Lecture 30

CSE 331

Nov 12, 2021

Please have a face mask on

Masking requirement

LIR requires all students, employees and visitors – regardless of their vaccination status – to wear face coverings while inside campus buildings.

https://www.buffalo.edu/coronavirus/health-and-safety/health-safety-guidelines.html

Homework 6 out

Homework 6

Part (b): Present a divide and conquer algorithm that given non-negative integers a and n computes Power (a, n) in O(log n) time.

Important Note

To get credit you must present a recursive divide and conquer algorithm and then analyze its running time by solving a recurrence relation. If you present an algorithm that is not a divide and conquer algorithm you will get a level 0 on this entire part.

Question 1 (Exponentiation) [50 points]

The Problem

We will consider the problem of exponentiating an integer to another. In particular, for non-negative integers a and a, define Pewer (a, n) be the number a^n . (For this problem assume that you can multiply two integers in O(1) time.) Here are the two parts of the problem:

Part (a): Present a naive algorithm that given non-negative integers a and n computes. Power (a, n) in time O(n).

Note

For this part, there is no need to prove correctness of the naive algorithm but you do need a runtime analysis.

Part (b) Present a divide and conquer algorithm that given non-negative integers a and n computes Power (a, n) in O(log n) time.

Questions/Comments?

Weighted Interval Scheduling

Input: n jobs (s_i, f_i, v_i)

Output: A schedule S s.t. no two jobs in S have a conflict

Goal: $\max \Sigma_{i \text{ in S}} V_j$

Assume: jobs are sorted by their finish time

Couple more definitions

```
p(j) = largest i < j s.t. i does not conflict with j
= 0 if no such i exists</pre>
```

OPT(j) = optimal value on instance 1,..,j

Property of OPT

A recursive algorithm

Compute-Opt(j)

$$OPT(j) = max \{ v_j + OPT(p(j)), OPT(j-1) \}$$

Exponential Running Time

A recursive algorithm

Run time = O(# recursive calls)

Questions/Comments?

Bounding # recursions

M-Compute-Opt(j)

```
If j = 0 then return 0

If M[j] is not null then return M[j]

M[j] = max { v<sub>j</sub> + M-Compute-Opt( p(j) ), M-Compute-Opt( j-1 ) }

return M[j]
```

Whenever a recursive call is made an walue is assigned

At most n values of M can be assigned

Property of OPT

Recursion+ memory = Iteration

Iteratively compute the OPT(j) values

Iterative-Compute-Opt

```
M[0] = 0
For j=1,...,n
M[j] = max \{ v_j + M[p(j)], M[j-1] \}
```

M[j] = OPT(j)

O(n) run time

Algo run on the board...

Reading Assignment

Sec 6.1, 6.2 of [KT]

When to use Dynamic Programming

There are polynomially many sub-problems

Richard Bellman

Optimal solution can be computed from solutions to sub-problems

OPT(j) = max
$$\{v_j + OPT(p(j)), OPT(j-1)\}$$

There is an ordering among sub-problem that allows for iterative solution

Scheduling to min idle cycles

n jobs, ith job takes w_i cycles

You have W cycles on the cloud

What is the maximum number of cycles you can schedule?

Rest of today's agenda

Dynamic Program for Subset Sum problem

May the Bellman force be with you

