Lecture 30

CSE 331
Nov 8, 2019

HW 8 out

Homework 8

Due by 11:00am, Friday, November 15, 2019.

! Note on Timeouts

For this problem the total timeout for Autolab is 480s, which is higher the the usual timeout of 180s in the earlier homeworks. So if your code takes a long time
to run it'll take longer for you to get feedback on Autolab. Please start early to avoid getting deadlocked out before the submission deadline.

Also for this problem, C++ and Java are way faster. The 480s timeout was chosen to accommodate the fact that Python is much slower than these two languages.

Question 1 (Finding a sink) [50 points]

The Problem
Given a directed graph G = (V, E), avertex s € V is called a sink if there are incoming edges from every other vertex to s but no outgoing edge from s, i.e.
{(u,5) € E}| = |V| — 1 and |{(s,u) € E}| = 0.

The goal of this problem is to design an algorithm to find out if G has a sink and if so, to output it. (Recall that n = | V|). Your algorithm is given G in its adjacency matrix A (i.e.
if an ordered pair (i, v) € E, then A[u][v] = 1 and if (4, v) &€ E, then A[u][v] = 0).

>ample Input/Output pair
Here are two sample input/output pairs (input is the matrix, with vertex set {u, v, x, y, z} and the rows (top to bottom) and column (from left to right) are in the order
u,v,x,Yy,z) and the output is a vertex (if it is a sink) or null otherwise):

HW 7 solutions

At the end of the lecture

HW 6 grading

By Sunday morning

Video mini project grading

After Thanksgiving break

Coding Project is all live now!
B note stop fllwing

All of Coding Project is now live!

As promised in @1143, Autolab is now accepting submissions for Problem 5 for the coding project as well. The coding project webpage has been updated with the required coding
details:

http://www-student.cse.buffalo.edu/~atri/cse331/fall19/coding-project/index.html

Few things to keep in mind:

e As with problem 1 (@801), 2 (@980), 3 (@1114) and 4(@1143) this is group submission-- please see the webpage for instructions on how to do so. Please follow the instructions
EXACTLY. Not following the instructions might make the group submission on Autolab not behave as intended.
¢ You have to form your group AGAIN for Problem 5 on Autolab-- it unfortunately does not carry over from Problem 1 or Problem 2 or Problem 3 or Problem 4.
¢ Please download the zip for Problem 5 and use that for Problem 5 submission. In particular, do NOT use the zip for Problem 1 or 2 or 3 or 4 for Problem 5.
e Now for some points that are not repeated from the earlier post:
¢ In case you have not noticed already, HW6 Q3 might be useful for this problem (on all of Problems 2 to 5)
e The requirement for Problem 5 is much more stringent from the previous problems and | would recommend that you do not leave it to the very last moment.

If you have questions, please post on piazza! Or go to office hours. Have fun :-
#pin

<o | Proplem 2 apa-3 due at 11am, Friday, November 22, 2019.

Atri Rudra

Problem 3 now due at 11am, Tuesday, November 26, 2019.

Problems 4 and 5 due at 11am, Friday, December 6, 2019.

ICHRMH

Weighted Interval Scheduling

Input: n jobs (s;,f,v:)

Output: A schedule S s.t. no two jobs in S have a conflict

Goal: max 2,5V,

Assume: jobs are sorted by their finish time

Couple more definitions

p(j) = largest i <j s.t. i does not conflict with |
° @

= 0 if no such i exists

OPT(j) = optimal value on instance 1,..,]

Property of OPT

v

OPT(j) = max { Y 1— OPT(p(j)), OPT(j-1) }

Given o
how can one figure out if

in optimal solution or not?

A recursive algorithm

Compute-Opt(j)

OPT(j) = max{ v, + OPT(p(j)), OPT(j-1) }

Exponential Running Time

1
2 [p(j) = j-2 }
3I

—

=

—

L
I

Only 5 OPT

values!

OPT(3) OPT(4)

Formal
proof: Ex.

OPT(2)

OPT(1)

A recursive algorithm

M-Compute-Opt(j) M-Compute-Opt()
= OPT()

Run time = O(# recursive calls)

Bounding # recursions

M-Compute-Opt(j)

overall

Whenever a recursive call is made an
value is assigned

At most values of can be assigned

ICHRMH

Property of OPT

OPT(j) = max{ v, + OPT(p(j)), OPT(j-1) }

Given

one can compute

Recursion+ memory = lteration

lteratively compute the OPT(j) values

Iterative-Compute-Opt

ICHRMH

Reading Assighment

Sec 6.1, 6.2 of [KT]

When to use Dynamic Programming

There are polynomially many sub-problems

OPT(1), ..., OPT(n)

Richard Bellman

Optimal solution can be computed from solutions to sub-problems
OPT(j) = max {v;+OPT(p(j)), OPT(j-1) }

There is an ordering among sub-problem that allows for iterative solution

OPT (j) only depends on OPT(j-1), ..., OPT(1)

Scheduling to min idle cycles

n jobs, it job takes w; cycles

You have W cycles on the cloud iazon

What is the maximum number of cycles you can schedule?

Rest of today’s agenda

Dynamic Program for Subset Sum problem

May the Bellman force be with you

