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Things to remember

Make sure you follow the HW policies 

If by chance you violated any, just don’t submit

Make sure you clearly demarcate your submission
Use/follow the provided template



Check your PDF submits

Make sure to preview your PDF submission to Autolab!

A corrupted PDF or Word will get you a zero on that question

Your PDFs cannot be more than 3MB big



GS algo outputs a stable matching

Last lecture, GS outputs a perfect matching S

Lemma 3: S has no instability



Reading Assignment for today



Proof technique de jour

Source: 4simpsons.wordpress.com

Proof by contradiction

Assume the negation of what you want to prove

After some 
reasoning



Two obervations

Obs 1: Once m is engaged he keeps getting 
engaged to �better� women

Obs 2: If w proposes to m’ first and then to m
(or never proposes to m) then she 
prefers m’ to m



Proof of Lemma 3

By contradiction

m w

m� w�

Assume there is an instability (m,w’)

m prefers w’ to w

w’ prefers m to m’

w’ last 
proposed to m



Contradiction by Case Analysis

Depending on whether w’ had proposed to m or not

Case 1: w’ never proposed to m

w’

m
w’ prefers m’ to m

Assumed w’ prefers m to m’

Source: 4simpsons.wordpress.com

By Obs 2



By Obs 1

Case 2: w’ had proposed to m

Case 2.1: m had accepted w’ proposal
m is finally engaged to  w

Thus, m prefers w to w’
4simpsons.wordpress.com

m

w’

Case 2.2: m had rejected w’ proposal

m was engaged to  w’’ (prefers w’’ to w’)

m is finally engaged to w (prefers w to w’’

m prefers w to w’

4simpsons.wordpress.com

By Obs 1

By Obs 1



Overall structure of case analysis

Did w’ propose to m?

Did m accept w’
proposal?

4simpsons.wordpress.com

4simpsons.wordpress.com 4simpsons.wordpress.com



Questions?



Extensions 

Fairness of the GS algorithm

Different executions of the GS algorithm



Main Steps in Algorithm Design
Problem Statement

Algorithm

Problem Definition

�Implementation�

Analysis

n!

Correctness Analysis



Definition of Efficiency

An algorithm is efficient if, when implemented, it runs quickly on real instances

Implemented where? Platform independent definition

What are real instances? Worst-case Inputs

Efficient in terms of what? Input size N

N = 2n2 for SMP



Definition-II

n!

Analytically better than brute force

How much better? By a factor of 2?



Definition-III

Should scale with input size

If N increases by a constant factor, 
so should the measure

Polynomial running time At most c.Nd steps (c>0, d>0 absolute constants)

Step: �primitive computational step�



More on polynomial time

Problem centric tractability

Can talk about problems that are not efficient!



Reading Assignments

Sections 1.2, 2.1, 2.2 and 2.4 in [KT]



Asymptotic Analysis

(http://xkcd.com/399/)
Travelling Salesman Problem



Which one is better?



Now?



And now?



The actual run times

n!

100n2

n2

Asymptotic View



Asymptotic Notation

≤ is O with glasses

≥ is Ω with glasses

= is Θ with glasses



Another view

© Aleksandra Patrzalek, 2012



g(n) is O(f(n))

g(n)

n0

c*f(n) for some c>0

n



g(n) is Ω(f(n))

g(n)

n1

n

ε*f(n) for some ε>0



Reading Assignments

Sections 1.1, 1.2, 2.1, 2.2 and 2.4 in [KT]


