An On-Disk Datalog Engine

by
Krishna Sivakumar

February 1st, 2026

A Thesis submitted to the
faculty of the Graduate School of
the University at Buffalo, The State University of New York
in partial fulfillment of the requirements for the

degree of

Master of Science
Department of Computer Science and Engineering

Copyright
Center your name here
2026
All Rights Reserved

Acknowledgments

I would like to express my sincere gratitude to my advisor, Dr. Oliver Kennedy,
For his invaluable guidance and support throughout my research endeavor.
I am thankful to the Department of Computer Science and Engineering
at the University at Buffalo
for giving me this opportunity to pursue this work.
I would like to thank my parents, my sister and my friends, who have supported me no

matter the circumstance.

Abstract

In-memory Datalog engines such as Soufflé achieve high performance but incur significant memory
usage and startup costs when scaling to large analyses. This work presents extensions to Draupnir, a
Datalog engine designed to mitigate these limitations by trading some execution speed for persistence
and startup latency. Draupnir implements Agralog, a dialect of Datalog based on aggregate-annotated
relations, and follows a compilation pipeline that translates high-level queries into typed intermediate
representations, logical and physical execution plans, and ultimately bytecode executed by a virtual
machine. A persistent storage backend for Draupnir is implemented using RocksDB, a write-optimized
key-value store that supports differential updates through merge operators. This backend integrates
with Draupnir’s cursor and writer abstractions and enables incremental aggregation without requiring
read-before-write semantics. To simplify storage backends and reduce serialization overhead, a new
addressing scheme based on encoded byte-level tuples is also introduced and adopted throughout the
system. The design and implementation of the RocksDB storage layer and the revised cursor addressing
mechanism are described in detail. While disk-backed execution introduces additional overhead
compared to in-memory systems, this work demonstrates a practical foundation for persistent Datalog

evaluation and identifies several directions for future optimization.

Contents

ADSETACE ettt 1
3 e U5 o T L ot 5 e o 3
2. DTAUPIT . .t 3

2.1. A Brief Introduction to Datalogoooiii 3

2.2. Storage and Cursor INTErfaCES 4
3. Rewriting Cursor AddreSSingttt 7
4. Implementing the RocksDB Storage Layeruiiieeee it 9
5. Future WOTKo 11
6. COMCIUSION ...ttt ettt e et 11
B DO g DY .. 11
7. Appendix A: Rocks Storage Implementation ...t 12

1. Introduction

Multiple interfaces have been developed in the past few decades to query databases. SQL (Structured
Query Language) has been incredibly popular, followed by NoSQL, which encompasses key-value
interfaces, graph queries and so on.

Datalog is an alternate way to query databases, with roots in Prolog. Queries are defined recursively,
wherein the database is first seeded with a few base “facts” and then a query is either derived bottom-
up or top-down. Bottom-up queries are derived from the facts by applying a set of rules over and over
until a fixed-point is reached where no more new facts can be added to the database, while top-down
queries are derived by searching from a particular “goal” or solution.

Soulffle is a popular Datalog engine that specializes in running large-scale program analyses. The key
contribution of this system is its ability to generate indices on the fly for different sets of data and
compile the datalog specification to a C++ specification with access to OpenMP for parallelization. This
results in very efficient execution. Souffle also has a number of Datalog extensions to help specify
program analysis queries more easily. [[1]]

The main drawback of this system however, is the large amount of RAM usage and the time taken to
start up large-scale program analyses.

Aiming to be an improvement on Souffle, This work presents an On-Disk Datalog Engine called
Draupnir which implements a dialect of Datalog called Agralog. Agralog or AGRA [[2], [3]] (Aggregate
Relational Algebra) operates primarily on Aggregate-Annotated Relations which are functions that map
from a tuple of values to an annotation, typically something like a count.

For implementing the storage engine, we chose to use RocksDB, a write-optimized key-value store and
fits our use case, as we can update values differentially i.e. update a field in an object or increment a
number without having to perform a read. [[4]]

This will slow down query evaluation due to disk reads and writes being slower than memory.
However we seek to minimize this with caching and other techniques which are out of the scope of this

thesis.
2. Draupnir

2.1. A Brief Introduction to Datalog

Datalog is a way to recursively specify and answer queries, by specifying a set of base “facts” and
extending the set of facts with “rules”. Datalog has applications in Program Analysis, Declarative

Networking, Data Integration, and so on. The set of rules comprise the Intensional Database, and the

set of initial facts comprise the Extensional Database. Datalog can be evaluated in bottom-up or top-
down fashions. The primary concerns when building out the set of derived rules is to avoid generating
the entire search space, and to evaluate rules quickly.[[5]]

A example to showcase Datalog is to answer an all-pairs graph reachability query. Consider a line
graph is provided in the form of an adjacency list (pairs of sources to destinations). The query to

answer now is a list of all pairs of nodes that can reach each other.

Figure 1: Line Graph
To model this in Datalog, we first need to define the facts of the query, and then define the rules that
will produce the answer.
The initial facts are the edges (0, 1), (1, 2), (2, 3).
These facts reside in the relation link(x, y), where x and y are the source and destination edges.
On top of this, two rules are defined:

rl: reachable (x, y) := link (x, y)
r2: reachable (x, y) := link (x, z), reachable (z, y)

Firstly, any edge in the relation “link” is now in the relation “reachable”. Secondly, if a node z is
reachable from x and there is a link from z to y, then the node y is reachable from x.
This rule is now recursively applied over and over until reachable does not change.

The final result is the edge set [(0, 1), (1, 2), (2, 3), (0, 2), (1, 3), (0, 3)].
2.2. Storage and Cursor Interfaces

The storage interface is defined in the following way:

/// A representation of a dataset

pub trait Storage: std::fmt::Debug {
/// Retrieve a cursor to the provided dataset with the specified configuration
fn cursor(&self, configuration: &CursorConfiguration) -> DraupnirResult<Box<dyn

Cursor>>;

/// Retrieve a writer to the provided dataset for the specified version

fn writer(&self, version: usize) -> DraupnirResult<Box<dyn Writer>>;

/// Retrieve the set of supported clusterings; For every clustering listed,
/// this storage must support index cursor
fn supported clusterings(&self) -> Vec<Vec<usize>>;

/// Retrieve the set of supported sort orders; For every sort order listed,
/// this storage must support index cursor
fn supported sorts(&self) -> Vec<Vec<usize>>;

Listing 1: Specification for the Storage Backend Interface
The storage interface requires a storage backend to be able to produce cursors for reading and writers
for writing, along with “capabilities” or guarantees. Storages capabilities are as such:
1. Clustered: The keys are guaranteed to be clustered i.e. keys of a similar rank are next to each other
2. Coalesced: There are no two records with the same key:.
3. Resettable: A reading cursor produced from this storage can be reset back to the beginning.

The cursor & writer interfaces are defined as follows:

pub trait Cursor: std::fmt::Debug {
/// Seeks to the provided location or a position preceding the successor
/// of the addressed index. Returns “true’ if the seeked address is
/// exactly available.
fn seek(&mut self, address: &EncodedTuple) -> DraupnirResult<bool>;

/// Seeks to the very first record
fn seek to head(&mut self) -> DraupnirResult<()>;

/// Seeks to just past the last record
fn seek to tail(&mut self) -> DraupnirResult<()>;

/// Reads up to one record. Returns None if no records remain to read
fn read one(&mut self) -> DraupnirResult<ReadStatus<Record>>;

/// Reads a record batch. Returns None if no records remain to read
fn read batch(&mut self, max size: usize) -> DraupnirResult<ReadStatus<RecordBatch>>;

pub trait Writer {
/// Update the provided record
fn update one(&self, record: &Record) -> DraupnirResult<WriteStatus>;

/// Update a batch of records
fn update batch(&self, records: RecordBatch) -> DraupnirResult<WriteStatus>;

/// Signal that the dataset is 'complete' and that no further updates will be
/// performed. You can expect that this will only ever be used for temporary
/// relations instantiated during execution. You can also usually expect this
/// to be a no-op, since most Storage implementations don't care if further

/// data will be written or not. However, there are at least two instances

/// when it's useful for the Storage engine to know when no further writes will
/// be issued

/// 1. The relation is a stream, in which case seal() signals EOF

/// 2. The relation is specialized for assymetric write -> read workloads, and
/// seal() signals that the relation should transition from its write- to its
/// read-optimized layout.

fn seal(&self) -> DraupnirResult<()>;

Listing 2: Specification for the Cursor and Writer Interfaces
The cursor interface should be able to seek to any part of the storage and read one or more records at a

time.

A writer can write or update one or more records at a time, and seal off an instance of a storage
backend.

Initially cursors used an Address type for seeks, which was just an array of bytes (Vec<u8>). There were
a few issues with this:

1. Unclear functionality

Addresses served a dual purpose; For any data structure without ordering support, Addresses were a
direct index into the contents. This means that they carried no information, in the case of a unbounded
buffer. But in the context of a data structure like the IndexedBuffer, Addresses were an encoded array of
values.

2. Lack of Metadata

Addresses lacked metadata, making it difficult to understand what they contained. Extracting the bytes
of specific fields from an Address required complete type information. But in Draupnir, cursors were
sometimes only aware of a subset of keys within the storage. So to extract any information from an
Address struct, all parties would need to have all the type information. This was unweildy.

3. Scattered Functionality

There were 5 different methods to deal with Addresses (index_to_adddress, address_to_index,
address_to_key, key_to_address & key_ref to_address), and they were not unified under the Address
type. This made working with it pretty hard.

These issues motivated a rewrite of the addressing API.

3. Rewriting Cursor Addressing

The final state of the addressing scheme uses instances of EncodedTuple objects, defined as follows:

/// The encoded tuple format for the tuple " (Cl, C2, ..., CN) is:

///
/// +---mmm o - e +----- L B it S S
/// | |Cl]:usize | |C1l|+|C2|:usize | ... | |Cl|+...+|CN|:usize | C1 | C2 | .. | CN |
/// +---mmm o - oo +----- oo B it SR S
///

/// * An array of usize-sized positions within the tuple representing the *end* of the
/// field. (Field |Cl| starts at position 0)

/// * A consecutive sequence of actual field data.

///

#[derive(PartialEq, Eq, Clone, Debug)]

pub struct EncodedTuple(Vec<u8>);

impl EncodedTuple {
/// Returns the offset from which the data of the "i th field starts, given that there
are “field count® fields.
fn field start(&self, i: usize, field count: usize) -> usize {
let base = field count * size of::<usize>();
if 1 ==0 {
base
} else {
let offset = (i - 1) * size of::<usize>();
base
+ usize::from le bytes(
self.0[offset..(offset + size of::<usize>())]
.try into()

.expect("usize-sized slice is somehow not usize-sized"),

/// Gets the data of the “i*th field in the tuple, given that there are "“field count’
fields.
fn field bytes(&self, i: usize, field count: usize) -> &[u8] {
&self.0[self.field start(i, field count)..self.field start(i + 1, field count)]

pub fn decode(&self, types: &[Typel]) -> Vec<Const> {
types
Liter()
.enumerate()
.map(| (i, field type)| self.decode field(i, field type, types.len()))

.collect() Listing 3: The new addressing scheme

} 8

pub fn decode field(&self, field: usize, data_type: &Type, field count: usize) ->
Const {

This is essentially a byte buffer containing a serialized version of a record, along with field metadata.

Although the current implementation takes a lot of space with each offset pointer being a usize (which

is 32 or 64 bits depending on the platform [[6]]), This offers multiple benefits:

1. Data can be directly referenced from this byte buffer; There is no need for type information to access
specific fields within the buffer.

2. There is scope now to optimize for space with the encoding. Something like delta encoding [[7]] can
now be used to reduce the amount of the data stored in the record.

3. Most importantly, this does not serve the dual functionality of being an opaque pointer and also

containing semantic meaning in different situations.

4. Implementing the RocksDB Storage Layer

Draupnir currently features 3 in-memory datastructures: a record array, a ring buffer and an BTree
index. None of these are persistent, so a new storage backend had to be added. AARs as discussed
above, are essentially key-value stores from a key tuple to an annotation. So it makes sense to look for
key-value databases.

RocksDB stood out in particular here due to a number of useful features. First, it was write-optimized
due to being based on an LSM tree and supported differential updates. Differential updates allows us to
perform updates to records without having to perform a read. [[4]]

This however requires us to specify a merge operation. This merge operation is invoked during query
time, and merges the initial value of a record along with all of the differential updates written to the
database.

The following is the implementation of the merge function:

let mergefn = move | : &[u8], existing val: Option<&[u8]>, operands:

Option<Vec<u8>> {
let mut lhs = match existing val {
Some(bytes) => encoded tuple to record(
&EncodedTuple(bytes.to owned()),
&[kt.clone(), vec![vt.clone()]].concat(),
),
None => (vec![], zero.clone()),

i

// reduce loop
for operand in operands {
let rhs = encoded tuple to record(
&EncodedTuple(operand.to owned()),
&[kt.clone(), vec![vt.clone()]].concat(),
);
lhs = (
rhs.o0,
eval expr(
&merge
.apply(vec![rhs.1l.into(), lhs.l.into()])
.expect("Operands do not satisfy the type constraints."),
&HashMap: :new(),
None,
)
.expect("Operands do not satisfy the type constraints."),
)

&MergeOperands |

->

Some (EncodedTuple: :from([lhs.0.as slice(), &[lhs.l.clone()]].concat().as slice()).0)

b
Listing 4: Definition of the Merge function

The “existing value” is the initial value of the key. Differential updates are then merged into the

existing value using a user-specified merge function.

A few more benefits to picking RocksDB here is that it offers snapshot reads, and that it stores data as

raw bytes. This provides an opportunity to optimize for space if need be.

The full implementation of the storage is available in Appendix A.

10

5.

Future Work

There is still a lot of room for optimizations in the system, with this being an non-exhaustive list:

1.

6.

The compiled bytecode operators currently read or write only a single row at a time. This leads to a
lot of overhead in terms of function calls. Records can be fetched in batches, and stored in larger
registers with the virtual machine.

The compilation to bytecode itself introduces a lot of overhead, which can be eliminated by defining
operators natively.

In the same vein as number one, collections of records can be processed more quickly with the use

of SIMD instructions for comparisons and other operations.

Conclusion

This work presented extensions to Draupnir, an on-disk Datalog engine, motivated by the high

memory usage and startup costs of in-memory systems such as Souffle. A storage backend was

implemented on top of RocksDB, and the benefits and drawbacks were discussed. An alternate

addressing scheme was also proposed and implemented.

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]
(7]

H. Jordan, B. Scholz, and P. Subotié, “Soufflé: On synthesis of program analyzers,” in International
Conference on Computer Aided Verification, 2016, pp. 422-430.

C. Koch, “Incremental query evaluation in a ring of databases,” in Proceedings of the twenty-ninth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, 2010, pp. 87-98.

C. Koch et al., “DBToaster: higher-order delta processing for dynamic, frequently fresh views,” The
VLDB Journal, vol. 23, no. 2, pp. 253-278, 2014.

S. Dong, A. Kryczka, Y. Jin, and M. Stumm, “Rocksdb: Evolution of development priorities in a key-
value store serving large-scale applications,” ACM Transactions on Storage (TOS), vol. 17, no. 4, pp.
1-32, 2021.

T.J. Green, S. S. Huang, B. T. Loo, W. Zhou, and others, “Datalog and recursive query processing,’
Foundations and Trends® in Databases, vol. 5, no. 2, pp. 105-195, 2013.

S. Klabnik and C. Nichols, The Rust programming language. No Starch Press, 2023.

H. Tan, W. Xia, X. Zou, C. Deng, Q. Liao, and Z. Gu, “The design of fast delta encoding for delta
compression based storage systems,” ACM Transactions on Storage, vol. 20, no. 4, pp. 1-30, 2024.

11

7. Appendix A: Rocks Storage Implementation

use std::{cell::RefCell, collections::HashMap, sync::Arc};

use crate::{
backend::Config,
error::{DraupnirError, DraupnirResult},
interpreter::{
data _structure::{CursorConfiguration, EncodedTuple, ReadStatus, Writer},
eval::eval expr,
I
ir::{
common: : {Const, RelationSchemaDetail, Type},
expr::LambdaFunction,
pipeline::SinkConstraints,
b
+
use rocksdb::{Direction, IteratorMode, MergeOperands, Options};

use super::{Cursor, Record, RecordBatch, Storage, WriteStatus};

#[derive(Debug)]

pub struct Rocks {
value_type: Type,
key type: Vec<Type>,
connection: Arc<rocksdb: :DB>,

#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Clone)]
struct RocksKey(Vec<u8>);

impl RocksKey {
/// Extracts the data part alone from the encoded tuple.
fn from encoded(encoded: &EncodedTuple, field count: usize) -> Self {
let mut key = Vec::<u8>::new();
for field in 0..field count {
key.extend from slice(encoded.field bytes(field, field count));

}
Self(key)

12

fn encoded tuple to record(tuple: &EncodedTuple, types: &[Typel) -> Record {
let flat record = tuple.decode(types);
let (value, key) = flat record
.split last()
.expect("Expected encoded tuple to have at least 2 fields.");

(key.to vec(), value.clone())

pub struct RocksCursor {
value type: Type,
key type: Vec<Type>,
_current_key: Vec<Const>,
_database: Arc<rocksdb::DB>,
snapshot: rocksdb::Snapshot<'static>,
iterator: Option<rocksdb::DBIterator<'static>>,

impl Cursor for RocksCursor {
fn seek(&mut self, address: &EncodedTuple) -> DraupnirResult<bool> {
let address = RocksKey::from encoded(address, self.key type.len());
// println! ("SEEKING TO {:?}", address);

self.iterator = Some(
self
.snapshot
.iterator(IteratorMode: :From(&address.0, Direction::Forward)),

Ok(true)

fn seek to head(&mut self) -> DraupnirResult<()> {
self.iterator = Some(self.snapshot.iterator(IteratorMode::Start));
0k(())

fn seek to tail(&mut self) -> DraupnirResult<()> {
self.iterator = Some(self.snapshot.iterator(IteratorMode::End));

0k(())

13

fn read one(&mut self) -> DraupnirResult<ReadStatus<Record>> {
let mut ret = ReadStatus::AtEnd;

self.iterator.as mut().map(|iter| {
iter.next().map(|result| {
result.map(]|(_key, value)| {
let record = encoded tuple to record(
&EncodedTuple(value.into vec()),
&[self.key type.clone(), vec![self.value type.clone()]].concat(),
);

ret = ReadStatus::Success(record);

fn read batch(&mut self, max_size: usize) -> DraupnirResult<ReadStatus<RecordBatch>> {
let mut ret = None;

for in 0..max_size {
if let Ok(status) = self.read one() {
match status {
ReadStatus::Success(rec) => match ret {
None => {
let rb: RecordBatch = vec![rec].as slice().into();
ret = Some(rb);
}
Some(ref mut rb) => {
rb.push(&rec);
}
}
ReadStatus::Blocked => {}
ReadStatus::AtEnd => break,

Ok(ret.map(ReadStatus: :Success).unwrap or(ReadStatus::AtEnd))

14

impl std::fmt::Debug for RocksCursor {
fn fmt(&self, f: &mut std::fmt::Formatter<' >) -> std::fmt::Result {
write! (f, "Rocks Cursor")

impl RocksCursor {
pub fn new(rocks backend: Arc<rocksdb::DB>, value type: Type, key type:
Self {
let mut cursor = RocksCursor {
_current_key: Vec::new(),
value_ type,
key_type,
_database: rocks_backend.clone(),

// RocksCursor is supposed to independent in memory
#[allow(clippy::missing transmute annotations)]
snapshot: unsafe { std::mem::transmute(rocks backend.snapshot()) },
iterator: None,

b

cursor.iterator = Some(cursor.snapshot.iterator(IteratorMode::Start));

cursor

pub struct RocksWriter {
connection: Arc<rocksdb: :DB>,
key type: Vec<Type>,

impl Writer for RocksWriter {
fn update batch(
&self,
records: crate::interpreter::record::RecordBatch,
) -> DraupnirResult<WriteStatus> {
for 1 in 0..records.len() {
self.update one(&records.get(i))?;

15

Vec<Type>)

Ok(WriteStatus: :Success)

fn update one(&self, record: &crate::interpreter::record::Record) ->
DraupnirResult<WriteStatus> {
let put_address = RocksKey::from encoded(&EncodedTuple: :from(&record.0),
self.key type.len());
let value = EncodedTuple::from(
[record.0.as slice(), &[record.l.clone()]]
.concat()
.as_slice(),
)

match self.connection.merge(put_address.0, value.0) {
Ok() => Ok(WriteStatus::Success),

Err(e) => Err(DraupnirError::Message(e.into string())),

fn seal(&self) -> DraupnirResult<()> {
0k(())

impl Storage for Rocks {
fn cursor(&self, configuration: &CursorConfiguration) -> DraupnirResult<Box<dyn
super::Cursor>> {
let CursorConfiguration { key: , version } = configuration;
if version.is versioned() {
return Err(DraupnirError::Message(
"RocksDB does not yet support versioned reads".into(),
)
}

Ok (Box::new(RocksCursor: :new(
self.connection.clone(),
self.value type.clone(),
self.key type.clone(),

)))

fn writer(&self, version: usize) -> DraupnirResult<Box<dyn Writer>> {

if version != 0 {

16

return Err(DraupnirError::Message(
"RocksDB does not yet support versioned writes".into(),
));
}
Ok (Box::new(RocksWriter {
connection: self.connection.clone(),
key type: self.key type.clone(),
1)

fn supported clusterings(&self) -> Vec<Vec<usize>> {
todo! ()

fn supported sorts(&self) -> Vec<Vec<usize>> {
todo! ()

impl Rocks {

pub fn new(
value_ type: Type,
key type: Vec<Type>,
path: String,
merge: Arc<LambdaFunction>,
zero: Const,

) -> DraupnirResult<Self> {
let mut options = Options::default();

let kt
let vt

key type.clone();
value_type.clone();

let mergefn =
move | : &[u8], existing val: Option<&[u8]>, operands: &MergeOperands| ->
Option<Vec<u8>> {
let mut lhs = match existing val {
Some(bytes) => encoded tuple to_ record(
&EncodedTuple(bytes.to owned()),
&[kt.clone(), vec![vt.clone()]].concat(),
),
None => (vec![], zero.clone()),

};

17

// reduce loop
for operand in operands {
let rhs = encoded tuple to record(
&EncodedTuple(operand.to owned()),
&[kt.clone(), vec![vt.clone()]].concat(),
)
lhs = (
rhs.o,
eval expr(
&merge
.apply(vec![rhs.1l.into(), lhs.1l.into()1)
.expect("Operands do not satisfy the type constraints."),
&HashMap: :new(),
None,
)
.expect("Operands do not satisfy the type constraints."),
);

Some (EncodedTuple: :from([lhs.0.as slice(),
&[lhs.1l.clone()]].concat().as slice()).0)
b

options.set merge operator associative("mergeop", mergefn);

options.create if missing(true);

rocksdb: :DB::open(&options, path)
.map(|connection| Rocks {
value type,
key type,
connection: Arc::new(connection),
}

.map_err(|err| DraupnirError::Message(err.into string()))

pub fn instantiate(
schema: &RelationSchemaDetail,
¢ &SinkConstraints,
config: &Config,
) -> DraupnirResult<Arc<RefCell<dyn Storage>>> {
match Self::new(

18

schema.annotation type(),
schema.attribute types(),
config

.rocksdb_path

.clone()

.expect("expected a path for rocksdb from the config"),
schema.annotation.plus.clone(),
schema.annotation.zero.clone(),

) A
Ok(rocks_instance) => Ok(Arc::new(RefCell::new(rocks instance))),
Err(err) == Err(err),

pub fn snapshot(&' self) -> rocksdb::Snapshot<' > {
self.connection.snapshot()

#[cfg(test)]
mod tests {
// use std::iter::Successors;

use super::*;
use crate::interpreter::record::{Record, RecordBatch};
use crate::ir::common::{AnnotationId, Const};
use crate::library::{
Library,
stdlib: : {ANNOTATION EXISTS, ANNOTATION SUM INT},
b
use once_cell::sync::Lazy;

/// Tests the Rocks module against a particular annotation and data.
/// The db url provided must be unique within tests as rocksdb is single-threaded.
fn test annotation(
annotation id: &lLazy<AnnotationId>,
key type: Vec<Type>,
insert_data: Vec<Record>,
expected data: Vec<Record>,
db url: String,
) -> Result<(), Box<dyn std::error::Error>> {
let library = Library::default();

19

let exists = library.get annotation err(annotation id)?;

let rocks = Rocks: :new(
exists.base type(),
key type,
db urt,
exists.plus.clone(),
exists.zero.clone(),
)

.expect("Could not open the database");

let full batch: RecordBatch = insert data.as slice().into();

// clean up db before executing test
for datum in &expected data {
rocks
.connection
.delete(EncodedTuple: : from(&datum.0).0)
.expect("deletion in rocksdb should go through.");

rocks.writer(0)?.update batch(full batch)?;

let mut cursor = rocks
.cursor(&CursorConfiguration: :default())
.expect("Could not get a cursor.");

for datum in &expected data {
cursor
.seek(&EncodedTuple: : from(&datum.0))
.expect("Couldn't seek to key.");
let fetched value = cursor.read one();

printtn!("{:?} {:?}", &datum.0, &fetched value);
// cannot compare Results as they do not implement PartialEq
match fetched value {
Ok (ReadStatus::Success(tuple)) => {
assert eq!(datum.1l, tuple.l)

:>{

panic!("fetched value does not match {}", datum.1l)

20

0k(())

#[test]
fn test rocks annotate exists() -> Result<(), Box<dyn std::error::Error>> {

let data: Vec<Record> = vec![

(vec![Const::Int(1l), Const::Int(1)], Const::Bool(false)),
(vec![Const::Int(2), Const::Int(1)], Const::Bool(true)),
(vec![Const::Int(2), Const::Int(2)], Const::Bool(false)),
(vec![Const::Int(3), Const::Int(2)], Const::Bool(false)),
(vec![Const::Int(3), Const::Int(2)], Const::Bool(true)),
(vec![Const::Int(1l), Const::Int(1)], Const::Bool(true)),
(vec![Const::Int(1l), Const::Int(1)], Const::Bool(false)),

1;

let expected: Vec<Record> = vec![
(vec![Const::Int(1), Const::Int(1)], Const::Bool(true)),
(vec![Const::Int(2), Const::Int(1)], Const::Bool(true)),
(vec![Const::Int(2), Const::Int(2)], Const::Bool(false)),
(vec![Const::Int(3), Const::Int(2)], Const::Bool(true)),
I;

test annotation(
&ANNOTATION EXISTS,
vec![Type::Int, Type::Int],
data,
expected,
"test/test0.rocks".to owned(),

#[test]
fn test rocks annotation sum() -> Result<(), Box<dyn std::error::Error>> {
let data: Vec<Record> = vec![

(vec![Const::Int(5), Const::Int(1)], Const::Int(5)),
(vec![Const::Int(6), Const::Int(1)], Const::Int(2)),
(vec![Const::Int(7), Const::Int(2)], Const::Int(1))
(vec![Const::Int(8), Const::Int(2)], Const::Int(3)),
(vec![Const::Int(8), Const::Int(2)], Const::Int(11)),

’

21

(vec![Const
(vec![Const
1;

let expected:

(vec![Const:
(vec![Const:
(vec![Const:
(vec![Const:

1;

::Int(5), Const
::Int(5), Const

Vec<Record> =

test _annotation(
&ANNOTATION SUM INT,
vec! [Type::Int, Type::Int],

data,
expected,

:Int(5), Const:
:Int(6), Const:
:Int(7), Const:
:Int(8), Const:

:Int(1)],
:Int(1)],

vec! [

:Int(1)],
:Int(1)],
:Int(2)],
:Int(2)],

"test/testl.rocks".to owned(),

Const:
Const:

Const:
Const:
Const:
Const:

22

:Int(17)),
:Int(13)),

:Int(35)),
:Int(2)),
:Int(1)),
:Int(14)),

	
	
	An On-Disk Datalog Engine
	Acknowledgments
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	How to Format Your Major Headings
	Heading 1 (H1)
	Heading 2 (H2)
	Heading 3 (H3)
	Heading 4 (H4)
	Heading 5 (H5)

	Pagination
	To Change to Arabic Page Numbering

	Information on Tables
	Information on Figures and Images
	References or Bibliography or Works Cited
	Appendix

	Abstract
	1. Introduction
	2. Draupnir
	2.1. A Brief Introduction to Datalog
	2.2. Storage and Cursor Interfaces

	3. Rewriting Cursor Addressing
	4. Implementing the RocksDB Storage Layer
	5. Future Work
	6. Conclusion
	Bibliography
	7. Appendix A: Rocks Storage Implementation

