
Lecture 25

CSE 331

Oct 30, 2024

1st project deadline THIS Friday

Questions/Comments?

Rankings

How close are two rankings?

Rest of today’s agenda

Formal problem: Counting inversions

Divide and Conquer algorithm

Problem definition on the board…

Solve a harder problem

Input: a1, .., an

Output: LIST of all inversions

for i in 1 to n-1

for j in i+1 to n

If ai > aj

add (i,j) to L

return L

Optimal for

the listing

problem

Example 1: All inversions-- (2i-1,2i)

2 1 3 4 6 5 7 8

Q1: Solve listing problem in O(n) time?

Q2: Recursive divide and conquer algorithm to count the number of inversions?

Only check (i,i+1) pairs

CountInv (a,n)

if n = 1 return 0

if n = 2 return a1 > a2

aL = a1 , .., a[n/2]

aR = a[n/2]+1 , .., an

return CountInv(aL, [n/2]) + CountInv(aR, n- [n/2])

Can be horribly wrong in general

CountInv (a,n)

if n = 1 return 0

if n = 2 return a1 > a2

aL = a1 , .., a[n/2]

aR = a[n/2]+1 , .., an

return CountInv(aL, [n/2]) + CountInv(aR, n- [n/2])

5 6 1 2 All 4 “crossing” pairs

are inversions

Bad case: “crossing inversions”

CountInv (a,n)

if n = 1 return 0

if n = 2 return a1 > a2

aL = a1 , .., a[n/2]

aR = a[n/2]+1 , .., an

return CountInv(aL, [n/2]) + CountInv(aR, n- [n/2])

aL aR

Are aL

and aR

sorted?

Yes!

Example 2: Solving the bad case

5 6 …..

aL
aR

1

aL is sorted

First element is aL is larger than first/only element in aR

O(1) algorithm to count number of inversions?

return size of aL

Example 3: Solving the bad case

5 6 …..

aL
aR

1

aR is sorted

First/only element is aL is smaller than first element in aR

O(1) algorithm to count number of inversions?

return 0

Solving the bad case

aL aR

First element of aL is larger than first element of aR

First element of aL is smaller than first element of aR

5 6 …..

aL
aR

1

5 6 …..

aL
aR

1

Try to

modify the

MERGE

algorithm

Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems

“Patch up” the solutions to the sub-problems for the final solution

Solve all sub-problems: Mergesort

Solve stronger sub-problems: Inversions

MergeSortCount algorithm

Input: a1, a2, …, an Output: Numbers in sorted order+ #inversion

MergeSortCount(a, n)

If n = 2 return (a1 > a2, min(a1,a2); max(a1,a2))

aL = a1,…, an/2 aR = an/2+1,…, an

return (c+cL+cR,a)

(cL, aL) = MergeSortCount(aL, n/2)

(cR, aR) = MergeSortCount(aR, n/2)

(c, a) = MERGE-COUNT(aL,aR) Counts #crossing-inversions+

MERGE

O(n)

T(2) = c

T(n) = 2T(n/2) + cn

O(n log n) time

If n = 1 return (0 , a1)

MERGE-COUNT(aL,aR)

aL = l1,…, ln’
aR = r1,…, rm

c = 0

i,j = 1

if li ≤ rj

i ++

else

j ++

c += n’- i +1

return c

5 6 …..

aL aR

1

5 6 …..

aL aR

1

add li to output

add rj to output

Output any remaining items

	Slide 1: Lecture 25
	Slide 2: 1st project deadline THIS Friday
	Slide 3: Questions/Comments?
	Slide 4: Rankings
	Slide 5: How close are two rankings?
	Slide 6: Rest of today’s agenda
	Slide 7: Problem definition on the board…
	Slide 8: Solve a harder problem
	Slide 9: Example 1: All inversions-- (2i-1,2i)
	Slide 10: Can be horribly wrong in general
	Slide 11: Bad case: “crossing inversions”
	Slide 12: Example 2: Solving the bad case
	Slide 13: Example 3: Solving the bad case
	Slide 14: Solving the bad case
	Slide 15: Divide and Conquer
	Slide 16: MergeSortCount algorithm
	Slide 17: MERGE-COUNT(aL,aR)

