Lecture 23

CSE 331

Oct 26, 2022

Mergesort algorithm

Input: a₁, a₂, ..., a_n Output: Numbers in sorted order

```
MergeSort( a, n )

If n = 1 return the order a_1

If n = 2 return the order min(a_1,a_2); max(a_1,a_2)

a_L = a_1,..., a_{n/2}

a_R = a_{n/2+1},..., a_n

return MERGE ( MergeSort(a_L, n/2), MergeSort(a_R, n/2) )
```

An example run


```
MergeSort( a, n )

If n = 1 return the order a_1

If n = 2 return the order min(a_1,a_2); max(a_1,a_2)

a_L = a_1,..., a_{n/2}

a_R = a_{n/2+1},..., a_n

return MERGE ( MergeSort(a_L, n/2), MergeSort(a_R, n/2) )
```

Correctness

Input: a₁, a₂, ..., a_n Output: Numbers in sorted order

```
MergeSort( a, n )

If n = 1 return the order a_1
If n = 2 return the order min(a_1,a_2); max(a_1,a_2)

a_L = a_1,..., a_{n/2}

a_R = a_{n/2+1},..., a_n

return MERGE MergeSort(a_L, n/2) MergeSort(a_R, n/2)
```


Inductive step follows from correctness of MERGE

Runtime analysis on the board...

Rankings

How close are two rankings?

