Lecture /

CSE 331
Sep 12, 2018

Things to remember

Make sure you follow the HW policies

If by chance you violated any, just don’t submit

Make sure you clearly demarcate your submission

Use/follow the provided template

Check your PDF submits

Make sure to preview your PDF submission to Autolab!

A corrupted PDF or Word will get you a zero on that question

Your PDFs cannot be more than 3MB big

GS algo outputs a stable matching

Last lecture, GS outputs a perfect matching S

Lemma 3: S has no instability

Reading Assignment for today

E note SR 123 views

Reading/watching assignment for Wednesday lecture

So, ancther reading assignment for y'all. On Wednesday, | will go over the proof of Lemma 3 (Le. the output of GS algorithm S has no
nstabiity) a bit quickly on slices

It would be useful i you could read up the proof from the book or you can watch the eciure video from las! year
#pin

Proof technique de jour

Proof by contradiction

After some
reasoning

Source: 4simpsons.wordpress.com

Two obervations

Obs 1: Once m is engaged he keeps getting
engaged to “better” women

Obs 2: If w proposes to m’ first and then to m
(or never proposes to m) then she
prefers m' to m

Proof of Lemma 3

By contradiction

.

proposed to

Assume there is an instability (m,w’)

m prefers w’ to w

w’ prefers m to m’

Contradiction by Case Analysis

Depending on whether w’ had proposed to m or not

Case 1: w’ never proposed to m

w’ prefers m’ to mQ

Assumed w’ prefers m to m’

Source: 4simpsons.wordpress.com

Case 2: w’ had proposed to m

Case 2.1: m had accepted w’ proposal

m is finally engaged to w

s, m prefers w to w’

Case 2.2: m had rejected w’ proposal

m was engaged to w”’ (prefers w’’ to @
m is finally engaged to w (prefers w to w”. :

m prefers w to w’

Overall structure of case analysis

Did proposeto °?

’
\

proposal?

Questions?

Extensions

Fairness of the GS algorithm

Different executions of the GS algorithm

Main Steps in Algorithm Design

Algorithm

Definition of Efficiency

An algorithm is efficient if, when implemented, it runs quickly on real instances

Implemented where?

What are real instances? Worst-case Inputs

Efficient in terms of what? Input size N

Definition-I|

Analytically better than brute force

How much better? By a factor of 27?

Definition-Ill|

Should scale with input size

If N increases by a constant factor,
so should the measure

Polynomial running time || e 100 L]

Step: “primitive computational step”

More on polynomial time

Problem centric tractability

Can talk about problems that are not efficient!

Reading Assighments

Sections 1.2, 2.1, 2.2 and 2.4 in [KT]

Asymptotic Analysis

BRUTE-FORCE DYNAMIC .
SOL.UTT I(O)RNC: PROGRAMMING SELUNG ON ERAY:
0(n!) B 0(1)
¢ O (nZZn)
STILL WORKING
ON YOUR ROUTE?
\
~
SHUT THE
HEW vP

Travelling Salesman Problem
(http://xkcd.com/399/)

1300

1909

Which one is better?

15000

And now?

J.09e400

v

2. 50408

1.050446 -

The actual run times

Asymptotic View

Asymptotic Notation

<is O with glasses

> is QQ with glasses

= is © with glasses

Another view

;emain ar:onymouson the web, let me know). . " w .
* (t“) () (’h‘lﬂg fimetn
¢ D o\ 0.4 :
“ o b (ememp : '
. \{ \ , i 0 f 10 f.,m. o 6/‘0 5304 bl‘j.()_
S m n l(’ 018 \)) / J . -
L Skl fiauee f) B'j (L "FHool of fyncin”
v J Gt

© Aleksandra Patrzalek, 2012

g(n) is O(f(n))

c*f(n) for some c>0

g(n) is Q(f(n))

e*f(n) for some £>0

Reading Assighments

Sections 1.1, 1.2, 2.1, 2.2 and 2.4 in [KT]

