Lecture 28

CSE 331
Nov 0, 2024

Final exam conftlict

B note @274 - stop following [y

Actions ~

Final exam conflicts

| know some of you have an exam conflict with CSE 331 final exam. Since I'm not sure if | know the exact set of students with conflict, | figured I'll do a piazza post.

If you have an exam conflict with the CSE 331 final please EMAIL me by 5pm on Friday, Nov 15. If you email me after this deadline, | cannot promise to be able to give you a
makeup option that works with your schedule.

Please note that the makeup final will be on Monday, Dec 16 (i.e. a day before the scheduled final exam). My goal is to pick a time that works for everyone on Dec 16.

So if you email me for a makeup final exam, please send me all the time(s) that you do a makeup on Monday, Dec 16 between 9am-5pm.

ﬂ good note |0 Updated 41 seconds ago by Atri Rudra

HW 6 1s out

Homework 6

Due by 11:30pm, Tuesday, November 12, 2024,
Make sure you follow all the homework policies.

All submissions should be done via Autolab.

Question 1 (Querying sensors) [60 points]

The Problem

In this problem, we will look at a query system that is motivated by applications in wireless networks. If you are not interested in the application details, just skip the next
paragraph and head straight to the formal description of the problem.

In particular, consider the scenario where there is a central node such that all the other sensor nodes can communicate directly with the central node. Each sensor node has a
bit of information (e.g. "Is the temperature at my location > 70 degrees?") The central node wants to compute some aggregate function over these bits: e.g. are there at least
two sensor nodes with temperature greater than 70 degrees? The central node can "poll" multiple sensor nodes at once to see if their bits are one. Each sensor node replies
with a positive back if it is polled and its bit is one. Else it remains silent. Now the central node can easily detect whether at least one of the sensor nodes it polled had its bit as
one by just checking if some sensor node responded or not. Due to the nature of the wireless medium, it is very hard to count the number of responses (due to collision) but it
is easy to check if at least one sensor node responded by just checking for "silence." Now for computing any function, we want to minimize the number of polls as each poll
needs a transmission, which in turn lower the battery life. The problem below talks about this scenario but only for "threshold" functions.

In this problem the input are n bits x1, ... , X,,. However, you can only access the input using the following kind of queries. A query is a subset S C {1, ...,n}. The answer to a
query S is the logical OR of the bits x; for i € S. Note that you have the full freedom to pick the query. So e.g. you can query all the bits one by one and have the full
knowledge of all the bits x, ... , x,. However, this means you will have to make n queries, which is a lot. Your goal will be compute certain function using as few queries as
possible.

Reflections 2+1 grading timeline

E note @281 v stop following

Actions ~

Timeline on project reflections grading

As a heads up, I’ll be manually grading all the reflections 1+2 grading so it’ll take a bit of time. Since reflection 2 in structure is closer to reflections 3-5, I'll grade reflection 2 first and
then reflection 1. My hope is to get reflection 2 graded within 2 weeks.

Figured should y’all a heads up as y’all work on the rest of the project.

project

m good note |0 Updated 8 minutes ago by Atri Rudra

Questions/Comments?

Dividing up P

First n/2 points according to the x-coord

Recursively tind closest pairs

6 = min (blue, green)

An aside: maintain sorted lists

P, and P, are P sorted by x-coord and y-coord

Q. Qp R, Ry can be computed from P, and P in O(n) time

An easy case

6 = min (blue, green)

All “crossing” pairs have distance > &

Lite is not so easy though

6 = min (blue, green)

Fuclid to the rescue (?)

d(pup) = ((x7%) >+ (y1y))"? O —

b—‘>-< N
‘“ M—-——— - -

The distance is larger than the x or y-coord difference

Lite is not so easy though

5 _ _ 0
e re—>

.>\8A ®

6 = min (blue, green)

All we have to do now

€ 1€ D

6 = min (blue, green)

Figure if a pair in S has distance < 6

The algorithm so far...

O(nlogn) + T(n)
Input: n 2-D points P = {p,...,p.}; pi=(X;V)

Sort P to get P and P

Closest-Pair (P, P,) - (n log n)

If n < 4 then find closest point by brute-force
Q is first half of P_and R is the rest

Compute Q,, Q,, R, and R;

(90,q1) = Closest-Pair (Q,, Q) O(n log n) overall

(to,r1) = Closest-Pair (R, R))

6 = min (d(qo,q1), d(ro,1))A
S = points (x,y) in P s.t. |x —x*| < ém

T(<4) =c
T(n) = 2T(n/2) + cn

, D —
———

Questions/Comments?

Rest of today’s agenda

Implement Closest-in-box 1n O(n) time

	Slide 1: Lecture 28
	Slide 2: Final exam conflict
	Slide 3: HW 6 is out
	Slide 4: Reflections 2+1 grading timeline
	Slide 5: Questions/Comments?
	Slide 6: Dividing up P
	Slide 7: Recursively find closest pairs
	Slide 8: An aside: maintain sorted lists
	Slide 9: An easy case
	Slide 10: Life is not so easy though
	Slide 11: Euclid to the rescue (?)
	Slide 12: Life is not so easy though
	Slide 13: All we have to do now
	Slide 14: The algorithm so far…
	Slide 15: Questions/Comments?
	Slide 16: Rest of today’s agenda

