
Lecture 25

CSE 331
Oct 31, 2022

Response to feedback up!

Reflection P1 due TODAY!

Group formation instructions

Follow instructions EXACTLY as they are stated

Make sure you are in your group

Questions/Comments?

Solving the bad case

aL aR

First element of aL is larger than first element of aR

First element of aL is smaller than first element of aR

5 6 …..

aL aR

1

5 6 …..

aL aR

1

Try to
modify

the
MERGE

algorithm

MERGE-COUNT(aL,aR)

aL = l1,…, ln’ aR = r1,…, rm

c = 0
i,j = 1

if li ≤ rj
i ++

else

j ++
c += n’- i +1

return c

5 6 …..

aL aR

1

5 6 …..

aL aR

1

add li to output

add rj to output

Output any remaining items

Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems

“Patch up” the solutions to the sub-problems for the final solution

Solve all sub-problems: Mergesort

Solve stronger sub-problems: Inversions

MergeSortCount algorithm

Input: a1, a2, …, an Output: Numbers in sorted order+ #inversion

MergeSortCount(a, n)

If n = 2 return (a1 > a2, min(a1,a2); max(a1,a2))

aL = a1,…, an/2 aR = an/2+1,…, an

return (c+cL+cR,a)

(cL, aL) = MergeSortCount(aL, n/2)

(cR, aR) = MergeSortCount(aR, n/2)

(c, a) = MERGE-COUNT(aL,aR) Counts #crossing-inversions+
MERGE

O(n)

T(2) = c

T(n) = 2T(n/2) + cn

O(n log n) time

If n = 1 return (0 , a1)

Questions/Comments?

Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems

“Patch up” the solutions to the sub-problems for the final solution

Improvements on a smaller scale

Greedy algorithms: exponential à poly time

(Typical) Divide and Conquer: O(n2) à asymptotically smaller running time

Multiplying two numbers

Given two numbers a and b in binary

a=(an-1,..,a0) and b = (bn-1,…,b0)

Compute c = a x b
Elementary

school
algorithm is

O(n2)

The current algorithm scheme

a � b = �22[n/2] + (+)�2[n/2] +

Mult over n
bits

Multiplication over n/2 bit inputs

Shift by O(n) bits

Adding O(n) bit numbers

T(n) ≤ 4T(n/2) + cn
T(1) ≤ c

T(n) is O(n2)

