
Lecture 29

CSE 331

Nov 8, 2024

Final exam conflict

Reflections 2+1 grading timeline

UB Hacking Workshop on Sat

Questions/Comments?

High level view of CSE 331

Problem Statement

Algorithm

Problem Definition

“Implementation”

Analysis Correctness+Runtime Analysis

Data Structures

Three general

techniques

Greedy Algorithms

Natural algorithms

Reduced exponential running time to polynomial

Divide and Conquer

Recursive algorithmic paradigm

Reduced large polynomial time to smaller polynomial time

A new algorithmic technique

Dynamic Programming

Dynamic programming vs. Divide &

Conquer

Same same because
Both design recursive algorithms

Different because
Dynamic programming is smarter about solving recursive sub-problems

End of Semester blues

Project

331 HWExam study

Party!

Write up a term paper

Can only do one thing at any day: what is the optimal

schedule to obtain maximum value?

(30)

(3)

(2)

(5)

(10)

Friday Saturday Sunday Monday Tuesday

Previous Greedy algorithm

Order by end time and pick jobs greedily

Project (30)

331 HW (3)

Party! (2)

Exam study (5)

Write up a term paper (10)

Greedy value = 5+2+3= 10

OPT = 30

Friday Saturday Sunday Monday Tuesday

Questions/Comments?

Today’s agenda

Formal definition of the problem

Start designing a recursive algorithm for the problem

Weighted Interval Scheduling

Input: n jobs/intervals. Interval i is triple (si, fi, vi)

start time

finish time

value

v2 = 4

v1 = 30

v3 = 2

v4 = 3

0 1 2 3

Questions/Comments?

Previous Greedy Algorithm

v2 = 4

v1 = 30

v3 = 2

v4 = 3

0 1 2 3

R = original set of jobs

While R is not empty

 Choose i in R where fi is the smallest

 Add i to S

 Remove all requests that conflict with i from R

Return S* = S

Perhaps be greedy differently?

v2 = 4

v1 = 30

v3 = 2

v4 = 3

0 1 2 3

R = original set of jobs

While R is not empty

 Choose i in R where vi/(fi – si) is the largest

 Add i to S

 Remove all requests that conflict with i from R

Return S* = S

Can this work?

v2 = 6

v1 = 12

v3 = 2

v4 = 3

0 1 2 3

R = original set of jobs

While R is not empty

 Choose i in R where vi/(fi – si) is the largest

 Add i to S

 Remove all requests that conflict with i from R

Return S* = S

Avoiding the greedy rabbit hole

https://www.writerightwords.com/down-the-rabbit-hole/

There are no known greedy algorithm to solve this problem

Provably

IMPOSSIBLE

for a large

class of

greedy algos

Questions/Comments?

Perhaps a divide & conquer algo?

Divide the problem in 2 or more many EQUAL SIZED

INDEPENDENT problems

Recursively solve the sub-problems

Patchup the SOLUTIONS to the sub-problems

Perhaps a divide & conquer algo?

if n = 1 return the only interval

L = first n/2 intervals

R = last n/2 intervals

RecurWeightedInt([n])

SL = RecurWeightedInt(L)

SR = RecurWeightedInt(R)

PatchUp(SL, SR)

Would this

general scheme

work?

Divide the problem in 2 or more many EQUAL SIZED

INDEPENDENT problems

Sub-problems NOT independent!

v3 = 10

v6 = 20

v5 = 5v1 = 1

0 1 2 3

v2 = 2 v4 = 4

Perhaps patchup can help?

v3 = 10

v6 = 20

v1 = 1

0 1 2 3

v2 = 2

Patchup the SOLUTIONS to the sub-problems

Sometimes patchup NOT needed!

v3 = 10

v6 = 0

v5 = 5v1 = 1

0 1 2 3

v2 = 2 v4 = 4

Check for two cases?

v3 = 10

v6 = 0

v5 = 5v1 = 1

0 1 2 3

v2 = 2 v4 = 4

v3 = 10

v6 = 20

v5 = 5v1 = 1

0 1 2 3

v2 = 2 v4 = 4

6 is in the optimal solution

6 is NOT in the optimal solution

Check if v6 is the largest value?

v3 = 10

v6 = 0

v5 =15v1 = 1

0 1 2 3

v2 = 2 v4= 14

v3 = 10

v6 = 20

v5 = 5v1 = 1

0 1 2 3

v2 = 2 v4 = 4

v6 = 20

6 is in the optimal solution

6 is NOT in the optimal solution

Cannot decide this

greedily. Need to

have a global view!

Check out both options!

v3 = 10

v6 = 20

v5 = 5v1 = 1

0 1 2 3

v2 = 2 v4 = 4

Case 1: 6 is in the optimal solution

6 is not in optimal solution

v3 = 10

v5 =15v1 = 1

0 1 2 3

v2 = 2 v4= 14

v6 = 20

So what sub-problems?
Divide the problem in 2 or more many EQUAL SIZED

INDEPENDENT problems

Original problem

Sub-problem 5

Sub problem 4

Sub problem 3

Sub-problem 2

Sub problem 1

	Slide 1: Lecture 29
	Slide 2: Final exam conflict
	Slide 3: Reflections 2+1 grading timeline
	Slide 4: UB Hacking Workshop on Sat
	Slide 5: Questions/Comments?
	Slide 6: High level view of CSE 331
	Slide 7: Greedy Algorithms
	Slide 8: Divide and Conquer
	Slide 9: A new algorithmic technique
	Slide 10: Dynamic programming vs. Divide & Conquer
	Slide 11: Same same because
	Slide 12: Different because
	Slide 13: End of Semester blues
	Slide 14: Previous Greedy algorithm
	Slide 15: Questions/Comments?
	Slide 16: Today’s agenda
	Slide 17: Weighted Interval Scheduling
	Slide 18: Questions/Comments?
	Slide 19: Previous Greedy Algorithm
	Slide 20: Perhaps be greedy differently?
	Slide 21: Can this work?
	Slide 22: Avoiding the greedy rabbit hole
	Slide 23: Questions/Comments?
	Slide 24: Perhaps a divide & conquer algo?
	Slide 25: Perhaps a divide & conquer algo?
	Slide 26: Sub-problems NOT independent!
	Slide 27: Perhaps patchup can help?
	Slide 28: Sometimes patchup NOT needed!
	Slide 29: Check for two cases?
	Slide 30: Check if v6 is the largest value?
	Slide 31: Check out both options!
	Slide 32: 6 is not in optimal solution
	Slide 33
	Slide 34: So what sub-problems?
	Slide 35

