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Details on 1-on-1 meetings



1st project deadline next Friday



Questions/Comments?



Kruskal’s Algorithm

Joseph B. Kruskal

Input: G=(V,E), ce> 0 for every e in E

T = Ø

Sort edges in increasing order of their cost

Consider edges in sorted order

If  an edge can be added to T without adding a cycle then add it to T



Cut Property Lemma for MSTs

S V \ S

Cheapest crossing edge is in all MSTs

Condition: S and V\S are non-empty

Assumption: All edge costs are distinct



Questions/Comments?



Today’s agenda

Optimality of  Kruskal’s algorithm

Remove distinct edge weights assumption

Quick runtime analysis of  Prim’s+Kruskal’s



S
V \ S

Optimality of  Kruskal’s Algorithm

Input: G=(V,E), ce> 0 for every e in E

T = Ø

Sort edges in increasing order of their cost

Consider edges in sorted order

If  an edge can be added to T without adding a cycle then add it to T

S
Nodes connected 

to red in (V,T)

S is non-empty

V\S is non-empty

First crossing edge considered



Is (V,T) a spanning tree?

No cycles by design

Just need to show that (V,T) is connected

S’ V \ S’

No edges here

G is disconnected!



Removing distinct cost assumption

Change all edge weights by very small amounts

Make sure that all edge weights are distinct

MST for “perturbed” weights is the same as for original

Changes have to be small enough so that this holds

EXERCISE: Figure out how to change 

costs



Questions/Comments?



Running time for Prim’s algorithm

Similar to Dijkstra’s algorithm

Input: G=(V,E), ce> 0 for every e in E

S = {s}, T = Ø

While S is not the same as V

Among edges e= (u,w) with u in S and w not in S, pick one with minimum cost 

Add w to S, e to T

O(m log n)



Running time for Kruskal’s Algorithm

Joseph B. Kruskal

Input: G=(V,E), ce> 0 for every e in E

T = Ø

Sort edges in increasing order of their cost

Consider edges in sorted order

If  an edge can be added to T without adding a cycle then add it to T

Can be verified in O(m+n) time

O(m2) time 

overall

Can be implemented in O(m log n) time (Union-find DS)



Reading Assignment

Sec 4.5, 4.6 of  [KT]



High Level view of  the course

Problem Statement

Algorithm

Problem Definition

“Implementation”

Analysis Correctness+Runtime Analysis

Data Structures

Three general 

techniques

Done with 

greedy



Trivia



Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems

“Patch up” the solutions to the sub-problems for the final solution



Sorting

Given n numbers order them from smallest to largest

Works for any set of  elements on which there is a total order



Insertion Sort

Input: a1, a2,…., an Make sure that all the 

processed numbers are 

sortedOutput: b1,b2,…,bn

b1= a1

for i =2 … n

Find 1 ≤ j ≤ i s.t. ai  lies between  bj-1 and  bj 

Move bj to bi-1 one cell “down”

bj=ai
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O(log n)

O(n)

O(n2) overall



Other O(n2) sorting algorithms

Selection Sort: In every round pick the min among remaining numbers

Bubble sort: The smallest number “bubbles” up



Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems

“Patch up” the solutions to the sub-problems for the final solution



Mergesort Algorithm

Divide up the numbers in the middle

Sort each half  recursively

Merge the two sorted halves into one sorted output

Unless n=2



How fast can sorted arrays be merged?

Group talk time



Mergesort algorithm

Input: a1, a2, …, an Output: Numbers in sorted order

MergeSort( a, n )

If  n = 2 return the order min(a1,a2); max(a1,a2)

aL = a1,…, an/2

aR = an/2+1,…, an

return MERGE ( MergeSort(aL, n/2), MergeSort(aR, n/2) )

If  n = 1 return the order a1



An example run

MergeSort( a, n )

If  n = 2 return the order min(a1,a2); max(a1,a2)

aL = a1,…, an/2

aR = an/2+1,…, an

return MERGE ( MergeSort(aL, n/2), MergeSort(aR, n/2) )

151 100 19 2 8 34

511 19 100

1 19 51 100

2 8 43

2 3 4 8

1 2 3 4 8 19 51 100

If  n = 1 return the order a1



Correctness

Input: a1, a2, …, an Output: Numbers in sorted order

MergeSort( a, n )

If  n = 2 return the order min(a1,a2); max(a1,a2)

aL = a1,…, an/2

aR = an/2+1,…, an

return MERGE ( MergeSort(aL, n/2), MergeSort(aR, n/2) )

By 

induction 

on n

Inductive step follows from correctness of  MERGE

If n = 1 return the order a1



Runtime analysis on the board…
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