remove the chosen delivery and any others whose
ls has now been exceeded (ls < s). This process iterates, ensuring a non-overlapping drone
schedule while locally maximizing the forward progress of the system.

2.2 Algorithms and Analysis
The feasibility windows and return-time function defined above allow us to test whether a
candidate delivery can be served by a drone without violating range or rendezvous constraints.
Using these primitives, we now design greedy multi-drone scheduling rules whose goal is to
increase coverage as quickly as possible while keeping coordination overhead low.

Common Inputs
The algorithms share a set of common inputs:

• deliveries: A list of delivery points in the form [(x1, y1), (x2, y2), . . . ].

• R: The maximum range the drone can travel on a single trip.

• v: The velocity of the drone (vd).

• k: Number of the drones.

• max truck distance: The maximum endpoint of the route, representing the farthest
point the truck must reach.

2.2.1 Algorithm 1 - Sequential Greedy Algorithm

Algorithm Description: Algorithm 1 is a new multi-drone extension proposed in this thesis.
The algorithm extends the single-drone greedy strategy to multiple drones by assigning deliv-
eries one drone at a time. Unlike [4] (single-drone), we allocate deliveries across drones by
iteratively solving a single-drone subproblem on the remaining points. In each step, the algo-
rithm identifies a feasible set of delivery points that can be served by the current drone using
the same greedy selection rule as in the single-drone case. Once the drone’s route is deter-
mined, those delivery points are removed from consideration, and the process repeats for the
next drone with the remaining unassigned points. This continues until all k drones have been
assigned or there are no deliveries left. Because each drone operates on the reduced set of
points after previous assignments, the algorithm tends to allocate deliveries closer to the x-axis
first. The overall running time is O(kn2), where n is the total number of delivery points and
k is the number of drones. The complete pseudocode for the Sequential Greedy Algorithm is
presented in Algorithm 1.
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Algorithm 1: Sequential Greedy Scheduling Algorithm
Input: Ordered delivery points deliveries, Range R, Velocity v, Number of drones

num drones and Maximum Truck Distance x max
Output: Drone Schedules SI list, Points that are not possible to be assigned L not,

Points that are remaining to be assigned L
s← 0 L← ∅ L not← ∅ SI list← ∅
foreach d ∈ deliveries do

(es, ls)← calculate es ls(R, v, d)
if (es, ls) exists then

if s ≤ ls then
L← L ∪ {(es, ls, d)}

else
L not← L not ∪ {(es, ls, d)}

Sort L by es increasing
for i← 1 to num drones do

s← 0
SI ← ∅
L next← ∅
while L ̸= ∅ and s < x max do

x← first element of L
if s < x.es then

s← x.es

rmin←∞
save← null
foreach x′ ∈ L such that s ≥ x′.es do

r ← ret(s, v, x′.d)
if r < rmin then

rmin← r
save← x′

if save ̸= null then
Append (save.d, s) to SI
s← rmin
L next← L next ∪ {x′ ∈ L | x′.ls < s ∧ x′.d ̸= save.d}
L← {x′ ∈ L | x′.ls ≥ s ∧ x′.d ̸= save.d}

L← L next
Sort L by es increasing
Append SI to SI list

return (SI list, L not, L)

Approximation Ratio Analysis for Sequential Greedy Algorithm

The approximation bound below is derived for our multi-drone greedy construction. The proof
adapts the classical maximum-coverage greedy analysis (e.g., Nemhauser et al. [31]) to the
setting where each ‘set’ corresponds to a feasible single-drone schedule computed by an α-
approximation subroutine.
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Useful Parameters:

• V0: The set of all delivery points.

• k: Number of drones.

• Si: Set of points delivered by the i-th drone in the greedy schedule.

• OPTi: Set of points delivered by the i-th drone in the optimal schedule.

• S(k): Total number of unique points delivered by k drones in the greedy schedule.

• OPT (k): Total number of unique points delivered by k drones in the optimal schedules.

• Vi−1: The set of remaining unserved delivery points at the start of iteration i, defined as
the initial set V0 excluding all points served by the previous i−1 greedy drone schedules:

Vi−1 = V0 \
i−1⋃
j=1

Sj.

• α: The approximation factor α ∈ (0, 1] is defined as the smallest constant such that

S(1) ≥ αOPT (1)

Observation (Disjointness and Total Value). Since each delivery point can be assigned to at
most one drone, all individual drone schedules are disjoint:

Si ∩ Sj = ∅ and OPTi ∩OPTj = ∅ ∀i ̸= j.

Consequently, the total value of any solution is the sum of its disjoint schedule sizes:

S(k) =
k∑

i=1

|Si|, OPT (k) =
k∑

i=1

|OPTi|.

Lemma 1 (Lower Bound for S1). Let OPT1, . . . , OPTk be the k disjoint optimal drone sched-
ules, and let |OPTmax| = maxi |OPTi| denote the largest single schedule.
By definition, the size of the optimal single schedule on the full set of points satisfies

OPT (1) ≥ |OPTmax|,

because it can always choose the largest schedule among the k disjoint optimal schedules.
Moreover, since the largest schedule is at least as large as the average of all k schedules, we
have

OPT (1) ≥ |OPTmax| ≥
1

k

k∑
i=1

|OPTi| =
1

k
OPT (k).

Consequently, the first greedy drone schedule S1 satisfies

|S1| ≥ αOPT (1) ≥ α

k
OPT (k),
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For the specific Greedy Approximation Algorithm (Ag) where α = 1/2 [4], this gives

|S1| ≥
1

2k
OPT (k).

Lemma 2 (Local Approximation Property). At each iteration i, the algorithm selects a drone
schedule Si computed on the remaining set Vi−1. Let OPT1(Vi−1) denote an optimal single-
drone schedule restricted to Vi−1. By assumption, the schedule returned at iteration i is an
α-approximation to this restricted optimum:

|Si| ≥ α |OPT1(Vi−1)|.

For the specific Greedy Approximation Algorithm (Ag) where α = 1/2 [4], each choice satis-
fies

|Si| ≥
1

2
|OPT1(Vi−1)|.

Lemma 3 (Case k = 2). For two drones, the sequential greedy algorithm satisfies

S(2) ≥ 7

16
OPT (2).

Proof. Let S1 be the first greedy schedule. We define the intersections between the first greedy
schedule and the two optimal schedules (OPT1 and OPT2) as:

OPT1,1 = S1 ∩OPT1, OPT1,2 = OPT1 \ S1,

OPT2,1 = S1 ∩OPT2, OPT2,2 = OPT2 \ S1.

By the properties of disjointness and total value (Observation), the remaining uncovered opti-
mal points after the first step are OPT1,2 ∪OPT2,2, with

|OPT1,2|+ |OPT2,2| ≥ OPT (2)− |S1|.

Lower Bound for S2. Using the local α-approximation property from Lemma 2, where α =
1/2 (derived from the 2-approximation guarantee of the single-drone algorithm):

|S2| ≥
1

2
|OPT1(V0 \ S1)|.

The best remaining schedule OPT1(V0 \S1) must cover at least as many points as the larger of
the two remaining optimal subsets:

|OPT1(V0 \ S1)| ≥ max(|OPT1,2|, |OPT2,2|).

Using max(a, b) ≥ 1
2
(a+ b) gives

|S2| ≥
1

4

(
|OPT1,2|+ |OPT2,2|

)
≥ 1

4

(
OPT (2)− |S1|

)
. (1)

Combine the Bounds. Summing |S1| and Equation (1), yields the recurrence relation:

S(2) = |S1|+ |S2| ≥ |S1|+
1

4
OPT (2)− 1

4
|S1| =

1

4
OPT (2) +

3

4
|S1|. (2)
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Lower Bound for S1. From Lemma 1, for general k,

|S1| ≥
α

k
OPT (k).

Setting α = 1/2 and k = 2 gives the specific lower bound:

|S1| ≥
1

2 · 2
OPT (2) =

1

4
OPT (2).

Final Substitution. Substituting this lower bound for |S1| into the recurrence relation (2):

S(2) ≥ 1

4
OPT (2) +

3

4

(
1

4
OPT (2)

)
=

(
4

16
+

3

16

)
OPT (2)

=
7

16
OPT (2).

■

Lemma 4 (Case k = 3). For three drones, the sequential greedy algorithm satisfies

S(3) ≥ 91

216
OPT (3).

Proof. Let the optimal schedules be OPT1, OPT2, OPT3 (pairwise disjoint), and let S1, S2, S3

be the three greedy schedules chosen in order.

Intersections after S1. Define, for each i ∈ {1, 2, 3},

OPTi,1 = S1 ∩OPTi, OPTi,2 = OPTi \OPTi,1.

By the properties of disjointness and total value (Observation),

|OPT1,2|+ |OPT2,2|+ |OPT3,2| ≥ OPT (3)− |S1|.

Bound for S2. By the local α-approximation property from Lemma 2, where α = 1/2, applied
to the remaining set V0 \ S1,

|S2| ≥
1

2
|OPT1(V0 \ S1)| ≥

1

2
max{|OPT1,2|, |OPT2,2|, |OPT3,2|}.

Using max{a, b, c} ≥ 1
3
(a+ b+ c) we get

|S2| ≥
1

6

(
|OPT1,2|+ |OPT2,2|+ |OPT3,2|

)
≥ 1

6

(
OPT (3)− |S1|

)
.

Hence
|S2| ≥

1

6
OPT (3)− 1

6
|S1|. (3)

Combine S1 and S2. Summing |S1| and the bound (3), gives

|S1|+ |S2| ≥ |S1|+
1

6
OPT (3)− 1

6
|S1| =

1

6
OPT (3) +

5

6
|S1|.
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Lower bound for S1. From Lemma 1, for k = 3 and α = 1/2,

|S1| ≥
α

k
OPT (k) =

1

6
OPT (3).

Substitution for S1 + S2. Substituting the lower bound for |S1| into the combined inequality
yields the intermediate bound for the first two schedules:

|S1|+ |S2| ≥
1

6
OPT (3) +

5

6
· 1
6
OPT (3) =

(
6

36
+

5

36

)
OPT (3) =

11

36
OPT (3).

Bound for S3. Define the remaining optimal sets after S1 ∪ S2:

OPT ′
i,1 = (S1 ∪ S2) ∩OPTi, OPT ′

i,2 = OPTi \OPT ′
i,1.

By disjointness and Total Value (Observation),

|OPT ′
1,2|+ |OPT ′

2,2|+ |OPT ′
3,2| ≥ OPT (3)− (|S1|+ |S2|).

Applying the local α = 1/2 approximation (Lemma 2) on the remaining set V0 \ (S1 ∪ S2) and
using max{a, b, c} ≥ 1

3
(a+ b+ c), we obtain

|S3| ≥
1

6
OPT (3)− 1

6

(
|S1|+ |S2|

)
. (4)

Combine S1, S2 and S3. Summing |S1| + |S2| and the bound (4), and using the Total Value
property (Observation), gives the total greedy size S(3):

S(3) = |S1|+ |S2|+ |S3| ≥
1

6
OPT (3) +

5

6

(
|S1|+ |S2|

)
. (5)

Final Numeric Substitution. Substituting the intermediate bound |S1| + |S2| ≥ 11
36
OPT (3)

into Equation (5) gives the final approximation ratio:

S(3) ≥ 1

6
OPT (3) +

5

6
· 11
36

OPT (3)

=

(
1

6
+

55

216

)
OPT (3)

=

(
36

216
+

55

216

)
OPT (3)

=
91

216
OPT (3).

which proves the claim. ■

Theorem 2.1. (General case for k drones) Let S(k) denote the total number of deliveries
achieved by the sequential greedy algorithm using k drones, and let OPT (k) denote the size of
an optimal set of k disjoint schedules. Then we have

S(k) =
k∑

i=1

|Si| ≥
(
1−

(
1− α

k

)k)
OPT (k).
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Proof. Bound for the first schedule. From the Lower Bound for S1 in Lemma 1, the first
greedy schedule satisfies

|S1| ≥
α

k
OPT (k).

Bounds for subsequent schedules.
Fix an iteration i ∈ {2, . . . , k}. Let

Vi−1 = V0 \
i−1⋃
j=1

Sj

be the remaining points after the first i− 1 greedy selections. By Lemma 2 (Local Optimality)
the greedy choice satisfies

|Si| ≥ α |OPT1(Vi−1)|,

where OPT1(Vi−1) denotes the optimal single schedule on Vi−1.

To relate |OPT1(Vi−1)| to OPT (k), consider the k disjoint optimal schedules OPT1, . . . , OPTk,
After the first i− 1 greedy schedules, the number of points in the remaining portions of the op-
timal schedules satisfies

k∑
ℓ=1

|OPTℓ \
i−1⋃
j=1

Sj| =
k∑

ℓ=1

|OPTℓ| −
k∑

ℓ=1

|OPTℓ ∩
i−1⋃
j=1

Sj|.

Since the schedules Sj are disjoint, we have

k∑
ℓ=1

|OPTℓ ∩
i−1⋃
j=1

Sj| ≤
i−1∑
j=1

|Sj|.

Combining these gives the key inequality:

k∑
ℓ=1

|OPTℓ \
i−1⋃
j=1

Sj| ≥ OPT (k)−
i−1∑
j=1

|Sj|.

Since the value of the largest of these k disjoint subsets must be at least as large as their average,
we have:

max
ℓ
|OPTℓ \

i−1⋃
j=1

Sj| ≥
1

k

(
OPT (k)−

i−1∑
j=1

|Sj|
)
.

The best possible single schedule on the remaining points, OPT1(Vi−1), cannot do worse than
this maximum. Hence

|OPT1(Vi−1)| ≥
1

k

(
OPT (k)−

i−1∑
j=1

|Sj|
)
.

Applying the α-approximation guarantee to this term yields

|Si| ≥
α

k

(
OPT (k)−

i−1∑
j=1

|Sj|
)
.
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In particular:

|S2| ≥
α

k

(
OPT (k)− |S1|

)
, |S3| ≥

α

k

(
OPT (k)− (|S1|+ |S2|)

)
,

and so on, up to

|Sk| ≥
α

k

(
OPT (k)−

k−1∑
j=1

|Sj|

)
.

Iterative expansion. Adding the inequalities iteratively, we obtain

|S1|+ |S2| ≥
α

k

(
OPT (k) + (

k

α
− 1)|S1|

)
,

|S1|+ |S2|+ |S3| ≥
α

k

(
OPT (k) + (

k

α
− 1)(|S1|+ |S2|)

)
,

...

S(k) =
k∑

i=1

|Si| ≥
α

k

(
OPT (k) + (

k

α
− 1)

k−1∑
i=1

|Si|

)
,

where the final step follows from the Observation, which ensures that the greedy schedules Si

are disjoint and additive.

Closed-form expression. Expanding this recursively leads to the geometric series

S(k) ≥ α

k
OPT (k)

[
1 +

(
1− α

k

)
+
(
1− α

k

)2
+ · · ·+

(
1− α

k

)k−1
]
.

Summing the series gives the generalized approximation ratio:

S(k) ≥ α

k
OPT (k) ·

1−
(
1− α

k

)k
1−

(
1− α

k

) = OPT (k)

(
1−

(
1− α

k

)k)
.

Substituting the specific factor α = 1/2 into this generalized closed form yields:

S(k) ≥ OPT (k)

(
1−

(
1− 1

2k

)k
)
.

Remark. This proof mirrors the classical analysis of the greedy algorithm for the Maximum
Coverage problem, where one of the k optimal sets covers at least a 1

k
fraction of the remain-

ing elements. Here, each schedule Si acts as a greedy-chosen set. The Disjointness Con-
straint (each point served once) ensures that both the greedy schedules ({S1, . . . , Sk}) and
optimal schedules ({OPT1, . . . , OPTk}) form partitions of their served points, making total
coverage additive. The α factor arises because each local subproblem (finding Si) uses an α-
approximation algorithm, leading to |Si| ≥ α

k

(
OPT (k) −

∑i−1
j=1 |Sj|

)
, which embeds the α

penalty into the classical 1
k

gain.

Asymptotic Behavior When k tends to infinity, we use the limit limn→∞
(
1 + x

n

)n
= ex. Here,
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let n = k and x = −α.

lim
k→∞

(
1− α

k

)k
= lim

k→∞

((
1 +
−α
k

)k
)

= e−α

So, the approximation factor approaches:

lim
k→∞

[
1−

(
1− α

k

)k]
= 1− e−α

For the specific algorithm studied in the paper [4], where the local approximation factor is
α = 1/2, the asymptotic bound is:

1− e−1/2 ≈ 1− 0.60653 ≈ 0.39347.

This asymptotic behavior is illustrated by the curve shown in Figure 3.

Figure 3: Approximation factor S(k)/OPT (k) as k →∞ when α = 1/2.

2.2.2 Algorithm 2 - Parallel Greedy Algorithm

Algorithm Description: The Parallel Greedy Algorithm schedules deliveries in a round-robin
fashion. Unlike the sequential greedy approach, where each drone is fully assigned its route
before moving to the next, the parallel greedy algorithm distributes delivery points among all
drones in an iterative manner. At each step, every drone is considered once, and a feasible
delivery point is selected for it based on the earliest-start and latest-start constraints. This
process continues in rounds until no more feasible assignments can be made for any drone. In
contrast to the sequential approach—which often allocates nearby deliveries to the first drones
and leaves the distant ones for later—the parallel strategy balances the workload across all
drones. The time complexity of the algorithm is O(kn2), where n is the total number of delivery
points and k is the number of drones involved in the operation. Algorithm 2 is proposed in this
thesis as an alternative multi-drone extension that balances assignments across drones; it is
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not part of [4]. This algorithm is heuristic; we do not claim a formal approximation ratio for
it in this thesis. The complete pseudocode for the Parallel Greedy Algorithm is presented in
Algorithm 2.

Algorithm 2: Parallel Greedy Scheduling Algorithm
Input: Ordered delivery points deliveries, Range R, Velocity v, Number of drones

num drones and Maximum Truck Distance x max
Output: Drone Schedules SI list, Points that are not possible to be assigned L not,

Points that are remaining to be assigned L
L← ∅ L not← ∅ L save← ∅ s[k]← 0 for k = 1 . . . num drones
foreach d ∈ deliveries do

(es, ls)← calculate es ls(R, v, d)
if (es, ls) exists then

if 0 ≤ ls then
L← L ∪ {(es, ls, d)}

else
L not← L not ∪ {(es, ls, d)}

Sort L by es increasing
SI ← list of num drones empty lists
L lst← list of num drones copies of L
flag ← True
while flag = True do

flag ← False
for k ← 1 to num drones do

if L lst[k] ̸= ∅ and s[k] < x max then
flag ← True
x← first element of L lst[k]
if s[k] < x.es then

s[k]← x.es

rmin←∞
save← null
foreach y ∈ L lst[k] such that s[k] ≥ y.es do

r ← ret(s[k], v, y.d)
if r < rmin then

rmin← r
save← y

if save ̸= null then
Append (save.d, s[k]) to SI[k]
Append save to L save
s[k]← rmin
L lst[k]← {x ∈ L lst[k] | x.ls ≥ s[k]}
for i← 1 to num drones do

L lst[i]← {x ∈ L lst[i] | x.d ̸= save.d}

L rem← L− L save
return (SI, L not, L rem)

19



2.3 Experiment
To extend the basic greedy algorithm to the multi-drone scenario, two strategies were investi-
gated: Sequential Greedy assignment and Parallel Greedy assignment.

2.3.1 Experimental Setup

To rigorously evaluate the performance of the proposed multi-drone scheduling strategies, a
series of computational experiments was conducted. The primary focus was on comparing the
efficiency and resource usage of the Sequential Greedy and Parallel Greedy algorithms.

• Delivery Points and Constraints: Delivery locations were generated randomly within
a two-dimensional plane, represented as (xi, yi). To ensure that every point could be
feasibly served by a drone, the vertical coordinate (yi) was constrained by the maximum
value given by the equation:

ymax =
R

2v

√
v2 − 1

This constraint guarantees a drone’s round trip from the truck is possible within its max-
imum range R and velocity v. Multiple sets of randomized delivery points were used
across trials.

• Truck and Drone Parameters:

– The truck travels horizontally along the x-axis with a fixed velocity of 1 unit per
time unit. The total travel length is defined as max truck distance.

– The drone moves at a fixed velocity vd.

– Each drone has a maximum range R, which constrains its individual mission dis-
tance.

• Hardware and Software Environment:

– The algorithms were implemented in Python.

– Execution was performed on the same hardware platform to ensure a fair compari-
son: a MacBook Air M2 with an 8-core CPU and 16GB of unified memory.

• Evaluation Metrics: Performance was primarily assessed using the following metrics:

1. Number of Deliveries: The count of delivery points successfully served.

2. Ratio of Deliveries (S/P ): The ratio of Sequential to Parallel deliveries, where a
value > 1.0 indicates superior performance by the Sequential algorithm.

3. Execution Time: The CPU time required to compute the schedule.

4. Resource Efficiency: The minimum number of drones required to complete a given
set of deliveries.

• Experimental Variations and Performance Analysis: The following parameters were
systematically varied to assess their impact on algorithm performance, particularly the
S/P Ratio, as detailed in Table 1:
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Table 1: Simulation parameters for experiment 1

Parameter Values
Number of Delivery Points 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000
Drone Velocity 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0
Drone Range 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0
Number of Drones 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

• Repetition and Averaging: For each configuration, 100 random instances were gener-
ated, and the results were averaged to ensure statistical reliability.

• Experimental Workflow: The process for each configuration involved generating the
same random set of points, executing both the Sequential and Parallel algorithms, record-
ing the required metrics, and repeating the process to generate reliable performance data.

• Github link: Code and results for all the algorithms and experiments presented in this
thesis can be accessed at the following link: https://github.com/JerryMathew07/Thesis.

2.3.2 Experimental Results

The greedy algorithms defined above are heuristic by design, so experimental evaluation is
necessary to understand the practical trade-offs between solution quality (deliveries completed),
computation time, and drone utilization. This section describes the instance generation and
metrics, followed by comparative results.

1. Number of Deliveries Comparison
Figure 4 shows the number of deliveries completed as the number of drones increases. The
Sequential Greedy Algorithm consistently achieves higher deliveries compared to the Parallel
Greedy Algorithm, especially when the number of drones is small. As the number of drones in-
creases, both algorithms approach near-complete coverage, but the sequential method remains
slightly more efficient. This reflects the advantage of assigning one drone fully before moving
to the next, ensuring maximal feasible deliveries per schedule.

Figure 4: Sequential Greedy algorithm makes more deliveries for a given number of drones.
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2. Ratio of deliveries comparison
Figure 5, Figure 6, Figure 7 presents 3D surface plots of the ratio between the number of
deliveries made by the Sequential Greedy algorithm and the Parallel Greedy algorithm. The x-
axis represents the number of drones (k), while the z-axis shows the ratio of deliveries (S/P ),
where S and P denote the total deliveries achieved by the Sequential and Parallel algorithms,
respectively. Each plot varies one additional parameter: (a) the total number of delivery points,
(b) the drone range, and (c) the drone velocity. Across all tested configurations, the ratio
consistently remains above 1, indicating that the Sequential Greedy algorithm outperforms the
Parallel Greedy approach.

Figure 5: The Sequential Algorithm outperforms the Parallel Algorithm across all tested num-
bers of drones and number of delivery points.
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Figure 6: The Sequential Algorithm delivers more items than the Parallel Algorithm under
every tested combination of drone count and effective range.

Figure 7: The Sequential Algorithm achieves a higher delivery count than the Parallel Algo-
rithm across all variations in drone velocity and number of drones.

3. Execution Time Comparison
The execution time increases gradually with the number of drones for both algorithms. How-
ever, the Sequential Greedy Algorithm consistently performs faster than the Parallel Greedy
Algorithm, as illustrated in Figure 8.
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Figure 8: Sequential Greedy Algorithm has smaller execution time.

4. Drone Minimization
The goal of this experiment was to determine the minimum average number of drones required
to deliver a given number of points (n) using two different greedy strategies. The results show a
clear advantage for the Sequential Greedy algorithm across all data points. The Parallel Greedy
algorithm requires significantly more drones to complete the same set of deliveries, as shown
in Figure 9.

Figure 9: Sequential Greedy Algorithm requires lesser number of drones

Conclusion
The experiments demonstrate that the Sequential Greedy Algorithm consistently outperforms
the Parallel Greedy Algorithm in multiple aspects of multi-drone delivery scheduling. Specifi-
cally:

• The Sequential Greedy approach achieves higher delivery counts across all configura-
tions, with the advantage being most pronounced when the number of drones is small.
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• The ratio analysis shows that the Sequential Greedy Algorithm outperforms the Paral-
lel Greedy Algorithm (ratio ≥ 1.0) under all tested conditions across variations in the
number of drones, number of points, velocity, and range.

• Execution time measurements indicate that the Sequential method is not only more effi-
cient in deliveries but also faster, owing to its simpler scheduling logic compared to the
Parallel approach, which requires additional coordination.

• In terms of drone minimization, Sequential requires fewer drones to complete the same
set of deliveries, further emphasizing its resource efficiency.

Overall, these results suggest that for multi-drone delivery problems, a sequential schedul-
ing strategy provides a more effective and computationally efficient solution compared to par-
allel scheduling.

This section considered general (random) point sets, where greedy choices are natural but
structural guarantees are limited. In the next section, we restrict attention to proper instances,
which impose geometric and interval-graph structure. This added structure enables dynamic-
programming based scheduling while keeping the same coverage objective.

3 Truck-Drone Model with Restricted Set of Inputs: k-Drones
This section keeps the objective of maximizing the number of completed deliveries but changes
the input setting. Instead of arbitrary random point sets, we assume the deliveries form a proper
instance. The purpose of this restriction is algorithmic: it introduces structure that can be
exploited by dynamic programming. We first formalize the proper-instance constraint, then
develop DP-based multi-drone algorithms, and finally evaluate their scalability and solution
quality.

3.1 Problem Formulation
This problem phase focuses on maximizing the number of deliveries made by k drones, specif-
ically when the set of delivery points constitutes a proper instance. All physical constraints
and scheduling parameters established in Section 2.1 (including truck velocity vT = 1, drone
velocity v > 1, range R, and the feasibility functions es(d), ls(d), er(d), lr(d) and ret(s, v, d))
are fully applicable here. The fundamental objective remains to find a feasible multi-drone
schedule Stotal that maximizes the total number of deliveries.

3.1.1 The Proper Instance Constraint

The foundational work by Krizanc et al. [4] established that for the single-drone case, an
optimal Dynamic Programming algorithm exists specifically for instances conforming to the
following two conditions. The instance I = (v,R,D) is considered a proper instance if the set
of delivery points D = {d1, d2, . . . , dn} adheres to:

1. For any two distinct delivery points di and dj , dj is not contained within the triangle
formed by [es(di), 0], di, and [lr(di), 0]. This condition ensures that delivery points have
pairwise different x-coordinates and are not clustered in a narrow vertical band.
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2. The set of intervals {[es(d1), ls(d1)], [es(d2), ls(d2)], . . . , [es(dn), ls(dn)]} forms a proper
interval graph, meaning no interval is a subset of another.

Algorithm 3 is an implementation of the proper-instance constraints described in [4].

Algorithm 3: Generate Proper Instance of Points
Input: Number of points n, Range R, Velocity v, Maximum Truck Distance x max
Output: Points belonging to the generated proper instance D
D ← ∅ intervals← ∅
if v ≤ 1 then

return D

y max← R
2v

√
v2 − 1

while |D| < n do
Generate x ∼ U(0, x max)
Generate y ∼ U(0, y max)
if x = 0 or y = 0 then

continue

d← (x, y)
(es, ls, lr)← calculate es ls lr(R, v, d)
if (es, ls, lr) is None or ls < 0 then

continue

valid← True
foreach other d ∈ D do

(o es, o ls, o lr)← calculate es ls lr(R, v, other d)
A← (o es, 0), B ← other d, C ← (o lr, 0)
if is inside triangle(d,A,B,C) then

valid← False
break

if valid then
new interval← (es, ls)
is subset← False
foreach inter ∈ intervals do

if (new interval[0] > inter[0]andnew interval[1] < inter[1]) or
(inter[0] > new interval[0]andinter[1] < new interval[1]) then

is subset← True
break

if not is subset then
Append d to D
Append new interval to intervals

Sort D by x coordinate
return D
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3.1.2 Optimal Dynamic Programming Algorithm

The foundational work by Krizanc et al. [4] introduced an optimal scheduling algorithm for
the single-drone (k = 1) problem on any proper instance. This approach utilizes Dynamic
Programming to find the maximum number of deliveries in O(n3) time, where n is the total
number of delivery points. We restate it here because it is a subroutine and baseline for our
multi-drone DP heuristics.

State Definition and Preprocessing The delivery points D = {d1, d2, . . . , dn} are first sorted
according to their x-coordinates. The algorithm defines a two-dimensional DP table, T (i, j),
with O(n2) entries:

• i: The number of deliveries performed - 1 (1 ≤ i ≤ n).

• j: The index of the last delivery point considered (1 ≤ j ≤ n).

• T (i, j): The earliest delivery completion time (return time to the truck) for a schedule
that performs exactly i deliveries from the subset {d1, . . . , dj}, with the strict requirement
that the i-th delivery must be dj .

If a feasible schedule of length i ending at dj is impossible, T (i, j) is set to∞.

Base Case and Recurrence Relation The table is filled using the following recurrence,
which enforces feasibility and minimizes the completion time: This recurrence is enabled by
the fact that the optimal schedule is monotone with respect to x-coordinates and possesses the
optimal substructure property, a characteristic of proper instances proved in [4].

• Base Case (i = 0): The earliest completion time for a single mission to dj . The launch
time s must be max(0, es(dj)), ensuring the truck is past the origin and within the point’s
earliest launch time.

T (0, j) = ret(max(0, es(dj)), v, dj)

• Recurrence (i ≥ 1): The optimal substructure property dictates that the schedule with
the earliest completion time for i deliveries ending at dj is found by extending the optimal
schedule of length i− 1 ending at some feasible preceding point dj′ (j′ < j). The launch
time s for the i-th mission is the maximum of the point’s earliest launch time es(dj) and
the return time of the (i− 1)-th mission, T (i− 1, j′).

T (i, j) = min
j′<j
{ret (max(es(dj), T (i− 1, j′)), v, dj)}

The ret(s, v, dj) function correctly calculates the return time after servicing dj , assuming
the launch occurs at time s. The minimization selects the predecessor that allows the i-th
mission to dj to finish earliest, subject to the launch time s being less than or equal to
ls(dj). The full pseudocode for computing the DP table is presented in Algorithm 4.
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Algorithm 4: compute T Table(D,R, v, xmax)
Input: Ordered deliveries D, Range R, velocity v, and Max. Truck Distance xmax

Output: Predecessor table prev
n← |D|
T ← array of n entries initialized to∞
Tprev ← array of n entries initialized to∞
prev← n× n matrix initialized to −1
s← 0
Compute es ls table[j]← calculate es ls(R, v,D[j]) for all j
// --- Initialization layer i = 0 ---
for j ← 0 to n− 1 do

(es, ls)← es ls table[j]
if (es, ls) is valid then

if s ≤ ls then
st← max(s, es)
T [j]← ret(st, v,D[j])
prev[0][j]← 0

Tprev ← T
Reset T to all∞
// --- Dynamic layers i = 1 to n− 1 ---
for i← 1 to n− 1 do

flag← False
for j ← i to n− 1 do

(es, ls)← es ls table[j]
if (es, ls) is invalid then

continue

for j′ ← 0 to j − 1 do
s← Tprev[j

′]
if s ≤ ls and s < xmax then

s← max(s, es)
cand← ret(s, v,D[j])
if cand < T [j] then

T [j]← cand
prev[i][j]← j′

flag← True

if not flag then
break // No more feasible extensions

Tprev ← T
Reset T to all∞

return prev

Solution and Runtime The largest i with any finite T (i, j) gives the maximum deliveries,
and the schedule is reconstructed by backtracking as in Algorithm 5.
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Algorithm 5: calc Schedule(prev)
Input: Predecessor table prev of size n× n
Output: Sequence of selected delivery indices
n← |prev|
S ← empty list
// Find deepest valid state (i, j)
Function search():

for i← n− 1 to 0 do
for j ← 0 to n− 1 do

if prev[i][j] ̸= −1 then
return (i, j)

return (−1,−1)
(i, j)← search()
if i = −1 then

return S // No feasible schedule

// Backtrack predecessors
while i ≥ 0 do

Append j to S
j ← prev[i][j]
i← i− 1

Reverse S
return S

The running time is dominated by the table computation. The O(n2) table entries, com-
bined with the O(n) time required to check all predecessors j′ for each entry, yields the final
complexity:

Runtime = O(n2) ·O(n) = O(n3)

Our objective is to develop efficient algorithms that optimally leverage the k available
drones within these stringent constraints. We developed four distinct algorithmic strategies to
address this objective: the Sequential 1-DP, Parallel DP, the Sequential 2-DP and the Sequential
2-DP*.

3.2 Algorithms and Analysis

Common Inputs
The algorithms share a set of common inputs:

• deliveries: A list of delivery points in the form [(x1, y1), (x2, y2), . . . ].

• R: The maximum range the drone can travel on a single trip.

• v: The velocity of the drone (vd).

• k: Number of the drones.

• max truck distance: The maximum endpoint of the route, representing the farthest
point the truck must reach.
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3.2.1 Sequential 1-DP Algorithm

Algorithm Description The Sequential 1-DP algorithm is a greedy heuristic designed to tackle
the k-drones delivery problem by maximizing the number of deliveries in each step. This al-
gorithm is new in this thesis. Its core strategy is to leverage the optimal O(n3) single-drone
Dynamic Programming (DP) algorithm from [4] as a subroutine and applies it greedily across
drones. The Sequential 1-DP algorithm iterates exactly k times (once for each drone). In every
iteration, the remaining available, unscheduled points are passed to the DP algorithm, which
finds the single longest possible feasible delivery route from that current set. This best schedule
is immediately assigned to the current drone, and all included delivered points are then perma-
nently removed from the available pool for future iterations. This sequential, greedy process
ensures that each drone obtains the single best, locally optimal schedule from the remaining
workload. The complete pseudocode for the Sequential 1-DP algorithm is presented in Al-
gorithm 6. The running time is dominated by the k calls to the O(n3) DP algorithm. Since
the number of points in each iteration decreases but remains O(n) in the worst case, the total
complexity is O(k · n3). While each drone’s schedule is individually optimal for the points it
serves, the Sequential 1-DP is a greedy heuristic. The sequence in which points are removed
can affect the overall solution, meaning the final total number of deliveries is not guaranteed to
be globally optimal for the k-drones problem.

Algorithm 6: Sequential 1DP(points, R, v, k, xmax)
Input: Set of delivery points, parameters R, v, number of drones k, Maximum Truck

Distance xmax

Output: List of k (or fewer) schedules
scheds← empty list
// Sort points by earliest-start coordinate
idx pts← list of pairs (i, points[i])
Sort idx pts by delivery coordinate
s pts← sorted delivery points
s idx← original indices in sorted order
avail← [0, 1, . . . , |s pts| − 1]
for iter ← 1 to k do

if avail is empty then
break // No tasks left

cur ← [ s pts[i] | i ∈ avail ]
prev← compute T Table(cur,R, v, xmax)
rel← calc Schedule(prev)
if rel is empty then

break // No feasible schedule for next drone

// Map relative indices → sorted-space indices
abs sorted← [ avail[i] | i ∈ rel ]
// Map sorted indices back to original global indices
orig ← [ s idx[j] | j ∈ abs sorted ]
Append orig to scheds
// Remove scheduled deliveries from availability
used← set(abs sorted)
avail← [ i ∈ avail | i /∈ used ]

return scheds
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Approximation Ratio Analysis for Sequential Dynamic Programming Algorithm

This bound follows the same coverage-style argument as in classical greedy coverage analysis;
we include it to quantify the loss from sequentially selecting optimal single-drone schedules on
remaining points.

Useful Parameters:

• V0: The set of all delivery points.

• k: Number of drones.

• DPi: Set of points delivered by the i-th drone in the sequential DP schedule.

• OPTi: Set of points delivered by the i-th drone in the optimal schedule.

• DP (k): Total number of unique points delivered by k drones in the sequential DP sched-
ule.

• OPT (k): Total number of unique points delivered by k drones in the optimal schedules.

• Vi−1: The set of remaining unserved delivery points at the start of iteration i, defined as
the initial set V0 excluding all points served by the previous i− 1 DP drone schedules:

Vi−1 = V0 \
i−1⋃
j=1

DPj.

Observation (Disjointness and Total Value).
Since each delivery point can be assigned to at most one drone, all individual drone schedules
are disjoint:

DPi ∩DPj = ∅ and OPTi ∩OPTj = ∅ ∀i ̸= j.

Consequently, the total value of any solution is the sum of its disjoint schedule sizes:

DP (k) =
k∑

i=1

|DPi|, OPT (k) =
k∑

i=1

|OPTi|.

Lemma 5 (Lower Bound for DP1). Let OPT1, . . . , OPTk be the k disjoint optimal drone
schedules, and let |OPTmax| = maxi |OPTi| denote the largest single schedule.
By definition, the optimal single schedule computed by the DP algorithm on the full set of
delivery points satisfies

OPT (1) ≥ |OPTmax|,

because the DP solution can always reproduce or exceed the largest among the k disjoint opti-
mal schedules.
Furthermore, since the largest optimal schedule is at least as large as the average of all k sched-
ules, we have

OPT (1) ≥ |OPTmax| ≥
1

k

k∑
i=1

|OPTi| =
1

k
OPT (k).

Lemma 6 (Local Optimality Property).
At each iteration i, the DP algorithm selects the drone schedule DPi that maximizes the number
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of remaining deliverable points from Vi−1. Let OPT1(Vi−1) denote the optimal single drone
schedule restricted to the remaining set Vi−1. Since DP finds the exact optimum:

|DPi| = |OPT1(Vi−1)|.

This holds for all i = 1, . . . , k.

Theorem 3.1. Let DP (k) denote the total number of deliveries achieved by the sequential
dynamic programming algorithm using k drones, and let OPT (k) denote the size of an optimal
set of k disjoint schedules. Then we have

DP (k) ≥ OPT (k)

(
1−

(
1− 1

k

)k
)
.

Proof. Bound for the first schedule.
From the Lower Bound for DP1 in Lemma 5, the first DP schedule satisfies

|DP1| = OPT1(V0) ≥
1

k
OPT (k),

where OPT1(V0) denotes the optimal single schedule on the full set of points.

Bounds for subsequent schedules.
Fix an iteration i ∈ {2, . . . , k}. Let

Vi−1 = V0 \
i−1⋃
j=1

DPj

be the remaining points after the first i− 1 DP selections. By Lemma 6 the DP choice satisfies

|DPi| = |OPT1(Vi−1)|,

where OPT1(Vi−1) denotes the optimal single schedule on Vi−1.

To relate |OPT1(Vi−1)| to OPT (k), consider the k disjoint optimal schedules OPT1, . . . , OPTk.
After the first i−1 DP schedules, the number of points in the remaining portions of the optimal
schedules satisfies

k∑
ℓ=1

|OPTℓ \
i−1⋃
j=1

DPj| =
k∑

ℓ=1

|OPTℓ| −
k∑

ℓ=1

|OPTℓ ∩
i−1⋃
j=1

DPj|.

Since the DP schedules DPj are disjoint, we have

k∑
ℓ=1

|OPTℓ ∩
i−1⋃
j=1

DPj| ≤
i−1∑
j=1

|DPj|.

Combining these gives the key inequality:

k∑
ℓ=1

|OPTℓ \
i−1⋃
j=1

DPj| ≥ OPT (k)−
i−1∑
j=1

|DPj|.
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Since the value of the largest of these k disjoint subsets must be at least as large as their average,
we have:

max
ℓ
|OPTℓ \

i−1⋃
j=1

DPj| ≥
1

k

(
OPT (k)−

i−1∑
j=1

|DPj|
)
.

The DP schedule on the remaining points, OPT1(Vi−1), achieves this maximum exactly. Hence

|DPi| = |OPT1(Vi−1)| ≥
1

k

(
OPT (k)−

i−1∑
j=1

|DPj|
)
,

and in particular:

|DP2| ≥
1

k

(
OPT (k)− |DP1|

)
, |DP3| ≥

1

k

(
OPT (k)− (|DP1|+ |DP2|)

)
,

and so on, up to

|DPk| ≥
1

k

(
OPT (k)−

k−1∑
j=1

|DPj|

)
.

Iterative expansion.
Adding the inequalities iteratively, we obtain

|DP1|+ |DP2| ≥
1

k

(
OPT (k) + (k − 1)|DP1|

)
,

|DP1|+ |DP2|+ |DP3| ≥
1

k

(
OPT (k) + (k − 1)(|DP1|+ |DP2|)

)
,

...

DP (k) =
k∑

i=1

|DPi| ≥
1

k

(
OPT (k) + (k − 1)

k−1∑
i=1

|DPi|

)
,

where the final step follows from the Observation, which ensures that the DP schedules DPi

are disjoint and additive.

Closed-form expression. Expanding this recursively leads to the geometric series

DP (k) ≥ 1

k
OPT (k)

[
1 +

(
1− 1

k

)
+

(
1− 1

k

)2

+ · · ·+
(
1− 1

k

)k−1
]
.

Summing the series gives the generalized approximation ratio:

DP (k) ≥ 1

k
OPT (k) ·

1−
(
1− 1

k

)k
1−

(
1− 1

k

) = OPT (k)

(
1−

(
1− 1

k

)k
)
.

Remark. This proof mirrors the classical analysis of the greedy algorithm for the Maximum
Coverage problem. In the Maximum Coverage context, the greedy choice selects a set that
covers a maximum fraction of the remaining uncovered elements. Here, each sequential sched-
ule DPi acts similarly, exploiting the fact that the best single schedule on the remaining points
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(OPT1(Vi−1)) must capture at least a 1
k

fraction of the total remaining optimal coverage. The
Disjointness Constraint (each point served once) is crucial, ensuring both the greedy and opti-
mal schedules form partitions of their served points, which allows for the exact calculation of
the total approximation bound 1−

(
1− 1

k

)k.

Asymptotic Behavior When k tends to infinity, we use the limit limn→∞
(
1 + x

n

)n
= ex. Here,

let n = k and x = −1.

lim
k→∞

(
1− 1

k

)k

= lim
k→∞

((
1 +
−1
k

)k
)

= e−1

So, the approximation factor approaches:

lim
k→∞

[
1−

(
1− 1

k

)k
]
= 1− e−1 ≈ 1− 0.3679 ≈ 0.6321.

This asymptotic behavior is illustrated by the curve shown in Figure 10.

Figure 10: Approximation factor DP (k)/OPT (k) as k →∞.

3.2.2 Parallel DP Algorithm

Algorithm Description Parallel DP is proposed in this thesis as a multi-drone dynamic pro-
gramming heuristic for proper instances. Parallel DP schedules a set of n delivery points D
among k drones using a dynamic programming table T [i][j][d], which represents the com-
pletion time of drone d after serving the (i+1)-th assigned point ending at location j. The
algorithm operates in two phases. In Phase 1 (0 ≤ i < k), the first k drones are initialized by
assigning point j to drone i, while for each drone d < i the minimum prior completion times
from all feasible predecessor points j′ < j in T [i − 1] are copied into T [i][j][d] to preserve
consistency across drones. In Phase 2 (k ≤ i < n), each point j selects an optimal predecessor
(j′, d′) from T [i− 1] that minimizes the achievable arrival time, after which point j is assigned
to drone d′ and T [i][j][d′] is updated accordingly. For all remaining drones d ̸= d′, the state
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values are copied directly from the predecessor row T [i − 1][j′] to maintain synchronization
across the DP layers. The complete pseudocode for constructing the dynamic programming
table in the Parallel DP algorithm is presented in Algorithm 7. After the DP table is fully con-
structed, the procedure Calc Schedule Parallel backtracks through the stored predecessor table
prev to reconstruct the k drone routes in reverse order, yielding the final parallel schedule.
The procedure used to reconstruct the k parallel drone routes from the DP predecessor table is
shown in Algorithm 8.

The running time of the Parallel DP algorithm is dominated by the construction of the
dynamic programming table T in compute T Table Parallel. Let n be the number of
delivery points and k the number of drones. In Phase 1 (0 ≤ i < k), initializing the first k points
requires O(k2n2) time due to the search for minimum prior completion times for each drone
d < i over all feasible predecessor points. In Phase 2 (k ≤ i < n), extending the schedules
requires selecting the optimal predecessor (j∗, d∗) for each state (i, j) by checking all k drones
and all preceding points j′, giving O(kn) per state. Summing over the O(n2) states, Phase 2
dominates with O(kn3) complexity. Schedule reconstruction (Calc Schedule Parallel)
runs in O(n2) and is negligible, yielding an overall time complexity of O(kn3). We analyze
runtime and evaluate empirically; we do not claim a formal approximation guarantee for this
heuristic.

DP Formulation for Parallel DP Algorithm

State The DP state Ti,j,d represents the completion time of drone d when exactly i + 1 points
have been served, and point j is the (i + 1)th point served overall. Here, N is the total number
of points, k is the number of drones, and xmax is the maximum travel distance of the truck.

Initialization (0 ≤ i < k) This phase establishes the base schedules for the first k drones. The
index i represents the total number of points served minus one.

T [i][j][d] =


ret(max(0, es(j)), v,D[j]), if d = i (Drone i serves its first point j)

minj′<j {T [i− 1][j′][d]} , if d < i (Time copied from best predecessor j′)

0, if d > i (Drone not yet initialized)

Recurrence (Extension, k ≤ i < N ) This phase assigns the new point j to the drone that can
serve it earliest.

The algorithm finds the optimal predecessor state (j∗, d∗) from the set of i served points (end-
ing at j′) that minimizes the predecessor’s completion time, T [i − 1][j′][d′], while ensuring
feasibility:

(j∗, d∗) = argmin
d′∈[0,K−1], j′∈[i−1,j−1]

{T [i− 1][j′][d′] | T [i− 1][j′][d′] ≤ ls(j) and T [i− 1][j′][d′] < xmax}

The new state T [i][j][d] is updated based on the optimal choice (j∗, d∗):

T [i][j][d] =

{
ret(max(es(j), T [i− 1][j∗][d∗]), v,D[j]), d = d∗,

T [i− 1][j∗][d], d ̸= d∗.

(Drone d∗ serves point j; other drones copy predecessor times.)
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Algorithm 7: compute T Table Parallel(D,R, v, k, xmax)

Input: D: delivery points; R: Range; v: velocity; k: drones; xmax: max truck distance
Output: prev: predecessor table; I[k − 1]: index table for initialization
n← |D|
Initialize T [i][j][d]←∞, I[i][j][d]← −1, prev[i][j]← (−1,−1)

Phase 1: 0 ≤ i < k
for i← 0 to k − 1 do

for j ← i to n− 1 do
set← ∅
for d← 0 to i− 1 do

prev time←∞
for jp← 0 to j − 1 do

if T [i− 1][jp][d] < prev time and I[i− 1][jp][d] /∈ set then
prev time← T [i− 1][jp][d]
j′ ← jp

T [i][j][d]← prev time
I[i][j][d]← I[i− 1][j′][d]
set← set ∪ {I[i][j][d]}

(es, ls)← calculate es ls(R, v,D[j])
T [i][j][i]← ret(max(0, es), v,D[j])
I[i][j][i]← j
for d← i+ 1 to k − 1 do

T [i][j][d]← 0

Phase 2: i ≥ k
for i← k to n− 1 do

for j ← i to n− 1 do
prev time←∞
(es, ls)← calculate es ls(R, v,D[j])
for d← 0 to k − 1 do

for jp← i− 1 to j − 1 do
if T [i− 1][jp][d] < prev time
and T [i− 1][jp][d] < xmax

and T [i− 1][jp][d] ≤ ls then
prev time← T [i− 1][jp][d]
prev[i][j]← (jp, d)

if prev time ̸=∞ then
(j′, d∗)← prev[i][j]
T [i][j][d∗]← ret(max(es, prev time), v,D[j])
for d← 0 to k − 1 do

if d ̸= d∗ then
T [i][j][d]← T [i− 1][j′][d]

return (prev, I[k − 1])
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Algorithm 8: Calc Schedule Parallel(Ilast, prev, k)

Input: Ilast: final index table; prev: predecessor table; k: number of drones
Output: A list of k schedules
n← length of prev ;

Function Search():
for i← n− 1 to 0 do

for j ← 0 to n− 1 do
if prev[i][j] ̸= (−1,−1) then

return (i, j)

return (−1,−1) ;

(i, j)← Search() ;

Initialize schedules[d]← empty list for each d = 0, . . . , k − 1 ;

while i ≥ k do
(j′, d)← prev[i][j] ;
Append j to schedules[d] ;
j ← j′ ;
i← i− 1 ;

for d← 0 to k − 1 do
Append Ilast[j][d] to schedules[d] ;

for d← 0 to k − 1 do
Reverse schedules[d] ;

return schedules ;

3.2.3 Sequential 2-DP Algorithm

Algorithm Description Sequential 2DP is an original heuristic DP construction introduced
in this thesis to exploit paired-drone scheduling structure. The Sequential 2DP algorithm ad-
dresses the time-constrained routing problem for k drones by iteratively computing locally op-
timal dual paths for pairs of drones until all delivery points are scheduled. Its core component is
the three-dimensional dynamic programming (3D DP) procedure compute T Table 2DP, which
constructs a locally optimal pair of routes for two drones over a set of N available points.

The DP maintains a state
T [I][i][j] = (t1, t2),

representing the completion times when Drone 1 ends at point i and Drone 2 ends at point j after
2(I + 1) points have been assigned. Here, the index I counts the number of dual-assignment
iterations.

In the base case (I = 0), T [0][i][j] is initialized by computing the earliest feasible com-
pletion times for points i and j. In the recurrent case (I > 0), the DP transitions from a
predecessor state T [I − 1][i1][j1] to T [I][i][j] by selecting the predecessor that minimizes the
resulting makespan max(t1, t2), while ensuring feasibility with respect to time windows and
previously assigned points. Unlike Sequential 2DP*, only a single predecessor is retained for
each state, resulting in a greedy commitment to the locally optimal dual extension.

The function calc Schedule 2DP backtracks through the predecessor table to reconstruct
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the two selected routes. The main routine Sequential 2DP repeatedly invokes this DP on the
current set of available points, extracts the resulting paths, removes the scheduled points, and
stores the schedules in terms of original indices. This process continues until all points are
scheduled or ⌊k/2⌋ paired routes are obtained, with an optional final single-drone route if k is
odd. We analyze runtime and evaluate empirically; we do not claim a formal approximation
guarantee for this heuristic.

The running time of compute T Table 2DP for N points is O(N5), due to four nested loops
over (i, j, i1, j1) within an outer loop over I = O(N). Since Sequential 2DP invokes this DP
repeatedly on a decreasing number of points, the overall worst-case time complexity for an
initial set of N points is

⌊k/2⌋∑
i=1

O(N5) = O(kN5).

DP Formulation for Sequential 2DP

State
The DP state stores the completion times of Drone 1 and Drone 2 after 2(I + 1) points have
been assigned:

T [I][i][j] = (t1, t2),

where point i is served by Drone 1 and point j is served by Drone 2 in iteration I . The prede-
cessor pointer is

prev[I][i][j] = (i1, j1).

Base Case (I = 0)

T [0][i][j] =

(ret(max(0, es(i)), v,D[i]) , ret(max(0, es(j)), v,D[j])) , if i ̸= j, ls(i) ≥ 0, ls(j) ≥ 0,

(∞,∞), otherwise.

prev[0][i][j] = (−1,−1).

Recurrent Case (I > 0)
For each pair (i, j), the DP considers predecessor states (i1, j1) satisfying

(t1, t2) = T [I − 1][i1][j1],

t1 ≤ ls(i), t2 ≤ ls(j), {i, j} ∩ UsedPoints[I − 1][i1][j1] = ∅.

Among all such predecessors, the DP greedily selects the one minimizing the resulting makespan:

(i∗1, j
∗
1) = argmin

i1<i, j1<j
max(ret(max(t1, es(i)), v,D[i]), ret(max(t2, es(j)), v,D[j])) .

The recurrence is

T [I][i][j] = (ret(max(t∗1, es(i)), v,D[i]), ret(max(t∗2, es(j)), v,D[j])) ,

where (t∗1, t
∗
2) = T [I − 1][i∗1][j

∗
1 ], and

prev[I][i][j] = (i∗1, j
∗
1).
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Algorithm 9: compute T Table 2DP(D,R, v, xmax)
Input : D = delivery locations, R = Range, v = velocity, xmax = Maximum Truck

Distance
Output: Table prev storing predecessor states
N ← |D|, rows← N/2
Initialize T [i][j]← (∞,∞), Tprev[i][j]← (∞,∞) for all i, j
Initialize prev[I][i][j]← (−1,−1), usedSets[I][i][j]← ∅
Precompute (es[d], ls[d]) for all d ∈ D
for I ← 0 to rows− 1 do

flag← False
for i← 0 to N − 1 do

for j ← 0 to N − 1 do
if i = j then

continue
if I = 0 then

Compute earliest feasible times r1, r2 for points i, j
if r1 <∞ and r2 <∞ then

T [i][j]← (r1, r2)
prev[I][i][j]← (0, 0)
usedSets[I][i][j]← {i, j}
flag← True

else
minVal←∞
for i1 ← 0 to i− 1 do

for j1 ← 0 to j − 1 do
if Tprev[i1][j1] = (∞,∞) then

continue
S ← usedSets[I − 1][i1][j1]
if i ∈ S or j ∈ S then

continue
Compute feasible arrival times r1, r2 from state (i1, j1)
makespan← max(r1, r2)
if r1 <∞ and r2 <∞ and makespan < minVal then

T [i][j]← (r1, r2)
prev[I][i][j]← (i1, j1)
usedSets[I][i][j]← S ∪ {i, j}
minVal← makespan
flag← True

if flag = False then
break

Tprev ← T
Reset T to (∞,∞) for all entries

return prev

39



Algorithm 10: calc Schedule 2DP(prev)
Input : DP predecessor table prev
Output: Two-Drone schedule schedule{0}, schedule{1}
Initialize two empty routes schedule{0} and schedule{1}
Find the last non-(−1,−1) entry in prev and store it in (I∗, i∗, j∗)
if I∗ = −1 then

return schedule
Append i∗ to schedule{0} and append j∗ to schedule{1}
while I∗ > 0 do

(i∗, j∗)← prev[I∗][i∗][j∗]
Append i∗ to schedule{0} and j∗ to schedule{1}
I∗ ← I∗ − 1

Reverse both schedules
return schedule

Algorithm 11: Sequential 2DP(P,R, v, k, xmax)
Input : P = points, R = Range, v = speed, k = number of drones, xmax = Maximum

Truck Distance
Output: A set of k schedules
Sort points by x-coordinate; store original indices
avail← indices of all points
schedules← ∅
for u← 1 to k/2 do

D ← points indexed by avail
prev← compute T Table 2DP(D,R, v, xmax)
routes← calc Schedule 2DP(prev)
Convert local indices to global via sorted mapping
Append both routes to schedules
Remove used points from avail

if k is odd and avail not empty then
Solve remaining points with 1-DP
Append resulting route to schedules

return schedules

3.2.4 Sequential 2-DP* Algorithm

The Sequential 2DP* algorithm is a refinement of Sequential 2DP designed to address the
limitations of greedy commitment in dual-drone scheduling. Unlike Sequential 2DP, which
selects a single locally optimal dual route at each step, Sequential 2DP* preserves all feasi-
ble extensions within a two-drone dynamic programming step and selects option minimizing
the makespan. It solves the time-constrained routing problem for a set of N points using a
sequential partitioning strategy optimized for pairs of drones.

The core of the algorithm is a three-dimensional dynamic program, compute T Table 2DP*,
which constructs an optimal dual schedule over the remaining set of points. Each DP state
T [I][i][j] stores the pair of completion times (t1, t2) after assigning I+1 total points, with
Drone 1 ending at point i and Drone 2 ending at point j. Here, the index I counts the total
number of points assigned across both drones; extending one drone increases I by one, while
extending both drones simultaneously increases I by two.
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The recurrence supports three transition types: extending only Drone 1 from a prior state
T [I−1][i1][j], extending only Drone 2 from a state T [I−1][i][j1], or extending both drones
simultaneously from T [I−2][i1][j1]. For each transition, the algorithm computes candidate
completion times, ensures that newly added points have not been previously visited (tracked
via used sets), verifies time-window feasibility, and retains the transition that minimizes
the makespan max(t1, t2). We analyze runtime and evaluate empirically; we do not claim a
formal approximation guarantee for this heuristic.

The main routine Sequential 2DP* repeatedly invokes the DP, extracts the optimal pair
of routes using calc Schedule 2DP*, removes the selected points from further consideration,
and iterates until all ⌊K/2⌋ paired schedules are produced or no points remain. If K is odd,
a final single-drone schedule is generated using the one-dimensional DP compute T Table.
The overall worst-case running time is O(kN5), dominated by the O(N5) complexity of com-
pute T Table 2DP* applied to successively smaller problem sizes.

DP Formulation for Sequential 2DP*

State Definition
The DP state records the completion times of Drone 1 and Drone 2 after I+1 total point as-
signments:

T [I][i][j] = (t̂1, t̂2),

where t̂1 is the completion time when Drone 1’s last served point is i, and t̂2 is the completion
time when Drone 2’s last served point is j. The predecessor pointer is

prev[I][i][j] = (i1, j1).

Base Case (Initialization, I = 0)
The base case assigns one distinct point to each drone, provided both deliveries are individually
feasible:

T [0][i][j] =

(ret(max(0, es(i)), v,D[i]), ret(max(0, es(j)), v,D[j])), if valid,

(∞,∞), otherwise.

where valid means i ̸= j, ls(i) ≥ 0, ls(j) ≥ 0.

Recurrence (Extension, I > 0)
For I > 0, the optimal state T [I][i][j] is obtained by minimizing the makespan max(t̂1, t̂2) over
all feasible transition results:

T [I][i][j] = argmin
(t̂1,t̂2)∈C(i,j)

{
max(t̂1, t̂2)

}
.

The candidate set C(i, j) is formed by the union of the following transitions:

1. Transition A: Drone 1 Extends Path (from I − 1)

• Predecessor: (t1, t2) = T [I − 1][i1][j], ∀i1 < i.

• Condition: t1 ≤ ls(i) and i /∈ used sets[I − 1][i1][j].

• Result:
(t̂1, t̂2) = (ret(max(t1, es(i)), v,D[i]), t2) .
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2. Transition B: Drone 2 Extends Path (from I − 1)

• Predecessor: (t1, t2) = T [I − 1][i][j1], ∀j1 < j.

• Condition: t2 ≤ ls(j) and j /∈ used sets[I − 1][i][j1].

• Result:
(t̂1, t̂2) = (t1, ret(max(t2, es(j)), v,D[j])) .

3. Transition C: Both Drones Extend Path (from I − 2)

• Predecessor: (t1, t2) = T [I − 2][i1][j1], ∀i1 < i, j1 < j (I ≥ 2).

• Condition: t1 ≤ ls(i), t2 ≤ ls(j), and {i, j} ∩ used sets[I − 2][i1][j1] = ∅.
• Result:

(t̂1, t̂2) = (ret(max(t1, es(i)), v,D[i]), ret(max(t2, es(j)), v,D[j])) .

The transition that minimizes the makespan determines the new DP entry and its predecessor:

T [I][i][j] = (t̂∗1, t̂
∗
2), prev[I][i][j] = (i∗1, j

∗
1).

3.3 Experiment
This section empirically evaluates the performance of the proposed dynamic programming–
based algorithms, highlighting their effectiveness in improving delivery coverage under differ-
ent problem parameters.

3.3.1 Experimental Setup

Delivery Point Generation and Geometric Constraints
All experiments were conducted on proper instances of delivery points generated using a geo-
metric instance-generation procedure based on the constraints described by Krizanc et al [4].
Multiple point sets were generated for each experiment to capture diverse geometric structures
and ensure robust testing.

Common Configurations and Repetition
All experiments use the same truck and drone parameters, and computational environment
described in the previous section. All experiments use 10 randomized, but identical point sets
used for every algorithm trial to ensure fair pairwise comparisons. Performance was assessed
based on Number of Deliveries, Execution Time, Scalability, Sensitivity to Range and Velocity
and Resource Efficiency (minimum number of drones required to achieve full coverage). The
following parameters were systematically varied:

Table 2: Simulation parameters for experiment 2

Parameter Values Tested
Number of Delivery Points (N ) 50, 60, 70, 80, 90, 100
Drone Velocity (v) 1.2, 1.4, 1.6, 1.8, 2.0, 2.2
Drone Range (R) 0.2, 0.4, 0.6, 0.8, 1.0, 1.2
Number of Drones (K) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

The default configuration uses N = 70, v = 1.6, and R = 0.6, with k sweeping from 1 to 10.
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3.3.2 Experimental Results

The four algorithms considered are Sequential 1DP, Parallel DP, Sequential 2DP and Sequential
2DP* with Sequential Greedy used as a benchmark.

(1) Number of Deliveries Comparison (Baseline Fleet Sweep)
For small to moderate fleets (1–8 drones), Sequential 2DP* consistently achieves the high-
est delivery counts. Sequential 1DP, Sequential 2DP, and Sequential Greedy perform slightly
lower but remain competitive. For larger fleets (9–10 drones), Parallel DP surpasses Sequential
2DP*, demonstrating superior scaling. Sequential Greedy maintains reasonable coverage but is
slightly below DP-based methods. The relative performance of all algorithms across different
fleet sizes is illustrated in Figure 11.

Figure 11: Comparison of the number of deliveries achieved by all algorithms across fleet sizes.

(2) Execution Time Comparison
The computational performance of the algorithms is categorized by complexity:

• High Cost (Sequential 2DP, 2DP∗, O(kN5)): Runtimes range from tens of seconds up to
over 50 seconds per trial, making them prohibitively slow for large fleets or time-sensitive
applications.

43



• Moderate Cost (Sequential 1DP, Parallel DP, O(kN3)): These methods are practical for
real-time scheduling, with execution times typically below 0.02 seconds even for large
fleets.

• Low Cost (Sequential Greedy, O(kN2)): Extremely fast, with runtimes in the order of
milliseconds, suitable for real-time scheduling.

This highlights a direct trade-off: high-dimensional DP methods can achieve superior deliv-
ery coverage, especially for small fleets, but at the cost of prohibitive execution times. The
execution time differences across all algorithms are summarized in Figure 12.

Figure 12: Execution time comparison of all algorithms across fleet sizes

(3) Number of Deliveries vs. Number of Points (N Sweep)
As N increases from 50 to 100: Sequential 2DP∗ maximizes deliveries across all point den-
sities, maintaining its lead. Parallel DP performance shows a relative decline as N increases.
Sequential 1DP provides balanced performance, maintaining moderate coverage efficiently as
the problem size scales. The comparative performance of the different algorithms as the num-
ber of points increases is shown in Figure 13.
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Figure 13: Comparison of delivery performance of different algorithms as the number of deliv-
ery points (N ) increases

(4) Number of Deliveries vs. Drone Range (R Sweep)
Across all configurations, the number of completed deliveries increases with both drone range
and fleet size, saturating once enough drones are available to cover all feasible points. For
small ranges, all algorithms perform almost identically. For moderate ranges, Sequential-2DP*
consistently achieves the highest delivery count, while Parallel-DP performs worse for small
drone counts but improves as more drones are deployed. At larger ranges, the performance gap
widens: Sequential-2DP* remains the strongest method, followed closely by Sequential-1DP
and Sequential-2DP, whereas Parallel-DP significantly underperforms for 2–6 drones. Overall,
Sequential-2DP* provides the most stable and superior performance across all ranges, while
Parallel-DP struggles when the drone range is restrictive.

Figure 14: Comparison of delivery performance for different algorithms across varying drone
ranges (R)

(5) Number of Deliveries vs. Drone Velocity (v Sweep)
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For small fleets, Sequential 2DP* consistently achieves the highest average number of deliv-
eries. As drone velocity increases, all algorithms see improved delivery counts. For larger
fleets, Parallel DP scales most effectively, taking advantage of increased speed to approach full
delivery saturation, while sequential methods show diminishing returns. Across all velocities,
Sequential 1DP provides steady but modest improvements and improves slightly over Sequen-
tial 2DP, and Sequential Greedy remains competitive but generally underperforms compared
to the optimized DP approaches. The impact of increasing drone velocity on the performance
of different algorithms is shown in Figure 15.

Figure 15: Comparison of delivery performance for different algorithms as drone velocity (v)
increases

(6) Minimum-Drone Analysis (Resource Efficiency)
The resource-efficiency results reveal a clear and consistent trend across all tested point densi-
ties. The Parallel DP algorithm requires the fewest drones in every scenario, making it the most
resource-optimal method. Its advantage becomes more pronounced as the number of deliv-
ery points increases. The Sequential 1DP and Sequential 2DP algorithms consistently require
larger drone counts, providing no efficiency gains over Parallel DP. The enhanced dual-path
heuristic Sequential 2DP* performs slightly better than the other DP heuristics but still falls
short of matching the efficiency of Parallel DP, especially at higher point densities. The Se-
quential Greedy algorithm is generally the least efficient, often exhibiting the highest drone
usage across the tested instances. Overall, the data clearly confirms that Parallel DP is the
most drone-efficient algorithm, while the Sequential DP variants and the greedy strategy tend
to overuse drones as the number of delivery points increases. A comparative visualization of
these trends is provided in Figure 16.
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Figure 16: Minimum number of drones required by different algorithms to achieve full delivery
coverage across varying point densities

Conclusion

• The Sequential 2DP* (3D DP) algorithm consistently achieves the highest number of
completed deliveries for small to moderate fleet sizes (k) across most constraint settings
(R,N, v), yielding the best solution quality among the evaluated methods in this regime.
The Sequential 1DP algorithm performs slightly below Sequential 2DP*, while remain-
ing competitive and significantly more efficient. In contrast, Parallel DP is initially in-
efficient for small values of k but exhibits superior scalability as the fleet size increases,
eventually matching or surpassing Sequential 2DP* for larger numbers of drones.

• A key practical distinction among the algorithms lies in their computational complex-
ity. The dual-path 3D DP methods with O(kN5) time complexity quickly become op-
erationally infeasible, with execution times reaching tens of seconds. In contrast, the
O(kN3) algorithms (Sequential 1DP and Parallel DP) consistently run in the millisec-
ond range, making them suitable for larger problem instances.

• Parallel DP requires the smallest number of drones across all tested point densities, mak-
ing it the most resource-efficient approach. All sequential DP variants (Sequential 1DP,
Sequential 2DP, and Sequential 2DP∗) exhibit higher drone usage and become progres-
sively less efficient as delivery density increases.
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Overall, Sequential 1DP provides a strong compromise, achieving delivery counts close to
those of higher-dimensional DP methods while maintaining significantly lower execution times.

Previous sections focused on coverage maximization under a moving-truck synchronization
model. We now move to a different operational assumption: the truck may stop and wait for
the drone. This changes what is meaningful to optimize: when full coverage is feasible, the
central question becomes how to minimize the total completion time rather than how many
points can be served. Next section develops algorithms for this time-minimization objective.

4 Truck-Drone Model: Truck can stop (Single drone)
Unlike previous sections, which maximize the number of completed deliveries, this chapter as-
sumes a waiting synchronization model where the truck may stop and wait for the drone. Under
this assumption, the objective shifts from coverage to time: we minimize the total completion
time required to serve all deliveries. This shift also changes the algorithmic emphasis: we com-
pare simple baselines, fast heuristics, and DP-style optimization to quantify the quality–runtime
trade-off.

4.1 Problem Formulation
This section analyzes four distinct algorithms for optimizing a single-drone, single-truck deliv-
ery system under a waiting synchronization model, where the truck is allowed to stop and wait
for the drone to return. The objective is to minimize the total completion time required to serve
all points from a given set of random delivery points.

The four algorithms considered are: a naive baseline approach (Alg 1), a heuristic boundary-
adjustment method (Alg 2), a fixed-order bottom-up dynamic programming algorithm (Alg 3),
and an order-free exact search algorithm based on state-space exploration (Alg 4). All al-
gorithms are evaluated on experimental instances consisting of randomly generated delivery
points.

For each algorithm, we measure both the total delivery time and the computational execu-
tion time. These metrics are compared across varying numbers of delivery points, as well as
different values of drone range and drone velocity, in order to assess the trade-offs between
solution quality and computational efficiency.

Model assumptions. The truck moves at a constant velocity of 1 along the x-axis and may stop
and wait for the drone to return. For each delivery di = (xi, yi), the drone performs a single
out-and-back trip, launched at position si and recovered at position ri.

Under the waiting synchronization model considered here, the duration of the delivery seg-
ment is determined by the drone flight time

tdrone =
dist((si, 0), di) + dist(di, (ri, 0))

v
,

since the truck may wait at the recovery position if it arrives early. Feasibility of a synchroniza-
tion interval (si, ri) therefore requires that the drone can both complete its flight and rendezvous
with the truck:

dist((si, 0), di) + dist(di, (ri, 0)) ≤ R, tdrone ≥ ri − si.
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The first condition enforces the drone’s maximum flight range R, while the second guarantees
that the drone remains airborne until the truck reaches the recovery position ri.

4.2 Algorithms and Analysis
Having defined feasibility and the time-based objective, we now present algorithms that range
from a naive baseline to DP and exact search, highlighting where additional optimization effort
yields meaningful time reductions.

Common Inputs
The algorithms share a set of common inputs:

• deliveries: A list of delivery points in the form [(x1, y1), (x2, y2), . . . ].

• R: The maximum range the drone can travel on a single trip.

• v: The velocity of the drone (vd).

• max truck distance: The maximum endpoint of the route, representing the farthest
point the truck must reach.

4.2.1 Algorithm 1 (Naive Approach)

The Naive Algorithm operates under a simple approach. The truck moves to the x-coordinate
of each delivery point and waits for the drone to perform a vertical round trip. The drone then
moves vertically to the point and returns back to truck after serving the point. For each delivery,
the drone travels a total distance of 2yi(yi to the delivery point and yi back to the truck). The
time for the drone to complete this round trip is 2yi/vd, where vd is the drone’s speed. The
time taken for the truck to travel between two consecutive points (i − 1 and i) is xi − xi−1

because velocity of the truck is 1. The total time for the truck’s travel is the sum of these
segments, which is equal to the maximum distance it needs to cover, which we can denote as
max truck distance. The corresponding procedural steps for computing the total time under
this Naive strategy are summarized in Algorithm 12.

Total Time: The total time for the algorithm is the sum of the truck’s total travel time and the
cumulative time of all the drone’s round-trip times.

Ttotal = max truck distance +
n∑

i=1

2yi
vd

.

Optimality: Not optimal. The truck waiting at each point is a significant source of inefficiency
as it prevents the truck and drone from operating concurrently.

Algorithm 12: NAIVE ALGORITHM

Input: deliveries (list of points (x, y)), drone speed v, truck path length xmax

Output: total T ime
total T ime← xmax;
foreach (x, y) in deliveries do

flight time← 2y
v

; // Out-and-back drone trip
total T ime← total T ime+ flight time;

return total T ime;
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4.2.2 Algorithm 2 (Heuristic Boundary Adjustment)

Algorithm 2 is a heuristic optimization algorithm for the truck–drone delivery problem under a
waiting synchronization model. The algorithm refines an initial schedule by iteratively adjust-
ing the launch and return positions of the drone for each delivery in order to reduce the total
completion time while preserving feasibility.

Unlike Algorithm 1, which initializes the schedule by fixing the launch and return positions
to the delivery point’s x-coordinate, Algorithm 2 allows these positions to expand outward
along the truck’s trajectory, subject to ordering and synchronization constraints.

Step 1: Initialization.

• Sort all delivery points di = (xi, yi) by increasing xi.

• For each delivery i, initialize the synchronization interval as si = ri = xi.

• Maintain a boolean array boundary reached of size 2n, where index 2i corresponds
to the launch boundary si and index 2i + 1 corresponds to the return boundary ri. A
boundary marked as reached can no longer be adjusted.

• Fix a step size ∆ = 0.001, which controls the granularity of boundary movement.

Step 2: Boundary selection. At each iteration, the algorithm scans all boundaries that are not
yet locked and computes the decrement factor

df =
x√

x2 + y2
,

where x is the horizontal distance between the current boundary position (si or ri) and the
delivery point xi, and y is the vertical offset of the delivery.

The decrement factor represents the marginal increase in drone flight distance per unit hor-
izontal movement of the truck. Boundaries with smaller df values incur a smaller increase in
drone travel time and are therefore preferable to adjust. The boundary with the minimum df is
selected for the next adjustment.

Step 3: Feasibility checks and boundary adjustment. Let the selected boundary correspond
to delivery i. Determine the neighboring constraints:

rprev =

{
0, i = 0,

ri−1, otherwise,
snext =

{
xmax, i = n− 1,

si+1, otherwise.

If the selected boundary is a launch boundary, attempt si ← si−∆. If the selected boundary
is a return boundary, attempt ri ← ri +∆.

The attempted adjustment is rejected and the selected boundary is permanently locked if
the proposed one-step update violates feasibility:

• Ordering constraint (neighbor safety). The update must satisfy si − ∆ ≥ rprev for a
launch update and ri +∆ ≤ snext for a return update.

• Drone range constraint. Let (s′i, r
′
i) denote the candidate interval after applying the up-

date. If
dist((s′i, 0), di) + dist(di, (r

′
i, 0)) > R,

then the update is infeasible.
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• Synchronization feasibility. Let

t1 =
dist((s′i, 0), di) + dist(di, (r

′
i, 0))

v
, t2 = r′i − s′i.

If t1 < t2, the drone cannot remain airborne long enough to rendezvous with the truck,
and the update is infeasible.

If none of these conditions is violated, the update is accepted and the synchronization inter-
val (si, ri) is updated. The process repeats until all boundaries are locked.

Figure 17: Initial schedule for the heuristic
algorithm

Figure 18: Final refined schedule

Step 4: Completion time computation. After the boundary adjustment phase terminates, the
total completion time is computed by scanning deliveries in order:

• Add the truck travel since the previous return position, rprev:

T + = si − rprev.

• Add the drone flight time:

T + =
dist((si, 0), di) + dist(di, (ri, 0))

v
.

After all deliveries are processed, if the truck has not yet reached xmax, add xmax − rprev to the
total completion time.

Running time and optimality. As shown in Algorithm 13, the heuristic repeatedly selects
the boundary with the minimum decrement factor and expands it by a fixed step size ∆. Each
boundary moves monotonically and can be adjusted at most O(xmax) distance, yielding

M =
xmax

∆

possible adjustment steps per boundary. Since each iteration scans all N deliveries, the total
running time is

O(NM) = O
(
N · xmax

∆

)
.

Algorithm 2 is a local optimization heuristic: it produces high-quality schedules in practice
but does not guarantee global optimality.
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Algorithm 13: Algorithm 2a: Initialization and Boundary Selection
Input: Deliveries D = {(xi, yi)}
Output: Initialized intervals SI and active boundary index min idx
Sort D by increasing x-coordinate
N ← |D|
for i← 0 to N − 1 do

Initialize SI[i]← (di, xi, xi)
end
Initialize boundary reached[1 . . . 2N ]← false
min df ←∞, min idx← None
for i← 0 to N − 1 do

(d, s, r)← SI[i]
if left boundary of i not reached then

compute df = dx−s√
(dx−s)2+d2y

update (min df,min idx)

end
if right boundary of i not reached then

compute df = r−dx√
(r−dx)2+d2y

update (min df,min idx)

end
end

4.2.3 Algorithm 3 (Dynamic Programming with Discretized Truck Positions)

Algorithm 3 is a dynamic programming algorithm for the truck–drone delivery problem under
the same waiting synchronization model as Algorithms 1 and 2. Unlike the heuristic boundary-
adjustment approach, Algorithm 3 enumerates all feasible synchronization choices (s′j, rj) on
a discretized truck trajectory for a fixed order of deliveries. It returns an optimal schedule with
respect to this fixed order and the chosen discretization granularity ∆, but it does not optimize
over all permutations of the deliveries nor over continuous (non-discretized) launch/return po-
sitions.

The algorithm discretizes the truck’s motion along the x-axis into uniform steps of size ∆
and applies dynamic programming to determine the optimal launch and return positions for
each delivery. For simplicity, we denote discretized truck positions directly by their coordinate
values s, r ∈ {0,∆, 2∆, . . . , xmax}. The pseudocode is provided in Algorithms 15 and 16.

Step 1: Discretization and preprocessing. Let

M =
⌊xmax

∆

⌋
+ 1

denote the number of discretized truck positions. For each delivery j and each discretized
launch position s, the algorithm precomputes the set of feasible return positions r ≥ s satisfying

dist((s, 0), dj) + dist(dj, (r, 0)) ≤ R.
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Algorithm 14: Algorithm 2b: Boundary Expansion and Schedule Evaluation
incr← 0.001
i← ⌊min idx/2⌋
(d, s, r)← SI[i]
Determine neighbor bounds rprev and snext
if min idx even then

// attempt to move launch boundary left
s′ ← s− incr
r′ ← r
dtot ← dist((s′, 0), d) + dist(d, (r′, 0))
t1 ← dtot/v
t2 ← r′ − s′

if s′ < rprev or dtot > R or t1 < t2 then
mark boundary reached

end
else

s← s′

end
else

// attempt to move return boundary right
s′ ← s
r′ ← r + incr
dtot ← dist((s′, 0), d) + dist(d, (r′, 0))
t1 ← dtot/v
t2 ← r′ − s′

if r′ > snext or dtot > R or t1 < t2 then
mark boundary reached

end
else

r ← r′

end
end
Update SI[i]← (d, s, r)

// Schedule evaluation using the updated intervals
T ← 0
rprev ← 0
for j ← 0 to |SI| − 1 do

(d, s, r)← SI[j]
T ← T + (s− rprev)

T ← T + dist((s,0),d)+dist(d,(r,0))
v

rprev ← r

end
if rprev < xmax then

T ← T + (xmax − rprev)
end
return SI , T
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For each such pair (s, r), the corresponding drone flight time

tdrone(j, s, r) =
dist((s, 0), dj) + dist(dj, (r, 0))

v

is stored for constant-time access during the dynamic programming phase.

Step 2: Dynamic programming formulation. The algorithm maintains a table

dp[j][s],

which represents the minimum remaining completion time required to serve deliveries j, j +
1, . . . , N − 1, assuming the truck is currently at position s.

Two auxiliary tables, choice launch and choice return, are used to record the
optimal launch and return positions for schedule reconstruction.

Base case. For the final delivery j = N−1, the algorithm considers all feasible launch positions
s′ ≥ s and feasible return positions r ≥ s′. The total cost consists of:

• truck travel from s to s′,

• the drone flight time for delivery j,

• truck travel from r to xmax.

A candidate pair (s′, r) is feasible only if

tdrone(j, s
′, r) ≥ r − s′,

which guarantees a valid rendezvous: the truck can reach the recovery position r no later than
the drone returns. If the truck arrives earlier, it may wait at r; however, candidates where the
drone would return before the truck reaches r are discarded.

Step 3: DP transition. For deliveries j = N − 2, N − 3, . . . , 0, the algorithm computes

dp[j][s] = min
s′≥s

min
r∈R(j,s′)

[s′ − s+ tdrone(j, s
′, r) + dp[j + 1][r]] ,

subject to the same synchronization feasibility condition

tdrone(j, s
′, r) ≥ r − s′.

Infeasible transitions are discarded. The positions (s′, r) achieving the minimum value are
stored for reconstruction.

Step 4: Schedule reconstruction. If dp[0][0] < ∞, the algorithm reconstructs an optimal
schedule by starting at state (j, s) = (0, 0) and repeatedly following the stored launch and
return choices. The resulting schedule consists of launch–return pairs (s′j, rj) for each delivery.

If dp[0][0] =∞, no feasible schedule exists under the given parameters.

Running time and optimality.
The time complexity of the optimal Dynamic Programming approach (Algorithm 3) is de-

termined by the number of deliveries N and the number of discretized truck positions M =
⌊xmax/∆⌋ + 1. The algorithm operates in two phases. First, the feasibility precomputation
step, which calculates the drone travel time for all O(M2) launch-return pairs for each of the
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N deliveries, incurs a cost of Θ(NM2). Second, the DP table filling phase evaluates every
possible launch position s′ ≥ s and its associated set of feasible return indices, Fj(s

′). This re-
currence step is dominated by the triple summation

∑N−1
j=0

∑M−1
s=0

∑M−1
s′=s |Fj(s

′)|. In the worst
case, where every launch-return pair is feasible, the size of |Fj(s

′)| is Θ(M − s′), which yields
a cost of Θ(NM3). Therefore, the total time complexity of the algorithm is dominated by the
DP recurrence, resulting in a worst-case bound of T = Θ(NM3).

Unlike Algorithm 2, Algorithm 3 is exact for a fixed delivery order under the discretized
model. Specifically, for the given ordered list of deliveries (d0, d1, . . . , dN−1), it computes
a minimum-time schedule over all discretized launch/return choices (s′j, rj) that respect this
order. Therefore, Algorithm 3 guarantees global optimality with respect to the chosen order
and discretization granularity ∆, but it does not optimize over all possible permutations of the
deliveries.

Algorithm 15: Alg 3: Feasibility Precomputation
Input: Deliveries D = {(xj, yj)}N−1

j=0 , Drone range R, Drone speed v, Truck horizon
xmax, Discretization step ∆

Output: Feasible return sets Fj(s) and drone travel times τj(s, r)
M ←

⌊
xmax

∆

⌋
+ 1

for j ← 0 to N − 1 do
for s← 0 to M − 1 do

Fj(s)← ∅
for r ← s to M − 1 do

xs ← s ·∆
xr ← r ·∆
d1 ←

√
(xs − xj)2 + y2j

d2 ←
√

(xr − xj)2 + y2j

if d1 + d2 ≤ R then
Fj(s)← Fj(s) ∪ {r}

τj(s, r)←
d1 + d2

v

return {Fj(s)}, {τj(s, r)}
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Algorithm 16: Alg 3: Dynamic Programming and Reconstruction
Input: Feasible return sets Fj(s), Drone times τj(s, r), xmax, ∆
Output: Optimal schedule and completion time
Initialize DP table dp[j][s]←∞
Initialize decision tables launch[j][s], return[j][s]← −1
Base Case (last delivery j = N − 1)
for s← 0 to M − 1 do

for s′ ← s to M − 1 do
drive← (s′ − s)∆
foreach r ∈ FN−1(s

′) do
if τN−1(s

′, r) ≥ (r − s′)∆ then
T ← drive + τN−1(s

′, r) + (xmax − r∆)
if T < dp[N − 1][s] then

dp[N − 1][s]← T
launch[N − 1][s]← s′

return[N − 1][s]← r

Recursive Case
for j ← N − 2 downto 0 do

for s← 0 to M − 1 do
for s′ ← s to M − 1 do

drive← (s′ − s)∆
foreach r ∈ Fj(s

′) do
if τj(s′, r) ≥ (r − s′)∆ then

T ← drive + τj(s
′, r) + dp[j + 1][r]

if T < dp[j][s] then
dp[j][s]← T
launch[j][s]← s′

return[j][s]← r

Reconstruction
s← 0
for j ← 0 to N − 1 do

s′ ← launch[j][s]
r ← return[j][s]
Append (s′∆, r∆) to schedule
s← r

return schedule, dp[0][0]

4.2.4 Algorithm 4 (Order-Free Exact Search via State-Space Dijkstra)

Algorithm 4 extends Algorithm 3 by removing the restriction of a fixed delivery order. It formu-
lates the truck–drone delivery problem as a shortest-path search over a discrete state space and
applies Dijkstra’s algorithm to compute an optimal schedule under the waiting synchronization
model.

Unlike Algorithm 3, which optimizes launch and return positions for a given delivery or-
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der, Algorithm 4 explicitly explores all permutations of deliveries together with all feasible
discretized launch and return positions, and therefore optimizes both the order of deliveries and
the synchronization choices.

Step 1: Discretization and preprocessing. The truck’s trajectory is discretized into

M =
⌊xmax

∆

⌋
+ 1

positions. For simplicity, discretized truck positions are denoted directly by their coordinate
values s, r ∈ {0,∆, 2∆, . . . , xmax}. For each delivery j and each discretized launch position s,
the algorithm precomputes the set of feasible return positions

Fj(s) = { r ≥ s | dist((s, 0), dj) + dist(dj, (r, 0)) ≤ R },

together with the corresponding drone flight times

tdrone(j, s, r) =
dist((s, 0), dj) + dist(dj, (r, 0))

v
.

Step 2: State-space formulation. Algorithm 4 represents partial schedules using states of the
form

(mask, s),

where:

• mask is a bitmask indicating which deliveries have already been completed, and

• s is the discretized truck position at the end of the last completed delivery.

The initial state is (0, 0), corresponding to no deliveries served and the truck at the origin.
A terminal state is any (full, s), where all deliveries have been served.

Step 3: Transitions and costs. From a state (mask, s), the algorithm considers any unserved
delivery j and any launch position s′ ≥ s. For each feasible return position r ∈ Fj(s

′), a
transition is added provided that the synchronization condition enforced in the pseudocode
holds:

tdrone(j, s
′, r) ≥ r − s′.

The cost of this transition is

s′ − s + max(tdrone(j, s
′, r), r − s′) ,

which accounts for the truck’s travel to the launch position and the duration of the synchronized
delivery segment. The resulting successor state is

(mask ∪ {j}, r).

Step 4: Shortest-path search. All states and transitions define a directed weighted graph.
Algorithm 4 applies Dijkstra’s algorithm over this state space, maintaining the best-known
completion time for each reachable state. Once all deliveries are served, the algorithm adds the
final truck travel from the current position to xmax and selects the terminal state with minimum
total time.
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Step 5: Schedule reconstruction. Using parent pointers stored during the search, the algo-
rithm reconstructs the delivery order and the corresponding launch–return pairs (s′j, rj). Unlike
Algorithm 3, the resulting schedule may serve deliveries in any order.

Worst-case runtime of Algorithm 4. Algorithm 4 performs a shortest-path search over states
of the form (mask, s), where mask encodes the set of completed deliveries and s is a discretized
truck position. The state space contains 2N ·M states.

From each state, up to O(NM2) transitions may be explored, corresponding to choices of
the next delivery, launch position, and return position. Using Dijkstra’s algorithm with a binary
heap, the resulting worst-case runtime is

O
(
N 2N M3 log(2NM)

)
,

which dominates the Θ(NM2) preprocessing cost.
Algorithm 17 presents the pseudocode for the proposed exact discretized truck–drone schedul-

ing algorithm, which computes an optimal delivery schedule using Dijkstra’s shortest-path
framework.

Due to the exponential growth of the state space, Algorithm 4 is computationally feasible
only for instances with a small number of delivery points and is therefore used solely as a
benchmark for evaluating heuristic approaches.

The schedules shown in Figure 19 correspond to the problem instance with drone range R =
0.6, drone speed v = 1.6, and delivery locations D ={(0.05, 0.16), (0.07, 0.02), (0.55, 0.16),
(0.57, 0.02)}. Notice that the schedule produced by Algorithm 4 does not follow the order of
the x-coordinates of the delivery locations.

(a) Alg 1 (1.45 s) (b) Alg 2 (1.14 s)

(c) Alg 3 (1.08 s) (d) Alg 4 (1.00 s)

Figure 19: Comparison of delivery schedules produced by Alg 1–Alg 4 for the same problem
instance. Alg 4 achieves the minimum completion time and serves as the optimal benchmark.
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Algorithm 17: Alg 4: Exact Discretized Truck–Drone Scheduling via Dijkstra
Input: Delivery points D = {(xj, yj)}Nj=1, drone range R, drone speed v,
maximum truck position xmax, discretization step ∆x, truck speed vT
Output: Optimal delivery schedule and minimum completion time
Function IdxToX(i):

return i ·∆x
M ← ⌊xmax/∆x⌋+ 1;
INF← +∞;

Precomputation of feasible drone returns;
for j ← 1 to N do

for s← 0 to M − 1 do
for r ← s to M − 1 do

d1 ← ∥(IdxToX(s), 0)− (xj, yj)∥;
d2 ← ∥(IdxToX(r), 0)− (xj, yj)∥;
if d1 + d2 ≤ R then

store r in feasible returns[j][s];
drone time[j][s][r]← (d1 + d2)/v;

Dijkstra on state space (mask,truck idx);
full← 2N − 1;
Initialize priority queue PQ;
dist[(0, 0)]← 0;
Push (0, 0, 0) into PQ;
while PQ not empty do

(t,mask, i)← Extract-Min(PQ);
if t ̸= dist[(mask, i)] then

continue
if mask = full then

break
foreach unserved delivery j do

for s← i to M − 1 do
tdrive ← (IdxToX(s)− IdxToX(i))/vT ;
foreach r ∈ feasible returns[j][s] do

tD ← drone time[j][s][r];
tT ← (IdxToX(r)− IdxToX(s))/vT ;
if tD < tT then

continue
t′ ← t+ tdrive +max(tD, tT );
mask′ ← mask ∪ {j};
if t′ < dist[(mask′, r)] then

update dist and parent;
Push (t′,mask′, r) into PQ;

Termination and reconstruction;
Select (full, i) minimizing dist[(full, i)] + (xmax − IdxToX(i))/vT ;
Reconstruct schedule using parent pointers;
return schedule and optimal completion time;

59



4.3 Experiment
We next evaluate these algorithms using common metrics: total delivery time (solution quality)
and execution time (computational cost), across varying instance sizes and parameter settings.

4.3.1 Experimental Setup

To evaluate the performance of the first three algorithms, we conducted a series of computa-
tional experiments with the following setup:

• Delivery Points, Truck and Drone Parameters and Hardware: All delivery-generation
procedures, truck/drone parameters, and hardware settings follow Experiment 2.3. The
only difference is the delivery-point generation range in the y-direction: in Experiment 3
we enforce 0 ≤ y ≤ R/2 (whereas Experiments 1–2 use the original y-range described
in Experiment 2.3).

• Evaluation Metrics:

1. Total Delivery Time: Time taken to complete all deliveries for a given scenario.

2. Execution Time: CPU time required to compute the schedule for each algorithm.

• Experimental Variations: The following parameters were systematically varied:

Table 3: Simulation parameters for experiment 3

Parameter Values Tested
Number of Delivery Points (N ) 20, 40, 60, 80, 100, 120, 140, 160, 180, 200
Drone Velocity (v) 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0
Drone Range (R) 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0

The default configuration uses N = 100, v = 1.6, and R = 0.6.

• Repetition and Averaging:

– For each experimental configuration, 10 random instances were generated, and re-
sults were averaged to reduce stochastic variability and ensure statistically mean-
ingful conclusions.

• Experimental Workflow:

1. A set of delivery points was generated randomly within the defined x and y ranges.

2. All three algorithms were executed on the same set of points to obtain a delivery
schedule.

3. Total delivery time and execution time were recorded for each algorithm.

4. The process was repeated for multiple trials, and the results were averaged.

5. Performance metrics were plotted against experimental variables (number of points,
drone velocity, and drone range) to analyze algorithm efficiency, scalability, and
robustness.
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4.3.2 Experimental Results

Figure 20: Total Delivery Time and Execution Time vs. Number of Points

Figure 21: Total Delivery Time and Execution Time vs. Velocity

61



Figure 22: Total Delivery Time and Execution Time vs. Range

Total Delivery Time
Based on Figures 20, 21, and 22, the algorithms perform as follows with respect to total delivery
time:

1. Dynamic Programming (Alg 3): Consistently achieves the lowest total delivery time
among the tested methods. This is expected, since Alg 3 optimizes over all feasible
discretized launch and return positions for a fixed delivery order, yielding an optimal
solution within this restricted model.

2. Heuristic (Alg 2): Produces near-optimal results that are very close to those of Alg
3, with only minor increases in total time in some instances. Its boundary-adjustment
strategy effectively balances truck motion and drone flight time, but it does not guarantee
optimality.

3. Naive (Alg 1): Performs significantly worse than Alg 2 and Alg 3, as it does not exploit
synchronization between the truck and drone and fixes launch and return positions at the
delivery points.

These results demonstrate that incorporating synchronization and optimization of launch
and return positions (Alg 2 and Alg 3) substantially reduces total delivery time compared to the
naive approach.

Computational Execution Time
Execution times illustrate the trade-off between solution quality and computational cost, as
shown in Figures 20, 21, and 22:

1. Naive (Alg 1): Fastest by far, with execution times in the microsecond range, due to its
simple, non-iterative computation.
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2. Heuristic (Alg 2): Slower than Alg 1, with execution times in the millisecond range.
Its iterative refinement incurs additional overhead, but remains efficient even for large
delivery sets.

3. Dynamic Programming (Alg 3): Slowest among the three, with execution times in
the seconds range. The dynamic programming procedure evaluates a large number of
discretized synchronization choices, resulting in substantially higher computational cost.

Figure 23: Comparison of all algorithms including Alg 4

As shown in Figure 23, even for small instances, Alg 4 does not provide a significant im-
provement in total delivery time compared to Alg 3, while incurring an exponentially larger
execution time as the number of delivery points increases.

Conclusion

In summary, Alg 3 produces the best solutions for the fixed-order, discretized model but at a
significant computational cost. Alg 2 offers an attractive trade-off, achieving solutions close to
Alg 3 while running much faster, making it suitable for large-scale instances where execution
time is critical. Alg 1 is computationally trivial but yields substantially inferior delivery times.
Alg 4 serves primarily as a benchmark for small instances, validating the quality of the solutions
obtained by the other algorithms.

5 Conclusion
This study presented a comprehensive analysis of algorithms for truck–drone delivery schedul-
ing under multiple problem settings and modeling assumptions. The investigation progressed

63



through three main phases, each addressing a distinct level of algorithmic complexity and prac-
tical relevance.

First, the single-drone model was extended to multi-drone fleets with k drones, with the
objective of maximizing the number of completed deliveries. For randomly located delivery
points, two greedy heuristics were developed: the Sequential Greedy Algorithm and the Par-
allel Greedy Algorithm. The Sequential Greedy approach was shown to achieve a minimum
approximation factor of 1 −

(
1− 1

2k

)k, which converges to 1 − e−1/2 ≈ 39.35% as k → ∞.
Empirical results further demonstrated that the sequential strategy consistently outperforms the
parallel approach in solution quality, execution time, and overallresource utilization.

Next, the study focused on geometrically constrained proper instances, which permit more
structured Dynamic Programming (DP) techniques based on the classical O(n3) single-drone
solution. Four algorithms were analyzed: Sequential 1-DP, Parallel DP, Sequential 2-DP, and
Sequential 2-DP*. Sequential 1-DP achieved a tighter approximation factor of 1 −

(
1− 1

k

)k,
approaching 1 − e−1 ≈ 63.21% as k → ∞. While the higher-dimensional DP variants (no-
tably Sequential 2-DP*) produced the best solution quality for small fleets, their computational
cost grows rapidly. In contrast, the O(kN3) Parallel DP algorithm offered a more scalable al-
ternative for larger fleets, illustrating the trade-off between marginal gains in solution quality
and computational efficiency. Overall, Sequential 1DP appears to balance solution quality and
runtime, approaching the performance of more elaborate DP schemes without incurring their
computational overhead.

Finally, the study examined the problem of minimizing total delivery time for a single
drone under a waiting synchronization model, where the truck is allowed to stop and wait for
the drone. Four algorithms were considered: a naive baseline (Alg 1), a heuristic boundary
adjustment method (Alg 2), a fixed-order dynamic programming approach (Alg 3), and an
order-free exact search method (Alg 4). Alg 3 optimizes the discretized launch and return posi-
tions for a given delivery order and consistently achieves the lowest total delivery time among
fixed-order methods. Alg 2 produces near-optimal solutions at a fraction of the computational
cost, making it well suited for large-scale or time-sensitive applications. Alg 4 removes the
fixed-order restriction and performs an exhaustive search over all delivery permutations, serv-
ing as a validation benchmark for small instances but becoming computationally infeasible as
the number of deliveries increases. Alg 1, while computationally trivial, yields substantially
inferior schedules.

Overall, the results reveal a clear hierarchy among algorithmic approaches. Exact dynamic
programming and state-space search methods provide strong optimality guarantees but incur
high computational costs. Heuristic methods strike an effective balance by delivering high-
quality solutions with excellent scalability, while naive strategies offer speed at the expense
of solution quality. These findings provide practical guidance for selecting appropriate truck–
drone scheduling algorithms based on problem size, performance requirements, and available
computational resources.

6 Future Work and Limitations
The research presented here, while providing rigorous solutions for scheduling collaborative
truck-multi-drone delivery, is subject to several key limitations and suggests clear paths for fu-
ture work. The current models rely on simplified assumptions, including a fixed straight-line
truck path, constant velocities, and the assumption of instantaneous drone operations (load-
ing, recharging, and unloading). These simplifications restrict direct applicability to real-world
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logistics involving dynamic road networks and variable conditions. Furthermore, the most
powerful optimization techniques, such as the O(kN5) Dynamic Programming methods devel-
oped for proper instances, suffer from high computational complexity, making them imprac-
tical for large-scale operations and affirming the necessity of favoring efficient heuristics like
the Sequential Greedy approach. The instance in which the truck is allowed to stop for drone
operations can be naturally extended to accommodate multiple drones, allowing exploration of
better collaborative strategies and improved delivery efficiency. Future work should address
these limitations by integrating multi-visit drone capabilities, considering real-world dynamics
like time-varying speeds and non-negligible operating times, and moving toward joint opti-
mization of both the truck’s path and the drone schedules.

7 Appendix
Code and results for all the algorithms and experiments presented in this thesis can be accessed
at the following link: https://github.com/JerryMathew07/Thesis.
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[33] V. Chvátal, “A Greedy Heuristic for the Set-Covering Problem,” Mathematics of Opera-
tions Research, vol. 4, no. 3, pp. 233–235, 1979, doi:10.1287/moor.4.3.233.

[34] S. Khuller, A. Moss, and J. Naor, “The budgeted maximum coverage problem,” In-
formation Processing Letters, vol. 70, no. 1, pp. 39–45, 1999, doi:10.1016/S0020-
0190(99)00031-9.

67


	Acknowledgments
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background and Motivation
	Literature Review
	Our Problems
	Truck-Drone Model: k-Drones
	Truck-Drone Model with Restricted Set of Inputs: k-Drones
	Truck–Drone Model: Truck Can Stop (Single Drone)


	Truck-Drone Model: k-Drones
	Problem Notations
	Preliminaries
	Greedy Algorithm

	Algorithms and Analysis
	Algorithm 1 - Sequential Greedy Algorithm
	Algorithm 2 - Parallel Greedy Algorithm

	Experiment
	Experimental Setup
	Experimental Results


	Truck-Drone Model with Restricted Set of Inputs: k-Drones
	Problem Formulation
	The Proper Instance Constraint
	Optimal Dynamic Programming Algorithm

	Algorithms and Analysis
	Sequential 1-DP Algorithm
	Parallel DP Algorithm
	Sequential 2-DP Algorithm
	Sequential 2-DP* Algorithm

	Experiment
	Experimental Setup
	Experimental Results


	Truck-Drone Model: Truck can stop (Single drone)
	Problem Formulation
	Algorithms and Analysis
	Algorithm 1 (Naive Approach)
	Algorithm 2 (Heuristic Boundary Adjustment)
	Algorithm 3 (Dynamic Programming with Discretized Truck Positions)
	Algorithm 4 (Order-Free Exact Search via State-Space Dijkstra)

	Experiment
	Experimental Setup
	Experimental Results


	Conclusion
	Future Work and Limitations
	Appendix
	References

