Lecture 14

CSE 331
Sep 27, 2019

If you need it, ask for help

[CAMHAASCHEEZENRGER. GO O 2

Mini Project group due Monday!
CSE 331 Mini project choices

Fall 2019

Please check the table below before submitting your mini project team composition to make sure your case study is
not being used by another group. Case studies are assigned on a first come first serve basis.

Group Chosen Algorithm

Daniel Shekhtman, William Nicholson, Andrew Quinonez (D's PageRank
Get Degrees)

Jordan Clemons, Chris Burton, Christopher Perez (Group 1) Pagerank

Moulid Ahmed, Shrishty Shivani Jha, Shreya Lakhkar (ACE-MA) Spotify Recommendation

Justin Henderson, Hannah Wlasowicz, Judy Mei (PizzaTime) Aes 256

Gillian Marcus, Jason Niu, Sharon Stack (2nA2 (//pls substitute = Deep Neural Networks for YT
caret for a superscript)) Recommendations

Case Study

Manipulation of PageRank for nefarious
purposes

Google's use of Pagerank in sorting search
results

Machine Learning Algorithm

ransomware

Social Media Targeted Advertising

Links

Link 1, Link 2,
Link 3, Link 4

Link 1, Link 2
Link 1, Link 2,
Link 3
Link 1

Link 1, Link 2,
Link 3, Link 4

The chosen list updates ~2 days

E note stop following PR RV

Please only submit your video choice ONCE
The Google form does not automatically update the algo choices: http://www-student.cse.buffalo.edu/~atri/cse331/fall19/mini-project/algos.html

| update it every two days. If your choice is not updated above please do NOT submit again-- it just means more work for me since in this case | have to manually update the
form sheet. If you do not see an update in 2 days, please post on piazza to check: thanks!

#pin

mini_project

m good note Updated 1 minute ago by Atri Rudra

HW 4 out

Homework 4

Due by 11:00am, Friday, October 4, 2019.
Make sure you follow all the homework policies.

All submissions should be done via Autolab.

Sample Problem

The Problem

Extend the topological ordering algorithm topological ordering care package so that, given an input directed graph G, it outputs one of two things: (a) a topological ordering,
thus establishing that G is a DAG, or (b) a cycle in G, thus establishing that G is not a DAG.

The running time of your algorithm should be O(m + n) for a directed graph with # nodes and m edges.

Click here for the Solution

Submission

You will NOT submit this question. This is for you to get into thinking more about designing algorithms on graphs.

HW 3 Solutions

At the end of the lecture

Graded HW 2

Hopefully by tonight

Questions?

Breadth First Search (BFS)

Build layers of vertices connected to s

Lo = {s}

Assume Ly,..,L; have been constructed

L., set of vertices[not chosen yet]but are connected to L;

A

hen new layer is empty

Use linked lists Use CC|v] array

Rest of Today’s agenda

Quick run time analysis for BFS

Quick run time analysis for DFS (and Queue version of BFS)

Helping you schedule your activities for the day

O(m+n) BFS Implementation

BFS(s) [|
CC[s] = 'Iﬁi CC[w] = F for every w# s
Seti=0

Set Lo= {S}

While L; is not empty

Liv1 = ¢

For every u in L;
For every edge (u,w)
If CC[w] = F then
CClw]=T
Add w to L,

i++

L

Version in KT
also

computes a
BFS tree

All the layers as one

BFS(s)

CC[s] =T and CC[w] = F for every w# s

Seti=0
Set Ly= {s}

While L; is not empty o O
Liv1= @

i++

All layers are
considered in first-

in-first-out order

Can combine all layers
into one queue: all the

children of a node are
added to the end of the
gueue

An illustration

©0]0]6]0]0]0J0J0

Queue O(m+n) implementation

BFS(s)

CC[s] =T and CC[w] = F for every w# s m

Intitialize Q= {s}

Questions?

Implementing DFS in O(m+n) time

Same as BFS except stack instead of a queue

A DFS run using an explicit stack

OOOOOOOEEGE

DFS stack implementation

DFS(s)

CC[s] =T and CC[w] = F for every w# s

Intitialize S = {s}

Same
O(m+n) run
time analysis

as for BFS

Questions?

Reading Assighment

Sec 3.3, 3.4, 3.5 and 3.6 of [KT]

Directed graphs

Model asymmetric relationships

Precedence relationships

u needs to be done before w means (u,w) edge

Directed graphs

Each vertex has two

lists in Adj. list rep.

Directed Acyclic Graph (DAG)

No directed cycles

Topological Sorting of a DAG

Order the vertices so that all edges go “forward”

Probablllstlc Graphlcal IVIodeIs (PGMs)

ooo

fsie(s,e) = Pr[S=s|E=¢€]

—
7%
S

S E fsie

1 1 0.8

¢ (h) =sz|D,S(h’d’S) X Tge(s.e) 1 0 0.3
d,s,e X fD|E(d,e) X fE(e)‘ 0 1 0.2

0 0 0.7

More details on Topological sort

Topological Ordering

This page collects material from previous incamations of CSE 331 on topological ordering.

Where does the textbook talk about this?

Section 3.6 in the textbook has the lowdown on topological ordering.

Fall 2018 material

First lecture
Here is the lecture video:

CSE331 on 10/1/2018 (Mon)

>

Questions?

Main Steps in Algorithm Design

Problem Statement

Problem Definition

Algorithm

“Implementation” Data Structures

Analysis Correctness+Runtime Analysis

Where do graphs fit in?

Problem Statement

= 4

Problem Definition

A tool to define
problems

Algorithm

“Implementation” Data Structures

Analysis Correctness+Runtime Analysis

Rest of the course*™

Problem Statement

Problem Definition

@}
Three general . O
techniques

Algorithm

“Implementation” Data Structures

Analysis Correctness+Runtime Analysis

Greedy algorithms

Build the final solution piece by piece
waitinjtiliasilfuitdcheaner

Being short sighted on each piece

Never undo a decision

AR

End of Semester blues

Can only do one thing at any day: what is the

maximum number of tasks that you can do?

Party!

Write up a term paper

Exam study mework 331 HW

Sunday Monday Tuesday Wednesday Thursday

The optimal solution

Can only do one thing at any day: what is the

maximum number of tasks that you can do?

---_—t_—G >

Monday Tuesday Wednesday Thursday Friday

331 HW

Interval Scheduling Problem

Input: n intervals [s(i), f(i)) for 1<i<n

0

Output: A schedule S of the n intervals

No two intervals in S conflict

|S| is maximized

Algorithm with examples

Interval Scheduling via examples

In which we derive an algorithm that solves the Interval Scheduling problem via a sequence of examples.

The problem

In these notes we will solve the following problem:

Interval Scheduling Problem

XTI An input of n intervals [s(i), f(i)), or in other words, {s(i), . . . , f@i) — 1}for 1 < i < n where i represents the intervals, s(i) represents the start time, and f'(i)
represents the finish time.

(TN A schedule S of n intervals where no two intervals in S conflict, and the total number of intervals in S is maximized.

Sample Input and Output

Example 1

No intervals overlap

Task 2

Algorithm?

] No |
o Intervals overla
I e] P

R: set of requests

Example 2

At most one overlap

Task 2

Algorithm?

[] B [
I N = = mmm At mostone overlap

R: set of requests

Example 3

More than one conflict

Task 4

Task 5

Task 2

/Set S to be the empty set

While R is not empty

ChooseiinR
AdditoS

Remove all tasks that conflict with i from R

\\Return S*=S

N

4

Greedily solve your blues!

Arrange tasks in some order and iteratively pick non-

overlapping tasks

Party!

Write up a term paper

Monday Tuesday Wednesday Thursday Friday

Making it more formal

More than one conflict

Task 4

Task 5

Task 2

/Set S to be the empty set

While R is not empty

Choose i in R that minimizes v(i)
AdditoS

Remove all tasks that conflict with i from R

\Return S*=S

4

value
with task

What is a good choice for v(i)?

More than one conflict

Task 4

Task 5

Task 2

/Set S to be the empty set

While R is not empty
Choose i in R that minimizes v(i)
AdditoS

Remove all tasks that conflict with i from R

\\Return S*=S

4

value
with task

v(i) = £(i) — s(i)

Smallest duration first

Task 4

Task 5

Task 2

/Set S to be the empty set

While R is not empty

Choose i in R that minimizes f(i) — s(i)
AdditoS

Remove all tasks that conflict with i from R

\\Return S*=S

N

4

Earliest time first?

/Set S to be the empty set

While R is not empty

Choose i in R that minimizes s(i)
AdditoS

Remove all tasks that conflict with i from R

\Return S*=S

N

Task 4

Task 5

4

Task 2

So are we

done?

Not so fast....

Earliest time first?

Task 4

Task 5

Task 2

Task 6

/Set S to be the empty set
While R is not empty

Choose i in R that minimizes s(i)
AdditoS

\\Return S*=S

Remove all tasks that conflict with i from R

N

4

Pick job with minimum conflicts
Task 4 || Task 5

Task 2

/Set S to be the empty set \

While R is not empty So are we

Choose i in R that has smallest number of conflicts
AdditoS

Remove all tasks that conflict with i from R

\\Return S*=S /

done?

Nope (but harder to show)

Task 7

Task 4

Task 5

Task 2

Task 17

Task 6

Task 8

Task 10

/Set S to be the empty set

Addito S

\\Return S*=S

While R is not empty

Choose i in R that has smallest number of conflicts

Remove all tasks that conflict with i from R

N

4

Algorithm?

Task 7

Task 4 Task 5 Task 17

Task 2

Task 6 Task 8 - Task 10

/Set S to be the empty set \

While R is not empty

Choose i in R that minimizes v(i)
AdditoS

Remove all tasks that conflict with i from R

\\Return S*=S /

Earliest finish time first

Task 7

Task 4 Task 5 Task 17

Task 2

Task 6 Task 8 - Task 10

/Set S to be the empty set \

While R is not empty

Choose i in R that minimizes f(i)
AdditoS

Remove all tasks that conflict with i from R

\\Return S*=S /

Find a counter-example?

Task 17

Task 7
Task 4 Task 5
Task 6

Task 8 - Task 10

/Set S to be the empty set

While R is not empty

Addito S

kReturn S*=S

Choose i in R that minimizes f(i)

Remove all tasks that conflict with i fro

Questions?

Today’s agenda

Prove the correctness of the algorithm

Final Algorithm

R: set of requests

