
Lecture 29

CSE 331

Nov 8, 2024



Final exam conflict



Reflections 2+1 grading timeline



UB Hacking Workshop on Sat



Questions/Comments?



High level view of  CSE 331

Problem Statement

Algorithm

Problem Definition

“Implementation”

Analysis Correctness+Runtime Analysis

Data Structures

Three general 

techniques



Greedy Algorithms

Natural algorithms

Reduced exponential running time to polynomial



Divide and Conquer

Recursive algorithmic paradigm

Reduced large polynomial time to smaller polynomial time



A new algorithmic technique

Dynamic Programming



Dynamic programming vs. Divide & 

Conquer



Same same because
Both design recursive algorithms



Different because
Dynamic programming is smarter about solving recursive sub-problems



End of  Semester blues

Project

331  HWExam study

Party!

Write up a term paper

Can only do one thing at any day: what is the optimal 

schedule to obtain maximum value?

(30)

(3)

(2)

(5)

(10)

Friday Saturday Sunday Monday Tuesday



Previous Greedy algorithm

Order by end time and pick jobs greedily

Project (30)

331  HW (3)

Party! (2)

Exam study (5)

Write up a term paper (10)

Greedy value = 5+2+3= 10

OPT = 30

Friday Saturday Sunday Monday Tuesday



Questions/Comments?



Today’s agenda

Formal definition of  the problem

Start designing a recursive algorithm for the problem



Weighted Interval Scheduling

Input: n jobs/intervals. Interval i is triple (si, fi, vi) 

start time

finish time

value

v2 = 4

v1 = 30

v3 = 2

v4 = 3

0 1 2 3



Questions/Comments?



Previous Greedy Algorithm

v2 = 4

v1 = 30

v3 = 2

v4 = 3

0 1 2 3

R = original set of  jobs

While R is not empty

 Choose i in R where fi is the smallest

 Add i to S

 Remove all requests that conflict with i from R

Return S* = S



Perhaps be greedy differently?

v2 = 4

v1 = 30

v3 = 2

v4 = 3

0 1 2 3

R = original set of  jobs

While R is not empty

 Choose i in R where vi/(fi – si) is the largest

 Add i to S

 Remove all requests that conflict with i from R

Return S* = S



Can this work?

v2 = 6

v1 = 12

v3 = 2

v4 = 3

0 1 2 3

R = original set of  jobs

While R is not empty

 Choose i in R where vi/(fi – si) is the largest

 Add i to S

 Remove all requests that conflict with i from R

Return S* = S



Avoiding the greedy rabbit hole

https://www.writerightwords.com/down-the-rabbit-hole/

There are no known greedy algorithm to solve this problem

Provably 

IMPOSSIBLE 

for a large 

class of  

greedy algos



Questions/Comments?



Perhaps a divide & conquer algo?

Divide the problem in 2 or more many EQUAL SIZED 

INDEPENDENT problems

Recursively solve the sub-problems

Patchup the SOLUTIONS to the sub-problems



Perhaps a divide & conquer algo?

if  n = 1 return the only interval

L = first n/2 intervals

R = last n/2 intervals

RecurWeightedInt([n])

SL = RecurWeightedInt(L)

SR = RecurWeightedInt(R)

PatchUp(SL, SR)

Would this 

general scheme 

work?

Divide the problem in 2 or more many EQUAL SIZED 

INDEPENDENT problems



Sub-problems  NOT independent!

v3 = 10

v6 = 20

v5 = 5v1 = 1

0 1 2 3

v2 = 2 v4 = 4



Perhaps patchup can help?

v3 = 10

v6 = 20

v1 = 1

0 1 2 3

v2 = 2

Patchup the SOLUTIONS to the sub-problems



Sometimes patchup  NOT needed!

v3 = 10

v6 = 0

v5 = 5v1 = 1

0 1 2 3

v2 = 2 v4 = 4



Check for two cases?

v3 = 10

v6 = 0

v5 = 5v1 = 1

0 1 2 3

v2 = 2 v4 = 4

v3 = 10

v6 = 20

v5 = 5v1 = 1

0 1 2 3

v2 = 2 v4 = 4

6 is in the optimal solution

6 is  NOT in the optimal solution



Check if  v6 is the largest value?

v3 = 10

v6 = 0

v5 =15v1 = 1

0 1 2 3

v2 = 2 v4= 14

v3 = 10

v6 = 20

v5 = 5v1 = 1

0 1 2 3

v2 = 2 v4 = 4

v6 = 20

6 is in the optimal solution

6 is  NOT in the optimal solution

Cannot decide this 

greedily. Need to 

have a global view!



Check out both options!

v3 = 10

v6 = 20

v5 = 5v1 = 1

0 1 2 3

v2 = 2 v4 = 4

Case 1: 6 is in the optimal solution



6 is not in optimal solution

v3 = 10

v5 =15v1 = 1

0 1 2 3

v2 = 2 v4= 14

v6 = 20





So what sub-problems?
Divide the problem in 2 or more many EQUAL SIZED 

INDEPENDENT problems

Original problem

Sub-problem 5

Sub problem 4

Sub problem 3

Sub-problem 2

Sub problem 1
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