
Lecture 23

CSE 331

Oct 25, 2024

Details on 1-on-1 meetings

1st project deadline next Friday

Questions/Comments?

Kruskal’s Algorithm

Joseph B. Kruskal

Input: G=(V,E), ce> 0 for every e in E

T = Ø

Sort edges in increasing order of their cost

Consider edges in sorted order

If an edge can be added to T without adding a cycle then add it to T

Cut Property Lemma for MSTs

S V \ S

Cheapest crossing edge is in all MSTs

Condition: S and V\S are non-empty

Assumption: All edge costs are distinct

Questions/Comments?

Today’s agenda

Optimality of Kruskal’s algorithm

Remove distinct edge weights assumption

Quick runtime analysis of Prim’s+Kruskal’s

S
V \ S

Optimality of Kruskal’s Algorithm

Input: G=(V,E), ce> 0 for every e in E

T = Ø

Sort edges in increasing order of their cost

Consider edges in sorted order

If an edge can be added to T without adding a cycle then add it to T

S
Nodes connected

to red in (V,T)

S is non-empty

V\S is non-empty

First crossing edge considered

Is (V,T) a spanning tree?

No cycles by design

Just need to show that (V,T) is connected

S’ V \ S’

No edges here

G is disconnected!

Removing distinct cost assumption

Change all edge weights by very small amounts

Make sure that all edge weights are distinct

MST for “perturbed” weights is the same as for original

Changes have to be small enough so that this holds

EXERCISE: Figure out how to change

costs

Questions/Comments?

Running time for Prim’s algorithm

Similar to Dijkstra’s algorithm

Input: G=(V,E), ce> 0 for every e in E

S = {s}, T = Ø

While S is not the same as V

Among edges e= (u,w) with u in S and w not in S, pick one with minimum cost

Add w to S, e to T

O(m log n)

Running time for Kruskal’s Algorithm

Joseph B. Kruskal

Input: G=(V,E), ce> 0 for every e in E

T = Ø

Sort edges in increasing order of their cost

Consider edges in sorted order

If an edge can be added to T without adding a cycle then add it to T

Can be verified in O(m+n) time

O(m2) time

overall

Can be implemented in O(m log n) time (Union-find DS)

Reading Assignment

Sec 4.5, 4.6 of [KT]

High Level view of the course

Problem Statement

Algorithm

Problem Definition

“Implementation”

Analysis Correctness+Runtime Analysis

Data Structures

Three general

techniques

Done with

greedy

Trivia

Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems

“Patch up” the solutions to the sub-problems for the final solution

Sorting

Given n numbers order them from smallest to largest

Works for any set of elements on which there is a total order

Insertion Sort

Input: a1, a2,…., an Make sure that all the

processed numbers are

sortedOutput: b1,b2,…,bn

b1= a1

for i =2 … n

Find 1 ≤ j ≤ i s.t. ai lies between bj-1 and bj

Move bj to bi-1 one cell “down”

bj=ai
4

3

2

1

a b

42

3

4

3

4

1

2

3

4

O(log n)

O(n)

O(n2) overall

Other O(n2) sorting algorithms

Selection Sort: In every round pick the min among remaining numbers

Bubble sort: The smallest number “bubbles” up

Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems

“Patch up” the solutions to the sub-problems for the final solution

Mergesort Algorithm

Divide up the numbers in the middle

Sort each half recursively

Merge the two sorted halves into one sorted output

Unless n=2

How fast can sorted arrays be merged?

Group talk time

Mergesort algorithm

Input: a1, a2, …, an Output: Numbers in sorted order

MergeSort(a, n)

If n = 2 return the order min(a1,a2); max(a1,a2)

aL = a1,…, an/2

aR = an/2+1,…, an

return MERGE (MergeSort(aL, n/2), MergeSort(aR, n/2))

If n = 1 return the order a1

An example run

MergeSort(a, n)

If n = 2 return the order min(a1,a2); max(a1,a2)

aL = a1,…, an/2

aR = an/2+1,…, an

return MERGE (MergeSort(aL, n/2), MergeSort(aR, n/2))

151 100 19 2 8 34

511 19 100

1 19 51 100

2 8 43

2 3 4 8

1 2 3 4 8 19 51 100

If n = 1 return the order a1

Correctness

Input: a1, a2, …, an Output: Numbers in sorted order

MergeSort(a, n)

If n = 2 return the order min(a1,a2); max(a1,a2)

aL = a1,…, an/2

aR = an/2+1,…, an

return MERGE (MergeSort(aL, n/2), MergeSort(aR, n/2))

By

induction

on n

Inductive step follows from correctness of MERGE

If n = 1 return the order a1

Runtime analysis on the board…

	Slide 1: Lecture 23
	Slide 2: Details on 1-on-1 meetings
	Slide 3: 1st project deadline next Friday
	Slide 4: Questions/Comments?
	Slide 5: Kruskal’s Algorithm
	Slide 6: Cut Property Lemma for MSTs
	Slide 7: Questions/Comments?
	Slide 8: Today’s agenda
	Slide 9: Optimality of Kruskal’s Algorithm
	Slide 10: Is (V,T) a spanning tree?
	Slide 11: Removing distinct cost assumption
	Slide 12: Questions/Comments?
	Slide 13: Running time for Prim’s algorithm
	Slide 14: Running time for Kruskal’s Algorithm
	Slide 15: Reading Assignment
	Slide 16: High Level view of the course
	Slide 17: Trivia
	Slide 18: Divide and Conquer
	Slide 19: Sorting
	Slide 20: Insertion Sort
	Slide 21: Other O(n2) sorting algorithms
	Slide 22: Divide and Conquer
	Slide 23: Mergesort Algorithm
	Slide 24: How fast can sorted arrays be merged?
	Slide 25: Mergesort algorithm
	Slide 26: An example run
	Slide 27: Correctness
	Slide 28: Runtime analysis on the board…

