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Abstract

The rapid advancement of generative media technologies has led to the widespread creation
of highly realistic deepfake videos, posing serious risks to identity, trust, and digital secu-
rity. Existing deepfake detection approaches largely rely on unimodal cues or handcrafted
audio-visual alignment rules, which are increasingly ineffective against modern generative
models such as Generative Adversarial Networks(GANs) and diffusion models. Although
these models generate visually convincing individual frames, they often introduce subtle
temporal inconsistencies in speech articulation and facial identity that remain difficult to
detect using conventional methods.

To address this challenge, this thesis proposes a novel multimodal audio-visual deep-
fake detection framework that explicitly models temporal and cross-modal inconsistencies.
The proposed model aligns speech and facial motion at the phoneme level and jointly an-
alyzes viseme appearance, lip geometry dynamics, and facial identity embeddings using
an attention-based fusion architecture. An auxiliary temporal consistency loss further con-
strains identity stability across frames, enabling robust detection of face-swap and lip-sync
manipulations. Extensive experiments on the FakeAVCeleb and DeepSpeak v2.0 datasets
demonstrate that the proposed model achieves state-of-the-art performance and strong gen-
eralization, validating the effectiveness of combining phonetic articulation cues with facial

motion and identity dynamics for detecting sophisticated deepfakes.
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Chapter 1

Introduction

Recent advancements in generative artificial intelligence have facilitated the creation of
highly realistic synthetic media. This development has accelerated the creation and spread
of deepfake videos that are generated or modified by Al to convincingly modify visual and
audio elements. Their growing influence raises serious concerns about authenticity, trust,
and digital exploitation.

As generative techniques improve, distinguishing real from manipulated media be-
comes increasingly challenging for human observers. Visual and audio evidence for au-
thenticity are now easily replicable or disguised. While deepfake technologies have nu-
merous uses in entertainment and media production, their misuse presents considerable
threats to human identity, institutional credibility, and societal stability. Occurrences of
financial fraud, impersonation, and attacks on social integrity highlight the critical need for

effective detection systems.

1.0.1 What Are Deepfakes?

Deepfakes are synthetically manipulated media in which visual or audio components are
altered using deep learning techniques to depict events that never occurred. Modern deep-

fakes are typically produced using deep neural networks, particularly generative models
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Figure 1.1: Lip-sync deepfake generation with audio-driven mouth synthesis

capable of creating highly realistic facial features, speech, and motion. In audiovisual con-
tent, manipulation may affect the visual stream, the audio stream, or both. The two most

common forms of human-centered deepfakes are lip-syncing and face-swap.

Lip-Syncing Deepfakes

As illustrated in Figure 1.1, Lip-sync deepfakes modify only the mouth region of a video
so that lip movements appear synchronized with a given audio track, while identity, pose,
and most facial features remain unchanged. Although modern systems produce smooth
and visually convincing results, subtle inconsistencies often persist between phonemes and
corresponding articulatory patterns, as well as in the temporal dynamics of mouth motion.
These artifacts are difficult for humans to perceive but can be identified through analysis of

phoneme articulation, lip geometry, and temporal coherence.

Face-Swap Deepfakes

As illustrated Fig 1.2, in Face-swap deepfakes replace the facial identity of a person in a
video with that of another individual while preserving head pose, expressions, and back-
ground. Unlike lip-syncing, which affects only the mouth region, face-swapping alters the
entire face. While visually realistic, such methods often introduce subtle artifacts related to
identity consistency, facial geometry, and temporal stability, including identity drift across

frames. These anomalies are more evident when analyzing identity embeddings and tem-
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Figure 1.2: Face-swap deepfake generation with identity transfer.

poral coherence rather than individual frames in isolation.

1.0.2 Real-World Implications of Deepfake Misuse

Recent real-world incidents illustrate the significant security, financial, and institutional
risks associated with modern deepfake technologies. In February 2024, a multinational
organization reportedly suffered a loss of approximately $25 million after an employee
was misled by a deepfake impersonation of senior executives and authorized a fraudulent
financial transfer. [5] In a separate case, a deepfake impersonator linked to North Korea
successfully infiltrated KnowBe4, a cybersecurity firm, by posing as a legitimate employee
during the hiring process. [4]

These incidents demonstrate the growing sophistication of audiovisual impersonation
techniques and their capacity to exploit organizational trust structures. Beyond financial
loss, such attacks undermine institutional credibility, compromise security protocols, and
erode public confidence in digital communication. Collectively, these examples highlight
the urgent need for reliable and robust deepfake detection systems capable of identifying

increasingly subtle and high-fidelity manipulations.



“Ba”

'))) o) -
-

Figure 1.3: Illustration of the McGurk effect

1.1 Foundational Observations

Beyond their societal and economic consequences, the misuse of deepfakes exposes funda-
mental limitations in current generative models. This thesis proposes a method that builds
on empirical evidence that, despite high visual realism, deepfake systems exhibit persis-
tent temporal inconsistencies in articulation and identity preservation. Recognizing these

vulnerabilities provides the foundation for the detection framework introduced in this work.

1.1.1 Audiovisual Perception and the McGurk Effect

As shown in Figure 1.3, speech perception is inherently multimodal, relying on the integra-
tion of both auditory and visual cues. When the phoneme presented through sound conflicts
with the viseme conveyed by lip movements, the brain does not simply favor one modality
but instead synthesizes a new percept. This phenomenon demonstrates the strong coupling
between phonemes and their corresponding visemic articulations in natural speech. Im-
portantly, it establishes that deviations from this relationship are perceptually meaningful,
providing a cognitive basis for detecting inconsistencies between audio and visual speech

cues.



1.1.2 Motivation for Temporal Inconsistency Analysis

Motivated by the inherent coupling between auditory and visual speech cues, we hypoth-
esize that deepfake generation models do not consistently reproduce fine-grained visemic
articulations, particularly for bilabial and rounded phonemes such as /m/, /b/, /p/, and /o/.
In natural speech, these phonemes are associated with distinct and highly repeatable artic-
ulatory patterns, including complete lip closure for bilabials and characteristic lip rounding
for vowels. Consequently, authentic video exhibits regular, physiologically constrained lip
geometry at frames temporally aligned with these sounds.

In contrast, lip-sync and face-manipulation methods often introduce subtle yet system-
atic deviations, especially during rapid speech, head motion, or complex facial expressions.
Although such discrepancies are typically imperceptible at the frame level, they become ap-
parent when examined over time and across modalities. This observation motivates our use
of phoneme-conditioned visual analysis and temporal modeling as a principled approach

for deepfake detection



Chapter 2

Temporal Articulation and Identity Drift

The proposed solution in this thesis is driven by systematic observations of temporal dis-
crepancies that occur across different types of deepfake videos, such as lip-syncing or face-
swap. These anomalies appear as subtle yet measurable discrepancies in audio-visual syn-
chronization and identity preservation over time. These deviations serve as the theoretical
foundation for the architectural design decisions and detection methodologies discussed in

the next sections of this chapter.

Figure 2.1: Comparison of lip shapes in real and fake video frames corresponding to dif-
ferent phonemes.



Category Examples Visual Characteristic

Bilabials /p/, I/, /m/ Complete lip closure, highly visible
articulation

Labiodentals  /f/, /v/ Lower lip—upper teeth contact dur-
ing speech

Alveolars I, Is/ Rapid articulation affecting lip ge-
ometry

Velars /k/ Subtle motion with characteristic
mouth shapes

Approximants /w/, /t/ Lip rounding and forward protru-
sion

Vowels i/, /=/, lo/  Wide range of mouth openness

Postalveolar  /[/ Distinct lip rounding pattern

Table 2.1: Visually salient phoneme categories used for articulation analysis.

2.1 Phoneme-Viseme Mismatch Patterns

Lip-sync deepfake videos frequently exhibit temporal inconsistencies caused by misalign-
ment between spoken phonemes and the corresponding visual articulations, commonly re-
ferred to as visemes. Prior work by Agarwal at el. [1] has shown that accurate phoneme—viseme
synchronization is difficult to maintain under generative manipulation, particularly when
speech dynamics are complex or rapidly changing. To systematically study this phe-
nomenon, we curate a subset of 14 phonemes selected based on three criteria: the ease of
observing lip movements, the diversity of speech gestures, and their significance in identi-
fying deepfakes, as mentioned in Table 2.1.

The selected phonemes span a broad range of phonetic categories, enabling coverage
of both high-closure and open-mouth articulations:

This phoneme subset is designed to maximize sensitivity to audiovisual mismatches in
manipulated content, where accurate viseme generation is particularly challenging. Phonemes
with limited visual discriminability, such as glottal sounds or unstressed vowels, as well as

silence segments, are excluded to reduce noise and avoid uninformative supervision sig-
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Figure 2.2: Cosine distance of ArcFace identity embeddings in face-swap videos

nals.

Through empirical analysis, we find that lip-sync manipulation methods often fail to
maintain consistent alignment between phoneme articulation and lip motion, particularly
for phonemes requiring precise closure or controlled openness, such as /p/, /b/, /m/, //,
/v/, and /o/. In many manipulated sequences, the observed lip geometry deviates from the
articulatory configuration implied by the audio. As shown in Figure 2.1, lip-sync videos
exhibit clear mismatches between expected and observed mouth shapes, especially during
high-closure phoneme events. These discrepancies are reliably captured using MediaPipe-
based lip landmark analysis, which measures lip closure, aspect ratio, and mouth openness

at the frame level, and their persistence over time makes them a robust detection cue.

2.2 Temporal Drift in Identity Embeddings

Beyond phoneme-viseme misalignment, we observe temporal inconsistencies in facial
identity representations extracted from manipulated videos. Identity embeddings are com-
puted using an ArcFace-based face recognition model and analyzed across consecutive
frames to evaluate identity preservation over time. For Al-generated face-swap videos, the
cosine distance in Arcface embeddings is inconsistent and shows high spikes as shown in
Fig 2.2. This phenomenon is further quantified in Fig 2.3, which plots the L2 distance

between ArcFace embeddings of consecutive frames for both real and manipulated videos.
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Figure 2.3: ArcFace L2 drift for real and fake video frames.

Real videos exhibit consistently low embedding distances, reflecting gradual and continu-
ous identity transitions. In contrast, face-swap videos demonstrate persistently higher and
more volatile embedding distances, indicating temporal identity drift. Such behavior arises
from imperfect face blending, pose-dependent synthesis artifacts, and inconsistent feature
reconstruction across frames.

These findings show that temporal consistency in identity embeddings provides a strong

cue for face-swap detection, enabling reliable separation of real and manipulated videos.



Chapter 3

Related Work

3.1 Deepfake Generation

Advances in artificial intelligence have enabled increasingly realistic and accessible deep-
fake generation, broadly categorized into full-face synthesis (e.g., face-swaps and talking-
head generation) and partial manipulation, most commonly lip-syncing. Early work fo-
cused on face replacement [22, 28, 35, 36, 6], while lip-syncing methods such as Wav2Lip
[32] and VideoReTalking [9] modify only the mouth region to match speech. More recent
diffusion-based approaches [27, 23] improve visual fidelity and temporal coherence, and
avatar-based systems [16, 40, 41] animate a single image into a talking head using iden-
tity, motion, and speech embeddings, further increasing realism and making detection more

challenging.

3.2 Deepfake Detection

As generation quality improves, detection methods have evolved accordingly. Visual-only
approaches analyze spatial artifacts and temporal inconsistencies [34, 24, 29, 19, 11, 18,
42], while audio—visual methods exploit mismatches between speech and lip motion [14,

39, 38]. Representative works include phoneme—viseme mismatch detection [1], multi-
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modal fusion of audio, visual, and physiological cues [7], self-supervised learning of au-
dio—visual correspondences [30], and recent transformer-based models that capture fine-

grained temporal inconsistencies using ViTs [13] and CLIP features [33] [25].

3.3 Unaddressed Challenges in Deepfake Detection

Despite significant progress, many detectors rely on limited cues such as pixel artifacts,
coarse audio—visual synchronization, or unimodal temporal patterns. As modern genera-
tive models increasingly produce visually coherent frames with improved lip synchroniza-
tion and identity consistency, these cues become less reliable, particularly under cross-
manipulation and cross-dataset settings. This motivates the need for more comprehen-
sive detection frameworks that explicitly integrate multimodal information and model fine-

grained temporal dynamics.

11



Chapter 4

Proposed Method

As discussed in previous chapters, existing deepfake detectors are largely limited by rule-
based heuristics or unimodal designs, which are unable to capture the subtle cross-modal
and temporal inconsistencies introduced by modern face-swap and lip-sync techniques. To
overcome these limitations, this thesis proposes PIA, a two-stage multimodal framework
that jointly models phoneme articulation, lip geometry, viseme appearance, and facial iden-
tity consistency over time. [12]

Figure 4.1 illustrates the end-to-end architecture of our proposed solution. The first
stage performs multimodal feature extraction and temporal alignment across audio, visual,
geometric, and identity embeddings. The second stage integrates these representations us-
ing multi-head attention-based fusion and temporal pooling to identify subtle anomalies by

correlating phoneme-level audio with visual mouth motion. Visual features are extracted

Multimodal Feature Extraction and Temporal Alignment Cross-Modal Temporal Deepfake Detector

., ArcFace Drift
. Stream | Encoder

Identity Extractor

Phoneme Frame
Alignment
Module

Multihead Attention Classification
Block Block

' .
' Visual &
. Stream |

Mouth Frame
Extractor

Phoneme
Extractor
/

IFake

Input Video

Figure 4.1: Proposed PIA model.
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using a 3D convolutional neural network(CNN) followed by a pretrained EfficientNet-B0,
while temporal dependencies and modality interactions are modeled using multi-head at-
tention. Phonemes extracted via WhisperX [2] and aligned with wav2vec2 are used as an

active filter to select frames with visually meaningful articulation.

4.1 Feature Extraction

Each video is processed through a structured multi-stage preprocessing pipeline designed to
extract synchronized multimodal information. This pipeline includes audio extraction and
phoneme alignment to obtain precise speech—time correspondence, viseme feature extrac-
tion to capture mouth-region appearance and articulatory motion, facial identity embedding
to model identity consistency across frames, and multimodal frame-level alignment to en-
sure temporal correspondence between all extracted audio, visual, geometric, and identity

features.

4.1.1 Audio Extraction and Phoneme Alignment

Audio is extracted using FFmpeg[15], resampled to 16 kHz mono, and transcribed using
WhisperX[2]. Word-level segments are converted to IPA phonemes using the phonemizer
toolkit. Later, a wav2vec?2 aligner is employed for precise frame-level phoneme labeling.
Each frame is assigned a phoneme label by timestamp interpolation, ensuring precise au-

dio—visual synchronization.

4.1.2 Viseme Feature Extraction

MediaPipe FaceMesh detects 468 landmarks per frame. From the detected facial land-
marks, 27 points corresponding to the mouth region are selected, and geometric descriptors

are derived. Lip height and lip width are subsequently used to compute the mouth aspect

13



ratio. Lip height and width are used to compute the mouth aspect ratio (MAR):

lip_height

MAR = ——M
lip_width + &’

4.1)

where € ensures numerical stability. MAR encodes mouth openness, with low values for
bilabials (/m/, /b/, /p/) and higher values for open vowels, capturing phoneme-specific ar-

ticulation and revealing manipulation inconsistencies.

4.1.3 Facial Identity Embedding

Frame-level identity embeddings are extracted using ArcFace, which maps faces into a
512-dimensional hyperspherical space with strong inter-class separability. These embed-
dings capture expression-invariant facial structure and enable detection of identity drift
across frames. Identity features are used both as model inputs and for auxiliary temporal

consistency regularization.

4.1.4 Multimodal Representation Construction

A phoneme-aligned dataset is built using 14 visually distinct phonemes. For each phoneme
instance, five frames are sampled. Each frame yields three modalities: mouth-region
viseme crops, ArcFace embeddings, and geometric lip descriptors. Non-linguistic seg-

ments are excluded, focusing training on visually informative articulation.

4.2 Model Architecture

The proposed framework adopts a multistream architecture that jointly models three com-
plementary modalities: lip geometry, viseme appearance, and facial identity. Each modal-
ity captures a distinct aspect of audiovisual consistency and is processed by a dedicated

encoder prior to fusion. For each phoneme instance, the first 5 consecutive frames are

14



sampled. At each time step, the input consists of a mouth-region crop representing visual
appearance, a scalar lip geometry descriptor (MAR), and a 512-dimensional ArcFace em-
bedding encoding facial identity. The objective of the architecture is to determine whether
these modality-specific signals remain mutually consistent over time, as expected in au-
thentic videos, or whether they exhibit subtle mismatches characteristic of lip-sync and

face-swap manipulations.

4.2.1 Visual Encoder

The visual stream is designed to model short-term mouth dynamics and local appearance
artifacts within the lip region. The 7" mouth-region crops are stacked to form a spatiotem-
poral clip and processed by a three-dimensional convolutional neural network (3D CNN),
which jointly learns spatial and temporal features. Unlike frame-wise 2D CNNs, the 3D
CNN explicitly captures motion-sensitive patterns such as lip opening and closure trajecto-
ries, temporal smoothness, and frame-to-frame texture consistency, all of which are often
disrupted in manipulated content.

The resulting feature maps are aggregated across time using temporal averaging to ob-
tain a compact and noise-robust representation of phoneme-level mouth motion. This ag-
gregated feature is subsequently passed through a pretrained EfficientNet-BO backbone to
extract higher-level visual representations. EfficientNet-BO provides strong generalization
and enables the encoder to capture mid-level and semantic features related to edge structure,
texture regularity, and regional coherence. The output of this stream is a d-dimensional vi-
sual embedding v, € R? that summarizes both spatial appearance and short-term temporal

behavior of the mouth region.

4.2.2 Lip Geometry Encoder

The lip geometry stream models articulatory constraints that are difficult for generative

models to reproduce consistently over time. For each frame, the mouth aspect ratio (MAR)

15



1s computed as a scalar measure of mouth openness. Over a phoneme window, the resulting
MAR sequence forms a low-dimensional temporal signal describing how the mouth opens
and closes during speech.

This 7T'-dimensional MAR sequence is passed through a lightweight multilayer percep-

tron (MLP) to produce a geometry embedding g, € R<.

4.2.3 Identity Encoder

The identity stream models the temporal consistency of facial identity. For each frame,
a 512-dimensional ArcFace embedding is extracted, encoding expression-invariant facial
attributes. To reduce noise from pose, blur, and occlusion, embeddings are aggregated
across the phoneme window and passed through an MLP to produce the identity represen-
tation a; € R?. This branch is particularly effective for face-swap detection, as manipu-
lated videos often exhibit subtle identity drift over time despite appearing visually plausible

frame by frame.

4.2.4 Multimodal Fusion and Temporal Attention

At each time step ¢, the modality-specific embeddings from the geometry, visual, and iden-

tity streams are fused by concatenation:

fi=gdvidac Rgd, 4.2)

where g;, v;, and a; denote the geometry, visual, and identity embeddings, respectively.
The fused vector f, jointly encodes articulatory motion, visual appearance, and identity
consistency for the corresponding phoneme instance. The sequence {f;}7_, therefore rep-
resents the temporal evolution of these multimodal cues.

To aggregate this sequence into a single video-level representation, multi-head attention

pooling is employed. Unlike uniform averaging, attention pooling allows the model to

16



assign higher weights to temporally informative frames or phoneme instances, reflecting
the fact that manipulation artifacts are often localized in time and that certain phonemes are
more visually diagnostic. For each attention head h, a set of normalized attention weights

{an.}T_, is learned such that 3, a,, = 1. The pooled representation is computed as:

T
7 = % DY (4.3)

H
h=1 t=1
where H denotes the number of attention heads. The resulting vector z summarizes the

most informative multimodal evidence across time and is passed to a fully connected clas-

sifier to predict whether the input video is real or manipulated.

4.3 ArcFace Temporal Consistency Loss

While the classification objective encourages separation between real and fake samples, it
does not explicitly constrain identity features to evolve smoothly over time. To regularize
identity dynamics, a temporal consistency loss is introduced on the ArcFace embeddings.

For each pair of consecutive frames, cosine similarity is computed as:

.
A Apyl

) _ aan 4.4

sy = cos(ag, azy1) a2 llagt1]l2 "

where a; and a;; denote identity embeddings of adjacent frames. High values of s; indi-
cate stable identity across frames, while lower values indicate identity drift.

To avoid penalizing unreliable segments such as silence, occlusion, or poor face de-
tection, a binary mask m; € {0, 1} is applied. The temporal consistency loss is defined
as:

T:l(l - St) my M
Earcface = =1 > (45)

T—1
Dopel MMy + €

where € is a small constant for numerical stability. This loss penalizes large identity changes

between consecutive frames in valid regions, encouraging smooth identity evolution in

17



genuine videos while amplifying the effect of identity drift commonly observed in face-

swap deepfakes.

4.3.1 Opverall Training Objective

The final training objective combines the standard cross-entropy classification loss with the
identity regularization term:

»Cﬁnal = »CCE + /\Earcfacea (46)

where A controls the contribution of the temporal consistency constraint. This joint objec-
tive enables robust multimodal learning while explicitly modeling identity stability, thereby

improving discrimination between authentic and manipulated videos.

18



Chapter 5

Experiments

This chapter presents the experimental setup used to evaluate the proposed framework,
including the datasets, data splits, implementation details, and evaluation metrics. All ex-

periments are designed to assess performance across diverse manipulation types.

5.1 Experimental Settings

5.1.1 Datasets

Experiments are conducted on two public benchmarks: FakeAVCeleb [21] and DeepSpeak
v2.0 [3]. Both datasets contain face-swap, lip-sync, and avatar-based forgeries, making
them suitable for evaluating multimodal deepfake detection. Sample frames from both

datasets are shown in Fig. 5.1.

FakeAV Celeb

The FakeAVCeleb dataset [21] consists of 20,000 videos (19,500 fake and 500 real) at a
resolution of 224 x 224. Following the protocol in [31], the data are grouped into five
categories: FVRA-WL (Wav2Lip), FVFA-FS (FaceSwap), FVFA-GAN (FaceSwapGAN),
FVFA-WL (Wav2Lip), and RVFA (Real Video, Fake Audio). A 70:30 train—test split is

19



FakeAVCeleb [H Khalid et al., 2021] Deepspeak v2 [S Barrington, et al., 2024]

Figure 5.1: Samples from the evaluated datasets.

adopted as in [31]. The RVFA category is excluded from both training and testing in order

to focus specifically on video-level manipulation.

DeepSpeak v2.0

The DeepSpeak v2.0 dataset [3] contains 9,376 real and 7,209 fake videos covering face-
swap, lip-sync, and avatar-based forgeries, with resolutions ranging from 640 x 480 to
1280 x 720. The official 80:20 train—test split is followed. The test set is further partitioned

by manipulation type to evaluate robustness across different forgery methods.

5.1.2 Implementation Details

The model is implemented in PyTorch 2.6.0 with CUDA 12.4. Fourteen visually dis-
tinct phonemes are extracted using WhisperX [2] and temporally aligned to video frames.

Mouth-region crops are resized to 112 x 112 and normalized prior to input. Training is

20



performed using cross-entropy loss with label smoothing, along with an auxiliary ArcFace
temporal consistency loss. Optimization is carried out using Adam with a learning rate of
3 x 1074, weight decay of 1 x 107°, A = 0.1 for the auxiliary loss, 4 attention heads, 25

training epochs, and a batch size of 16.

5.1.3 Evaluation Metrics

Performance is evaluated using Accuracy (ACC), Area Under the ROC Curve (AUC), and
Average Precision (AP). All results are reported in percentage points (%-pts) to ensure

consistent comparison across datasets and manipulation types.

21



Chapter 6

Results and Discussion

This chapter presents the experimental results of the proposed PIA framework and analyzes
its behavior across datasets and manipulation types. Quantitative results on Fake AVCeleb
are first reported, including a cross-manipulation evaluation. Results on DeepSpeak v2.0

are then presented, followed by a summary of findings from an ablation study.

6.1 Results on FakeAVCeleb

6.1.1 Overall Performance

Following the evaluation protocol in [31], training is performed on the FakeAVCeleb [21]
training split, and evaluation is conducted on the official test split. Table 6.1 compares PIA
with visual-only and audiovisual baselines using ACC and AUC.

The proposed framework achieves the highest overall performance, reaching 98.7%
ACC and 99.8% AUC, outperforming all baselines, including AVFF [31]. Results are also
reported for PIA_RVFA, where the RVFA category is introduced only during testing, while
remaining excluded from training. Under this setting, performance of 98.0% ACC and
98.2% AUC is obtained, indicating that the learned representations remain effective even

when audio manipulation is present at test time.
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Method Modality ACC(%) AUC(%)

Xception [34] A% 67.9 70.5
LipForensics [18] A% 80.1 82.4
FTCN [42] \Y 64.9 84.0
CViT [37] \Y 69.7 71.8
RealForensics [17] \'% 89.9 94.6
Emotions Don’t Lie [26] AV 78.1 79.8
MDS [10] AV 82.8 86.5
AVFakeNet [20] AV 78.4 83.4
VFD [8] AV 81.5 86.1
AVoID-DF [38] AV 83.7 89.2
AVFF [31] AV 98.6 99.1
PIA_RVFA (Ours) AV 98.0 98.2
PIA (Ours) AV 98.7 99.8

Table 6.1: Performance on FakeAVCeleb.

6.1.2 Cross Manipulation Generalization

Generalization to unseen manipulation methods is evaluated following the cross-manipulation
protocol in [31]. Using the four categories (FVRA-WL, FVFA-FS, FVFA-GAN, FVFA-
WL), training is conducted on three categories, and testing is performed on the held-out
category, with this procedure repeated for all categories. Table 6.2 reports AP and AUC
results.

Across all held-out settings, the proposed model, PIA, achieves the strongest perfor-
mance. On FVRA-WL, AP is improved over LipForensics [18] by 2.1 percentage points,
and AUC is improved over AVFF [31] by 0.9 percentage points. Averaged across all held-
out conditions (AVG-FV), performance exceeds AVFF by 1.4 points in AP and 0.3 points
in AUC. These results indicate that transferable manipulation cues are learned rather than

method-specific artifacts.
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Method Modality FVRA-WL FVFA-FS FVFA-GAN FVFA-WL AVG-FV
AP (%) AUC (%) AP (%) AUC (%) AP (%) AUC (%) AP (%) AUC (%) AP (%) AUC (%)

Xception [34] Vv 88.2 88.3 92.3 93.5 67.6 68.5 91.0 91.0 84.8 85.3
LipForensics [18] v 97.8 97.7 99.9 99.9 61.5 68.1 98.6 98.7 89.4 91.1
FTCN [42] v 96.2 97.4 100.0 100.0 77.4 78.3 95.6 96.5 92.3 93.1
RealForensics [17] v 88.8 93.0 99.3 99.1 99.8 99.8 93.4 96.7 95.3 97.1
AV-DFD [43] AV 97.0 97.4 99.6 99.7 58.4 55.4 100.0 100.0 88.8 88.1
AVAD (LRS2) [14] AV 93.6 93.7 95.3 95.8 94.1 94.3 93.8 94.1 94.2 94.5
AVAD (LRS3) [14] AV 91.1 93.0 91.0 92.3 91.6 92.7 91.4 93.1 91.3 92.8
AVFF [31] AV 94.8 98.2 100.0 100.0 99.9 100.0 99.4 99.8 98.5 99.5
PIA (Ours) AV 99.9 99.1 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.8

Table 6.2: Cross manipulation evaluation on FakeAVCeleb.

6.2 Results on DeepSpeak v2.0

The DeepSpeak v2.0 dataset [3] includes higher-quality videos and avatar-based deepfakes.
Training and evaluation are performed using the official train—test split. Table 6.3 reports
AUC performance on the lip-sync, face-swap, avatar, and combined global test sets.
Strong performance is achieved across all manipulation types, with a global AUC of
98.06%. These results demonstrate that the proposed framework remains effective for high-
fidelity manipulations and avatar-based generation, which exhibit different visual charac-

teristics from conventional face-swap and lip-sync deepfakes.

Dataset Lip-sync Face-swap Avatar Global

PIA_w_ph_w/o_vi 68.44 62.12  64.73 65.57
PIA_w_ph_w/o_geom 98.31 91.56  96.77 96.49
PIA_w_ph_w/o_arc 98.64 95.99  96.68 97.02

PIA_w_ph 98.95 92.54  96.43 96.66
PIA _w/o_EBO 94.81 81.70  86.54 88.68
Vggl6_w/o_PIA 91.51 78.36  85.49 86.62
PIA 99.24 96.47 97.76 98.06

Table 6.3: Ablation analysis on Deepspeak v2.0 test set
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6.3 Ablation Summary

An ablation study is reported in Table 6.3 to evaluate the contribution of each component

of the proposed PIA framework on the DeepSpeak v2.0 dataset.

* Excluding Visemes (PIA w ph w/o vi): Removing viseme image embeddings re-
sults in the largest degradation, with AUC drops of 30.8, 34.35, 33.03, and 32.49
percentage points on the Lip-sync, Face-swap, Avatar, and Global subsets, respec-

tively, confirming mouth appearance as the most discriminative cue.

* Excluding Lip Geometry (PIA w ph w/o geom): Eliminating the geometry stream
leads to smaller but consistent reductions in AUC of 0.93, 4.91, 0.99, and 1.57 points
across the Lip-sync, Face-swap, Avatar, and Global subsets, indicating that articula-

tory geometry provides complementary information.

* Excluding ArcFace Embeddings (PIA w ph w/o arc): Removing identity features
causes modest yet systematic drops in AUC of 0.60, 0.48, 1.08, and 1.04 points,
highlighting the importance of temporal identity stability, particularly for face-swap

detection.

* Including One-Hot Phonemes (PIA w ph): Direct fusion of one-hot phoneme fea-
tures slightly degrades performance, with AUC decreases of 0.29, 3.93, 1.33, and
1.40 points, suggesting that phonemes are more effective for alignment and frame

selection than as explicit fusion inputs.

* Excluding EfficientNet-B0O (PIA w/o EB0): Replacing the EfficientNet-BO back-
bone with frozen ResNet-18 features results in substantial AUC drops of 4.43, 14.77,
11.22, and 9.38 points, demonstrating the necessity of a strong, trainable visual back-

bone.
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» Using VGG16 (Vggl6 w/o PIA): Substituting the PIA architecture with a simpler
VGG16 model causes significant losses of 7.73, 18.11, 12.27, and 11.44 AUC points
across subsets, underscoring the value of jointly modeling viseme appearance, lip

geometry, and identity dynamics.

Overall, the results confirm that integrating visual, geometric, and identity cues within
the full PIA architecture yields the most robust and generalizable deepfake detection per-

formance.

6.4 Summary of Findings

Across both FakeAVCeleb and DeepSpeak v2.0, strong performance and robust general-
ization to unseen manipulation methods are observed. The results highlight the importance
of combining viseme appearance with temporal modeling, while lip geometry and identity

stability provide complementary gains, particularly for challenging manipulation types.
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Chapter 7

Conclusion

This thesis introduced PIA (Phoneme-Temporal and Identity-Dynamic Analysis), a multi-
modal framework for audiovisual deepfake detection that targets the subtle temporal and
cross-modal inconsistencies and address the current gap in unimodal or rule based meth-
ods. PIA jointly models phoneme-aligned articulation, mouth appearance, lip geometry,
and identity dynamics through an end-to-end alignment pipeline, a multistream architecture
with attention-based fusion, and an ArcFace temporal consistency loss to capture identity
drift in face-swap manipulations. Experiments demonstrate strong performance and gener-
alization, achieving state-of-the-art results on Fake AV Celeb and consistently high accuracy
on DeepSpeak v2.0, including avatar-based deepfakes. Remaining limitations include re-
duced robustness to unseen resolutions, reliance on English-based WhisperX and wav2vec2
alignment, and the lack of explicit handling for Real Video Fake Audio (RVFA). Future
work will address these through improved resolution robustness, RVFA modeling, and
multilingual, language-agnostic speech representations, strengthening PIA for real-world

deployment.
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