Lecture 21

CSE 331
Oct 18, 2019

HW 5 grading delayed

Postponed at least till next Friday

Mid-term grading will take precedence

Mini Project updates

To be released over the weekend
Video submission
Problem 2 of coding project

(Hopefully) Problem 3 of coding project

Story behind HWs

E note stop following EEERVTIL)

ACM ICPC contest in UB on Oct 26th!

Sorry, this a bit late but wanted to let y'all know that the we will have a WNY preliminary contest for ACM ICPC at UB on Oct 26:

https://cse.buffalo.edu/icpc/

We can have up to 3 teams from UB to compete and we have 2-5 extra spaces in case you are interested in participating in one of the UB teams.

If you are interested in participating, please email me by 5pm tomorrow (Friday).

If you do not to participate but still want to get a sense for the competition, please volunteer to help out on the 26th (we need about 5 volunteers). Please email me if you are
interested.

logistics

m good note Updated 5 hours ago by Atri Rudra

ACM ICPC contest!

Western NY preliminary contest for
ACM ICPC

October 26, 2019
| E note stop following

ACM ICPC contest in UB on Oct 26th!

Sorry, this a bit late but wanted to let y'all know that the we will have a WNY preliminary contest for ACM ICPC at UB on Oct 26:

https://cse.buffalo.edu/icpc/

We can have up to 3 teams from UB to compete and we have 2-5 extra spaces in case you are interested in participating in one of the UB teams.

If you are interested in participating, please email me by 5pm tomorrow (Friday).

If you do not to participate but still want to get a sense for the competition, please volunteer to help out on the 26th (we need about 5 volunteers). Please email me if you are
interested.

logistics

m good note Updated 5 hours ago by Atri Rudra

Minimum Spanning Tree Problem

Input: Undirected, connected G = (V,E), edge costs c,

Output: SubsetE' € E), s.t. T = (V,E’) is connected
C(T) is minimized

If all c, >0, then T is indeed a tree

Kruskal’s Algorithm

Input: G=(V,E), c.> 0 for everyeinE

T=0

Sort edges in increasing order of their cost

Consider edges in sorted order

—

If an edge can be added to T without adding a cycle then add itto T

Joseph B. Kruskal

Cut Property Lemma for MSTs

Condition: S and V\S are non-empty

Did an incorrect

Cheapest crossing edge is in “proof” last
Friday

Assumption: All edge costs are distinct

Today’s agenda

Prove Cut Property Lemma
Optimality of Kruskal's algorithm

Remove distinct edge weights assumption

Optimality of Kruskal’s Algorithm

red =I S

Input: G=(V,E), c.> 0 for everyein E

S is non-empty

T=0
V\S is non-empty

Sort edges i increasing order of their cost First crossing edge considered

Consider edges in sorted order

L!edge can be added todl without adding a cyclethen add itto T

Is (V,T) a spanning tree?

No cycles by design

Just need to show that (V,T) is connected

15l
| 228
>

No edges here ': FINITD

Removing distinct cost assumption

Change all edge weights by very small amounts

Make sure that all edge weights are distinct

MST for “perturbed” weights is the same as for original

Changes have to be small enough so that this holds
[

EXERCISE: Figure out how to change

costs

Running time for Prim’s algorithm

Similar to Dijkstra’ s algorithm

O(m log n)

Input: G=(V,E), c.> 0 for every ein E
S={s}, T=0

While S is not the same as V

Among edges e= (u,w) with uin Sand w not in S, pick one with minimum cost

AddwtoS,etoT

Running time for Kruskal’s Algorithm

[Can be implemented in O(m log n) time (Union-find DS)}

Input: G=(V,E), c.> 0 for everyeinE

—
I
IS

Sort edges in increasing order of their cost

Joseph B. Kruskal
Consider edges in sorted order

If an edge can be added to T without adding a cycle then add itto T

Can be verified in time

Reading Assighment

Sec 4.5, 4.6 of [KT]

High Level view of the course

Problem Statement

Problem Definition

(6} e [J
Three general . O ®

techniques

Done with

greedy

Algorithm

“Implementation” Data Structures

Analysis Correctness+Runtime Analysis

Trivia

Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems

“Patch up” the solutions to the sub-problems for the final solution

Sorting

Given n numbers order them from smallest to largest

Works for any set of elements on which there is a total order

Insertion Sort

Input: a4, ay,...., a, Make sure that all the
processed numbers
Output: by,b,,...,b, are sorted

Other O(n?) sorting algorithms

Selection Sort: In every round pick the min among remaining numbers

Bubble sort: The smallest number “bubbles” up

Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems

“Patch up” the solutions to the sub-problems for the final solution

Mergesort Algorithm

Divide up the numbers in the middle

n=2
Sort each half recursively

Merge the two sorted halves into one sorted output

How fast can sorted arrays be merged?

Group talk time

Mergesort algorithm

Input: a, a,, ..., a, Output: Numbers in sorted order

MergeSort(a, n)

If n =1 return the order 3,
If n = 2 return the order min(ay,a,); max(ay,a,)

d_ =dj,..., an/z
dr = an/2+1l"'l dn

return MERGE (MergeSort(a,, n/2), MergeSort(ag, n/2))

An example run

sL.1 w0 1 2843

|1 51! !19 100 | |2 8! | 3 4
[1 19 51 1?)2 3 A 3 |
2 3 P8 19 51 100

MergeSort(a, n)

If n =1 return the order a;
If n = 2 return the order min(a,a,); max(a,a,)

a|_ = a]_,..., an/z

agp = an/2+ll"'l dn

return MERGE (MergeSort(a,, n/2), MergeSort(ag, n/2))

Correctness

Input: a4, a,, ..., a, Output: Numbers in sorted order

MergeSort(a, n

n =1 return the order a;
n = 2 return the order min(ay,a,); max(ay,a

a|_ = a]_,..., an/z

dR = dn/2+1s:++» 9An

return MERGE /" MergeSort(a,, n MergeSort(ag, n

Inductive step follows from correctness of MERGE

