
Assessing DNS Privacy under Partial Deployment of
Special-Use Domain Names

Ah Reum Kang
University at Buffalo

Buffalo, NY, USA

Aziz Mohaisen
University at Buffalo

Buffalo, NY, USA

Abstract—Domain Name System (DNS) leakage occurs when
queries for names within a private namespace are propagated
in the public DNS infrastructure, which has various privacy
implications. To reduce this leakage and improve Tor’s privacy,
Appelbaum and Muffet suggested in RFC 7686 the special-use
of .onion domain name. They recommended how stub, recursive,
and authority name servers should behave when encountering
.onion domains: they should not attempt to resolve such domains
and return NXDOMAIN responses (i.e., blocking the query from
propagating in the public DNS). Without any form of analysis
of those recommendations in practice, it is hard to tell how
much privacy is provided by following such recommendations.
We initiate for the study of those recommendations by analyzing
them under different contexts and conclude that while the
unlikely universal implementation will certainly improve privacy
by preventing leakage, partial deployment, which is the likely
case with early adoption, will degrade the privacy of individuals
not adopting the recommendations.

I. INTRODUCTION

The domain name system (DNS) is used to translate
domain names into IP addresses in private networks and on
the public Internet. The DNS is hierarchical, and domain
names end with Top-Level Domains, such as .com and .net,
which are delegated in the DNS root zone. A query for non-
delegated domain name would result in a negative response,
aka NXDOMAIN (i.e., nonexistent domain). Tor hidden ser-
vices are named with a special TLD name in DNS, .onion.
The .onion TLD is not recognized by the official root DNS
servers on the Internet. As such, if a user sends a DNS request
for a .onion domain in the public DNS infrastructure, the
query will be answered with an NXDOMAIN response from
the root. As with all private networks, queries should never
be allowed in the public DNS infrastructure. Nevertheless,
it has been lately shown [1] that queries for .onion strings
leak to the public DNS infrastructure for various reasons such
as potential misconfiguration, misuse of .onion strings, and
browser prefetching. Even worse, such leakage has been on the
rise [2], with many potential privacy implications. For instance,
in accordance with .onion names are used for querying hidden
services, an eavesdropper on the DNS resolution system can
associate the .onion query with a user, or reduce the potential
number of users associated with that query to a manageable
set size, thus breaching the privacy of users of Tor.

Appelbaum and Muffet [3] proposed the special-use .onion
domain name, and various best practice recommendations for
addressing .onion leakage at the stub, recursive, and author-
itative resolvers. The goal is that the deployment of such
recommendations will improve the privacy of the users using
Tor in general and hidden services in particular. However, no
work is done to evaluate the certainty of such goal under any
settings, let alone realistic scenario. In this study, we initiate

for analyzing the privacy implications of blocking of the leaked
DNS queries as a method of improving the privacy of users.

Organization. An evaluation framework is in §II. Initial
results are in §III, and concluding remarks are in §IV.

II. FRAMEWORK

DNS privacy in general, and for [3] is evaluated under
an eavesdropper, a passive adversary that does not interfere
with the resolution or attempt to change its results, but is
rather interested in associating a query with a user, or a set
of users. The adversary is also represented by the “scope” of
eavesdropping, which determines the number of DNS links
and entities such adversary can observe at any point in time.

Definition 1: (Abstract Adversary) The adversary in our
evaluation framework is defined as an eavesdropper A(α, β),
where α is the ratio of the total number of links between
the stub and recursive observed by the adversary to the
total number of links. Moreover, β is the ratio between the
total number of links between the recursive resolvers and the
authoritative name server that are observed by the adversary
to the total number of links in a given system of interest.

This definition of the adversary is generic, and can be
used to define various instances of adversaries based on actual
capabilities. Such adversaries can include an eavesdropper on
links between stub-recursive, recursive-authoritative, or both.

A. Advantage in the Wild

Using the above definition, we outline two cases of eval-
uation. The first case is where the adversary can directly
eavesdrop on links between a stub and recursive (i.e., A(α, 0)).
The second case is where the adversary can indirectly eaves-
drop on links between the stub and recursive by conjecturing
relation between queries and users using a given recursive
when eavesdropping on a link between that the recursive and
authoritative name server (i.e., A(0, β)).

B. Advantage with Special-Use Domains

The presumption in §II-A is that no entity in the DNS
resolution system treats .onion as a special-use domain. In
the following, we consider the case where .onion queries
are treated as special-use domains, and DNS entities (stub,
recursive, or authoritative) do not attempt to resolve them
(blocking them from leaking to the public DNS).

For simplicity, we consider that either the stub or recursive,
or both, perform blocking. To facilitate our analysis, we
consider two parameters ψ1 and ψ2, corresponding to the
ratio of stub resolvers and recursive resolvers that perform



blocking, individually. We assume that those resolvers are
selected uniformly at random among all stub and recursive
resolvers in the system.

III. RESULT

Using the framework in §II, we evaluate various adversaries
characterized on a real-world topology obtained from DNS op-
erations of a large DNS recursive resolution provider (Verisign
Inc.). The dataset is not intended for characterizing DNS usage,
but rather for demonstrating and comparing various models
studied in this work. We use this dataset to mainly comprehend
the various adversaries and their advantage with/out blocking.

A. Dataset and Evaluation Criteria

High-level statistics. Table I shows the number of stubs and
recursive resolvers and queries used in this study. We use traces
collected at 180 recursive resolvers, serving over 176,991 stub
resolvers, and forwarding queries to various authority servers
(collectively viewed as a single sink, as in our framework).
The goal of this evaluation is to comparatively understand
the advantage of the various adversaries, under a real-world
topology. The advantage is used as the evaluation criteria.

TABLE I. DATASET

Feature # Avg. # Max #
Stubs 176,991 51 queries per stub 77,332

Recursive 180 983 stubs per recursive 5,949
Queries 9,135,311 - -

Advantage without blocking. First, we evaluate the advan-
tage of the adversary under no blocking, to show the relative
order of adversaries. We see that A(α, 0) is rather a linear
function in the number of links between the stub and recursive
observed by the adversary (results omitted) and grows steadily
from 0 to 1. We confirm that the advantage of the adversary,
while greater than 0 (thus the privacy is breached to some
extent), is small basically because the advantage here measures
the presumptive power of the adversary; when β = 1, the
advantage of the adversary, as defined above, converges to 1

180
as shown in Table I.

Advantage with blocking at the stub. Fig. 1 indicates
the advantage of the adversary under blocking at the stub
resolver with various values of α and β for the adversaries
A(α, 0) and A(0, β). In Fig. 1(a), we notice that the increase
in α corresponds to increase in the initial advantage. As ψ1

increases, the advantage rapidly declines and approaches to
0 when all stub resolvers perform blocking. However, more
interestingly, the advantage of the adversary, as shown in
Fig. 1(b) grows by more than an order of magnitude as ψi

grows. Ultimately, the advantage approaches 0 when ψ1 = 1.
We notice also from the same figures that larger α and β for
the same value of ψ1 correspond to a higher advantage.

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
d

v
 A

d
v
a

n
ta

g
e

ψ1â��

α = 0.05
α = 0.1
α = 0.2
α = 0.3

(a) A(α, 0)

10
-5

10
-4

10
-3

10
-2

10
-1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
d
v
 A

d
v
a
n
ta

g
e

ψ1

β = 0.05
β = 0.1
β = 0.2
β = 0.3

(b) A(0, β)

Fig. 1. The advantage of the adversary under blocking at the stub resolvers
with various values of α and β for the adversaries A(α, 0) and A(0, β).

Advantage with blocking at the recursive. Fig. 2 shows
similar results as above when blocking at the recursive resolver
(using ψ2). From Fig. 2(a) we found that the advantage of
the adversary is not influenced by blocking at the recursive
because the recursive falls beyond the scope of the adversary’s
capability. On the other hand, based on Fig. 2(b), we found
that the advantage of the adversary decays as ψ2 increases,
suggesting that perhaps blocking at the recursive when the
adversary controls links to the authoritative resolver is the best
strategy to address leakage.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
d

v
 A

d
v
a

n
ta

g
e

ψ2â��

α = 0.05
α = 0.1
α = 0.2
α = 0.3

(a) A(α, 0)

0.0⋅e
0

2.0⋅e
-4

4.0⋅e
-4

6.0⋅e
-4

8.0⋅e
-4

1.0⋅e
-3

1.2⋅e
-3

1.4⋅e
-3

1.6⋅e
-3

1.8⋅e
-3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
d

v
 A

d
v
a

n
ta

g
e

ψ2â��

β = 0.05
β = 0.1
β = 0.2
β = 0.3

(b) A(0, β)

Fig. 2. The advantage of the adversary under blocking at the recursive with
various values of α and β for the adversaries A(α, 0) and A(0, β).

Which adversary. Given the various settings of adversaries,
answering which adversary is more realistic than the other
and how they are affected by blocking may allow us to make
a conclusion regarding the effect of special-use and blocking
in practice. Reality suggests that A(0, β) is a more probable
adversary in practice because it is difficult to mount an attack
on DNS between a stub and recursive, in general. With such
adversary and associated advantage, we found that blocking at
the stub resolver is considered harmful. The advantage of the
adversary increases as the number of blocking users increases
by the time it is the total number of users.

IV. CONCLUDING REMARKS

DNS blocking of unintended queries is proposed as a
method for improving privacy. In this paper, we informally
studied blocking under diverse adversarial settings and showed
that partial blocking at stub resolvers would negatively affect
the privacy of users not performing blocking. On the other
hand, the same analysis shows that blocking at the recursive
for the same adversary setting would bring about improved
privacy seen in a declining adversary’s advantage. For the
future work, we will investigate the impact of queries and
take them into consideration to the adversary’s advantage, both
analytically and empirically. Moreover, we are planning to
analyze the privacy of DNS under blocking and an active
adversary who physically control a subset of the resolvers.
Finally, we will consider exploring and developing analytical
results of blocking at multiple entities simultaneously.

Acknowledgement This work is supported in part by NSF
grant CNS-1643207. A longer version of this work is in [4].

REFERENCES

[1] M. Thomas and A. Mohaisen, “Measuring the leakage of onion at the
root: A measurement of tor’s .onion pseudo-tld in the global domain
name system,” in Proc. of WPES, 2014.

[2] S. Gallagher, “Whole lotta onions: Number of tor hidden sites spikes—
along with paranoia,” bit.ly/1TVtBs1, March 2016.

[3] J. Appelbaum and A. Muffett, “The “. onion” special-use domain name,”
RFC 7686, October 2015.

[4] A. Mohaisen, A. R. Kang, and K. Ren, “Does query blocking improve
DNS privacy?” in Proc. of WISA, 2016.

bit.ly/1TVtBs1

	Introduction
	Framework
	Advantage in the Wild
	Advantage with Special-Use Domains

	Result
	Dataset and Evaluation Criteria

	Concluding Remarks
	References

