The Impact of Precision on Algebraic System

Solvers
Anthony Huynh Dr. Matthew Knepley
Department of Computer Science Department of Computer Science
University at Buffalo University at Buffalo
ahuynh3@buffalo.edu knepley@buffalo.edu

December 15, 2025

Abstract

On modern processors, memory bandwidth constraints are the bottleneck for
algebraic system solves. Thus, it has been proposed to use lower precision
operands in order to decrease bandwidth usage. We have implemented a multi-
precision solver framework, and compared fp-64 to fp-32, using both flop rate
and accuracy generation measures. While lower precision does indeed almost
double the computational rate, accuracy generation still lags behind the high
precision formulation.

1 Introduction

1.1 Problem Definition

Memory bandwidth is frequently the main constraint of high performance soft-
ware [1]. With developments in CPU and GPU technology as well as improve-
ments in parallel computing the main bottleneck in many systems shifts towards
memory. While research in improving memory hardware remains active, an-
other approach being explored is by reducing memory bandwidth. This can be
done by algorithm optimizations, distributed computed, caching, or by utiliz-
ing smaller operand formats such as single precision or fp-32 as opposed to the
default double precision or fp-64. The advantage smaller numbers being able
to move more amount of operands per cpu cycle designed with 64-bit operands
in mind [2]. As a result smaller formats also get utilize caching more efficently.
These advantages often translate in faster computations. The downside being
you can store less information per operation. For applications such as scientific
computing that often relies on accuracy beyond the 6th or 7th decimal place
this can be a problem. For other fields like A.I the loss in accuracy is not a
significant issue as they are still able to train models with accuracies close to

their double precision counter parts while benefiting from the reduced hardware
utilization [3]. For our purposes we examine whether or not single precision has
benefits in algebraic system solvers.

Algebraic solvers differ from other applications as it requires examining mul-
tiple facets such as runtime, scaling analysis, solution accuracy, and floating
point operations per second (FLOPS). FLOPS is a standard metric used for
measuring hardware performance, in particular hardware for high-performance
computing, as floating point operations are what primarily make up the work-
loads the hardware is targeted at. FLOPS can also serve as a performance
tuning metric for scientific software as well, as it indicates how efficiently hard-
ware is being utilized, by how close the flop/rate while running is compared to
theoretical flop rate of the hardware its running on. For iterative solvers such
as algebraic system solvers, higher flop rate can be indicate a better performing
solver. As an iterative solver being able to perform more floating point op-
erations per second would mean more efficient hardware utilization leading to
shorter iterations and faster convergence rate. However, not all floating point
operations (FLOPs) are equal. FLOPS do not distinguish if the operations done
are meaningful [4]. How do we measure the efficiency of solvers? The core of
algebraic solvers is iteratively refining some approximation, and so we can gauge
that by measuring how much error is reduced per unit of time. We do this by
adapting digits of efficacy (DOE) [5]. Measuring DOE over time will provide
the rate at which error is reduced, which we refer to as accuracy generation.

1.2 Importance

With the exponential growth of AI in recent years, hardware manufacturers
have increasingly designed their products for those workloads. Mixed-precision
models have seen great success in Al as they cut down significantly on hardware
utilization while still producing accurate models. Companies such as NVIDIA
have specifically engineered features with this in mind; for example, the NVIDIA
H100 Tensor Cores with Transformer Engine are specialized acceleration units
for training models using FP8 [6]. Google has also developed hardware with
explicit support for reduced precision formats such as bfloat16 and INTS in their
Tensor Processing Units (TPUs) [7]. With hardware manufacturers heading in
this direction, it is important to investigate whether other applications such as
algebraic system solvers can benefit from shifting to reduced precision formats.

2 Methods

2.1 Metrics

For our experiment we chose to do Poisson solver for both FP-64 and FP-32,
since we are comparing the same exact algorithm for both we would use met-
rics such as flop rate, solve time, and solution accuracy. However we wanted
to incorporate solve time and solution accuracy into a single metric. FLOPS

measures the amount of work done by our algorithm, however it does not dif-
ferentiate between how efficient that work is or in this case how much accuracy
is being generated in a given amount of time. To measure both accuracy gen-
eration over time we utilize Digits of Efficacy (DoE) which computed using the
following:

DoE = —log,, (err x T)

We measure err from the Lo norm of the error of the solver solution and the
manufactured exact solution and T is the time taken to arrive to that solution.

err = ||us - uemactHL2

u being the exact solution and uezqer being the manufactured solution.

2.2 Experiment Setup

For our experiment we consider the Poisson Equation:
—Vu=f
The exact solution egzqc¢ is computed using the following;:
Uezact (T, y) = sin(27zx) + sin(27y)

The solver approximates the solution for it by creating a mesh across the prob-
lem domain. Piecewise linear basis functions are then attached to the mesh.
The solver then computes the weak form residuals and defines the Jacobian.
The problem is discretized into:

Au=1b

A is the Jacobian, u is the solver solution vector initialized to 0, and b being the
residual vector. The actual solver component uses the Krylov method with a
multigrid preconditioner. The solver then iterates until the following is satisfied:

% < relative tolerance (set to 1 x 1077)

2.3 Software and Hardware Setup

The solver is implemented in Portable Extensible Toolkit for Scientific Com-
putation (PETSc) in C. The library was compiled using GCC 11.2.0 in two
different configurations, fp-64 version and and fp-32 version. All tests were run
on the Intel Xeon Gold 6330 at 2.00GHZ with 64GB of memory on Linux ver-
sion 6.8. All tests were conducted running on 1 process. Tests were run a total
of 10 time for each size of N the experiment data in the following section is the
average of those 10 runs.

3 Results

DM Refine | N Time (s) | Time (s) std. | Flops/sec | Flops/sec std. | L2 Error | DoE | DoE std.

1 9 0.01447 | 0.005062 4.7 0.9487 0.1983 2.558 | 0.110994715
2 49 0.0259 0.0001299 16 0 0.05196 2.871 | 0.002181211
3 225 0.04593 0.0002461 46.1 0.3162 0.01315 3.219 | 0.002327339
4 961 0.09342 | 0.0002422 101.9 0.3162 0.003297 | 3.511 | 0.001125556
5 3969 0.2471 0.0003083 166.8 0.4216 0.0008245 | 3.691 | 0.000541517
6 16129 0.8383 0.001935 2024 0.5164 0.0002064 | 3.762 | 0.001002111
7 65025 3.263 0.005022 211.1 0.3162 5.30E-05 3.762 | 0.000668097
8 261121 13.39 0.04384 207.5 0.8498 1.30E-05 3.758 | 0.001419334
9 1046529 | 55.54 0.3227 200.6 1.265 5.26E-06 3.535 | 0.002505852

Table 1: FP-32 Experiment Data

Figure 1: Flop rate comparison of Fp-32 and Fp-64

DM Refine | N Time (s) | Time (s) std. | Flops/sec | Flops/sec std. | L2 Error | DoE | DoE std.
1 9 0.0141 0.00588 1.9 0.3162 0.198 2.576 | 0.127
2 49 0.0246 0.000157 6 0 0.052 2.893 | 0.00279
3 225 0.0438 0.00031 15.2 0.4216 0.0131 3.239 | 0.00307
4 961 0.0871 0.00022 34 0 0.0033 3.542 | 0.0011
5 3969 0.232 0.000936 53.9 0.3162 0.000825 | 3.719 | 0.00175
6 16129 0.795 0.000695 64 0 0.000206 | 3.785 | 0.00038
7 65025 3.13 0.0122 65.9 0.3162 5.16E-05 | 3.792 | 0.00168
8 261121 12.8 0.0236 65 0 1.29E-05 | 3.781 | 0.0008
9 1046529 | 53.1 0.219 62.9 0.3162 3.22E-06 | 3.767 | 0.00179
Table 2: FP-64 Experiment Data
Throughput vs. Runtime
—e— FP-64
FP-32
10?

) /,/v
@
@
@
a
o
[T
=
10t

1072 107t 10° 10! 10?

Time (s)

Accuracy Generation vs. Runtime

T
—e— FP-64
3.8 x10° FP-32 —o-

—e
3.6 x 10°

w
>
X
=
o
E}

3.2x10°

3x10°

—log10(L2Error*Time)

2.8x10°

2.6 x 10°

1072 107! 100 10! 102
Time (s)

Figure 2: Accuracy Generation Rate Comparison

3.1 Experiment Data Analysis

The runtime for both Fp-64 and Fp-32 were very close with FP-64 having a
runtime lower on average by 4.93%. For flop rate Fp-32 on average had a rate
214.747% higher then that of FP-64, which is expected to be 2x faster given
Fp-32 being half the size of Fp-64, with the extra performance above the 2x
threshold attributable to caching. For accuracy generation there a relatively
small difference with Fp-32 having on average an accuracy generation 1.373%
lower then Fp-64, with the greatest difference being at Dm Refine = 9 with
Fp-64 having accuracy generation difference of 6.16%.

As seen in figure 2 accuracy generation takes a significant decline. This is due
error reduction stagnating, whereas with previous sizes of N where error was
decreasing by a factor ~ 4 for DM Refine = 1..8, however for DM Refine = 9 the
error only decreases by a factor of ~ 2.48. This is due to the accumulation of
round-off errors due to the reduced precision and exponentially growing problem
size. Fp-32 solver despite having a flop rate 2.13x higher then that of Fp-64 did
not provide any significant gains in terms accuracy generation. The extra flop
rate of Fp-32 is only enough to catch up to the accuracy generation of Fp-64.
Fp-64 here demonstrates that per iteration are ,more efficient then Fp-32.

4 Conclusion

From our experiment we observed that while Fp-32 had a higher flop rate by a
factor of 2.12x, the accuracy generation fell behind that of Fp-64. The extra
throughput from Fp-32 in this instance is only enough to offset the accuracy

generation gap, but not enough to provide any tangible benefits in terms of
accuracy generation. And for large sizes of n single precision predictably begins
to drop off as round off errors accumulate. For algebraic solve workloads the
benefits of single precision are not as significant as they are when compared to
their benefits in area such as A.I

4.1 Future Work

For extending this work the next steps would be testing other kinds of alge-
braic solvers and more complex PDEs examples as well as different precondi-
tioners. Investigating other operand formats such as Fp-16 and Fp-8 which are
increasingly used in A.I could also provide more insight into the gap in accuracy
generation between formats and if there is a consistent pattern when moving
to lower and lower precisions. For expanding on the conducted experiment, we
would test on more processes rather then just a serial example and other types
of hardware such as benchmarking solvers that leverage GPUs.

References

[1] M. A. Clark, R. Babich, K. Barros, R. C. Brower, and C. Rebbi, “Push-
ing memory bandwidth limitations through efficient implementations of
Block-Krylov space solvers on GPUs,” Computer Physics Communications,
vol. 233, pp. 29-40, 2018, Describes how memory-bandwidth constraints
of the matrix-vector operation dominate iterative solvers, and how Block-
Krylov methods address this through batched operations. Do1: 10.1016/
j.cpc.2018.06.019.

[2] Intel Corporation, Envisioning a simplified Intel architecture, Intel Cor-
poration White Paper, Notes that Intel 64 architecture has become the
dominant operating mode over 204 years, with Microsoft stopping 32-bit
Windows 11 distribution and Intel firmware no longer supporting non-
UEFI64 operating systems natively, 2023. [Ouline|. Available: https://
www.intel.com/content/www/us/en/developer/articles/technical/
envisioning-future-simplified-architecture.html.

[3] P. Micikevicius et al., “FP8 formats for deep learning,” arXiv preprint
arXiv:2209.05433, Sep. 2022, Demonstrates FP8 training matches FP16/BF16
accuracy for models up to 175B parameters across CNNs, RNNs, and Trans-
formers without changing hyperparameters.

[4] M. Hawkins and R. Vuduc, “Back to bits: Extending Shannon’s communica-
tion performance framework to computing,” arXiv preprint arXiv:2508.05621,
Aug. 2025.

[5] J. Chang, M. S. Fabien, M. G. Knepley, and R. T. Mills, “Comparative
study of finite element methods using the Time-Accuracy-Size (TAS) spec-
trum analysis,” arXiv preprint arXiv:1802.07832, Feb. 2018.

[6] NVIDIA Corporation, “NVIDIA H100 tensor core GPU architecture,” NVIDIA
Corporation, White Paper, 2022, Version 1.01. Describes Hopper architec-
ture with fourth-generation Tensor Cores supporting FP8 and Transformer
Engine.

[7] N.P. Jouppi et al., “In-datacenter performance analysis of a tensor process-
ing unit,” in Proceedings of the J4th Annual International Symposium on
Computer Architecture (ISCA), Landmark paper on Google’s TPU v1 with
8-bit integer operations, demonstrating 15-30x speedup over contemporary
CPUs/GPUs. TPU v2 and later support bfloat16, ACM, 2017, pp. 1-12.
DOI: 10.1145/3079856.3080246.

