
Lecture 7

CSE 331
Sep 12, 2018

Things to remember

Make sure you follow the HW policies

If by chance you violated any, just don’t submit

Make sure you clearly demarcate your submission
Use/follow the provided template

Check your PDF submits

Make sure to preview your PDF submission to Autolab!

A corrupted PDF or Word will get you a zero on that question

Your PDFs cannot be more than 3MB big

GS algo outputs a stable matching

Last lecture, GS outputs a perfect matching S

Lemma 3: S has no instability

Reading Assignment for today

Proof technique de jour

Source: 4simpsons.wordpress.com

Proof by contradiction

Assume the negation of what you want to prove

After some
reasoning

Two obervations

Obs 1: Once m is engaged he keeps getting
engaged to �better� women

Obs 2: If w proposes to m’ first and then to m
(or never proposes to m) then she
prefers m’ to m

Proof of Lemma 3

By contradiction

m w

m� w�

Assume there is an instability (m,w’)

m prefers w’ to w

w’ prefers m to m’

w’ last
proposed to m

Contradiction by Case Analysis

Depending on whether w’ had proposed to m or not

Case 1: w’ never proposed to m

w’

m
w’ prefers m’ to m

Assumed w’ prefers m to m’

Source: 4simpsons.wordpress.com

By Obs 2

By Obs 1

Case 2: w’ had proposed to m

Case 2.1: m had accepted w’ proposal
m is finally engaged to w

Thus, m prefers w to w’
4simpsons.wordpress.com

m

w’

Case 2.2: m had rejected w’ proposal

m was engaged to w’’ (prefers w’’ to w’)

m is finally engaged to w (prefers w to w’’

m prefers w to w’

4simpsons.wordpress.com

By Obs 1

By Obs 1

Overall structure of case analysis

Did w’ propose to m?

Did m accept w’
proposal?

4simpsons.wordpress.com

4simpsons.wordpress.com 4simpsons.wordpress.com

Questions?

Extensions

Fairness of the GS algorithm

Different executions of the GS algorithm

Main Steps in Algorithm Design
Problem Statement

Algorithm

Problem Definition

�Implementation�

Analysis

n!

Correctness Analysis

Definition of Efficiency

An algorithm is efficient if, when implemented, it runs quickly on real instances

Implemented where? Platform independent definition

What are real instances? Worst-case Inputs

Efficient in terms of what? Input size N

N = 2n2 for SMP

Definition-II

n!

Analytically better than brute force

How much better? By a factor of 2?

Definition-III

Should scale with input size

If N increases by a constant factor,
so should the measure

Polynomial running time At most c.Nd steps (c>0, d>0 absolute constants)

Step: �primitive computational step�

More on polynomial time

Problem centric tractability

Can talk about problems that are not efficient!

Reading Assignments

Sections 1.2, 2.1, 2.2 and 2.4 in [KT]

Asymptotic Analysis

(http://xkcd.com/399/)
Travelling Salesman Problem

Which one is better?

Now?

And now?

The actual run times

n!

100n2

n2

Asymptotic View

Asymptotic Notation

≤ is O with glasses

≥ is Ω with glasses

= is Θ with glasses

Another view

© Aleksandra Patrzalek, 2012

g(n) is O(f(n))

g(n)

n0

c*f(n) for some c>0

n

g(n) is Ω(f(n))

g(n)

n1

n

ε*f(n) for some ε>0

Reading Assignments

Sections 1.1, 1.2, 2.1, 2.2 and 2.4 in [KT]

