
Collaborative Drawing with Multi-Agent
Reinforcement Learning (Draft)

Nitin Nataraj, Priyanka Pai

June 27, 2019

1 Abstract
Reinforcement Learning (RL) is a learning paradigm in which agents learn to
make optimal decisions by interacting with an environment and maximizing
cumulative rewards. Multi-Agent RL (MARL) is an extension of the RL setting
to multi-agent domains, in which algorithms need to incorporate observations
from multiple agents in cooperative or competitive environments, and derive
policies for some or all of the agents. In this paper, we present a collaborative
drawing system that uses a Multi-Agent Actor Critic algorithm (MADDPG) [?]
to fill or trace image outlines. We introduce two MARL tasks, namely Image
Tracing and Image Filling and their respective reward functions. To conduct
our experiments, we develop the image-contour environment, which is built on
top of OpenAI’s multi-agent-particle environment 1, (first introduced in [?], and
then used in [?]). We present promising qualitative results on the MNIST image
dataset [?].

2 Introduction
Reinforcement Learning (RL) is a learning paradigm in which an agent learns
to make optimal decisions in an unknown environment by trying to maximize
cumulative rewards. Rewards are provided intermittently by a reward function
when the agent interacts with the environment. In reality, RL is used in
scenarios that require sequential decision making, and have constant environment
interactions, such as computer games, robotics and autonomous driving.

The Reinforcement Learning (RL) problem is to control a system so as to
maximize a numerical value which represents a long-term objective. The learner
is known as the agent and everything external to the agent is known as the
environment. The agent interacts with the environment by selecting actions from
the an action space, and the environment provides feedback through a reward
value. The agent aims to learn optimal policies, which are a series of actions,

1https://github.com/openai/multiagent-particle-envs

1

Figure 1: Action-reward feedback loop

that help the agent secure the maximum cumulative reward in the long term.
Video games usually provide a consistent reward signal, thus making it easier
for RL agents to learn. However, several scenarios, especially in the robotics
domain, suffer from the lack of a good reward function. For example, if you
want to teach a robot to grasp a water bottle, it is difficult to formulate a valid
reward signal. Providing a +1 reward when the robot grasps the bottle, and -1
otherwise, is a poor reward signal as it is very sparse, making it very unlikely
for the robot to stumble upon those specific states during training.

RL has existed for several decades [?], but has gained renewed traction
over the past few years due to the successes of deep learning methods in other
domains such as Computer Vision [?, ?, ?, ?] and Natural Language Processing
[?]. Deep Reinforcement Learning (DRL) is an extension of RL in which the
learned policy is represented by some deep neural network, which serves as an
effective function approximator. Most of the successes of RL have been in single
agent domains [?, ?], where modelling or predicting the behaviour of other actors
in the environment is largely unnecessary.

2.1 Multi-Agent Systems
Multi-agent systems are rapidly nding applications in a variety of domains,
including robotics, distributed control, telecommunications, and economics. The
complexity of many tasks arising in these domains makes them difcult to solve
with preprogrammed agent behaviors. The agents must instead discover a
solution on their own, using learning. A signicant part of the research on
multi-agent learning concerns reinforcement learning techniques.

A multi-agent system can be dened as a group of autonomous, interacting
entities sharing a common environment, which they perceive with sensors and
upon which they act with actuators. Multi-agent systems are nding applications
in a wide variety of domains including robotic teams, distributed control, resource
management, collaborative decision support systems, data mining, etc. They
may arise as the most natural way of looking at the system, or may provide an

2

alternative perspective on systems that are originally regarded as centralized.
For instance, in robotic teams the control authority is naturally distributed
among the robots. In resource management, while resources can be managed
by a central authority, identifying each resource with an agent may provide
a helpful, distributed perspective on the system. Although the agents in a
multi-agent system can be programmed with behaviors designed in advance, it
is often necessary that they learn new behaviors online, such that

2.2 Multi-Agent RL
A reinforcement learning (RL) agent learns by interacting with its dynamic
environment. At each time step, the agent perceives the state of the environment
and takes an action, which causes the environment to transit into a new state. A
scalar reward signal evaluates the quality of each transition, and the agent has to
maximize the cumulative reward along the course of interaction. The RL feedback
(the reward) is less informative than in supervised learning, where the agent
would be given the correct actions to take (such information is unfortunately
not always available). The RL feedback is, however, more informative than in
unsupervised learning, where there is no explicit feedback on the performance.
Well-understood, provably convergent algorithms are available for solving the
single-agent RL task. Together with the simplicity and generality of the setting,
this makes RL attractive also for multi-agent learning environment.

2.3 Policy-Gradients

Figure 2: The agent-environment interaction in a Markov decision process

3

In RL, the instinct is defined as the probability of taking an action u given a
state s, where π is the policy.

π = u|s (1)

J(θ) =
∑
s∈S

dπθ
(s)Vπθ

(s) (2)

where dπθ
(s) is stationary distribution of Markov chain for πθ. It is natural

to expect policy-based methods are more useful in continuous space, because
there is an infinite number of actions and/or states to estimate the values for in
continuous space and hence value-based approaches are computationally much
more expensive.The policy gradient can be represented as an expectation. It
means we can use sampling to approximate it. Also, we sample the value of
r but not differentiate it. It makes sense because the rewards do not directly
depend on how we parameterize the model. But the trajectories are. So what
is the partial derivative of the log{π(θ)}.

∇θJ(θ) ≈
1

n

N∑
i=1

(

T∑
t=1

∇θlogπθ(ai, t|si, t)(
T∑
t=1

r(si, t, ai, t)) (3)

And we use this policy gradient to update the policy θ

REINFORCE algorithm uses Monte Carlo rollout to compute the rewards.

1)Sample τ i from πθ (at|st) (run the policy)
2)∇θJ(θ) ≈

∑
i(
∑
t∇πθ(ait|sit))(

∑
t r(s

i
t, a

i
t))

3)θ ← θ + α∇(θ)

2.4 Actor-critic
The two main components in policy gradient are the policy model and the value
function.It makes a lot of sense to learn the value function in addition to the
policy, since knowing the value function can assist the value update, such as
reducing the gradient variance in vanilla policy gradients, and that is exactly
what Actor-Critic method does.
Actor Critic methods consist of two models, which may optionally share parame-
ters:

• Critic : Updates the function value parameter w and depending on the
algorithm it could be action value Qw(a|s) or state-value Vw(s)

• Actor : updates the policy parameters θ for πθ(a|s), in the direction
suggested by the critic.

4

Action-value Action-Critic Algorithm

1. Initializes,θ,w at random,sample a ∼ πθ(a|s)

2. For t=1. . . T:

• Sample reward rt ∼ R(s, a) and next state sl ∼ P (sl|s, a);
• Then sample the next action al ∼ πθ(al|sl) :
• Update the policy parameters θ ← θ + αθQw(s, a)∇πθ(a|s)

3. Compute the correction(TD error) for the action-value at time t:
δt = rt +w (sl, al)−Qw(s, a) and update a← al, s← sl

Our contributions in this project are twofold. Firstly, we present a new
environment that generates outlines of images randomly selected from the
MNIST dataset [?]. Second, we define two tasks with different reward functions
in which several agents must cooperatively either align themselves on the image
contour (image tracing); or move inside the image contour (image filling).

3 Algorithms

3.1 Deep Deterministic Policy Gradient
In DDPG algorithm, agent learns policy(function) to do a task in environ-
ment. Here the function is neural network (NN) which is trained through
back-propagation. Policy learning is guided by Q-value, which itself is learned
(NN) by Q-learning. (DDPG has many other component to achieve good training
like, replay buffer, target network, etc. but i am not touching them as not re-
quired for current purpose) . Agent observers the environment (through sensors),
based on these takes an action, and gets a reward from the environment. Using
these reward signal it tries to learn policy. OpenAI adapted the above DDPG
algorithm for multi agent environment. It uses a ‘decentralized actor, centralized
critic training approach’. In this approach, all agents have access to all other
agents’ state observations and actions during the critic training phase, but durinf
inference, the agent’s action is predicted using only its own state observation.
This helps in easing the training as the environment becomes stationary for each
agent.

5

3.2 Multi-Agent Deep Deterministic Policy Gradient
In the multi-agent reinforcement learning (MARL) setting, we need to update
the policies of two or more agents simultaneously in competitive or collaborative
settings. Extending the single-agent RL paradigm by independently training each
agent, results in poor performance, as the agents update their policies without
considering the observations and actions of other agents in the environment.
This causes the environment to appear non-stationary from the viewpoint of any
one agent. While we can have non-stationary Markov processes, the convergence
guarantees offered by many RL algorithms such as Q-learning requires stationary
environments. For this project we use the Multi-Agent Deep Deterministic
Policy Gradient (MADDPG) [?] algorithm. The primary motivation behind
MADDPG is that if we know the actions taken by all agents, the environment is
stationary even as the policies change, since P (s′|s, a1, a2, ..., an, π1, π2, ..., πn) =
P (s′|s, a1, a2, ..., an) = P (s′|s, a1, a2, ..., an, π′

1, π
′
2, ..., π

′
n) for any πi 6= π′

i. This
is not the case if we do not explicitly condition on the actions of other agents,
as done by most traditional RL algorithms.

In MADDPG, each agent’s critic is trained using the observations and actions
from all the agents, whereas each agent’s actor is trained using just its own

6

observations. This allows the agents to be effectively trained without requiring
other agents’ observations during inference (because the actor is only dependent
on its own observations).

4 Environments
To perform our experiments, we adopt the grounded communication environment
proposed in [?] which consists of M agents and L landmarks inhabiting a two-
dimensional world with continuous space and discrete time Figure 3 (left). Agents
may take physical actions in the environment and communication actions that
gets broadcast to other agents. Unlike [24], we do not assume that all agents have
identical action and observation spaces, or act according to the same policy π.
The original paper MADDPG paper considers both cooperative and competitive
environments, but we choose to focus our efforts on cooperative environments
(all agents maximize a shared return), since we are interested in learning agent
policies to collaboratively fill or trace an image outline. For our present set of
experiments, we do not incorporate any communication between agents, and
allow them to only perform physical actions. We build upon the cooperative
environment presented in Figure 3 (left), in which the agents need to move
towards the landmarks. Our environment is shown in Figure 3 (right), and is
described in the next sub-section.

7

Figure 3: Existing multi-agent cooperative particle environment (left) with
M landmarks and M agents and our image-contour environment (right) that
contains 1 polygon landmark (contour), and M agents.

4.1 Image-Contour Environment
The image-contour environment is created by obtaining the contour with max-
imum area using an image randomly selected from the MNIST dataset. We
employ the contour discovery algorithm from OpenCV 2. The image-contour
C(V), can be represented by a set of 2D points V , which is a matrix of di-
mensionality N × 2, where N is the number of points lying on the contour. A
polygon is rendered on the environment using the V . At any instant of time,
the environment also contains M agents, {A0, A1, A2, ..., AM}, represented by
2D circles with centers {U0, U1, U2, ..., UM} and radius p.

Figure 4: Sample image-contour environments generated using different images
from the MNIST dataset.

It can be seen that the OpenCV contour discovery algorithm is not perfect
in generating valid contours around the digit Figure 4. However, it is sufficient
for our experiments, as we do not impose any design constraints on our image
outlines. The image outline merely exists as a landmark for the agents to interact
with. The MNIST dataset was chosen because of its widespread acceptance and

2https://opencv.org/

8

significance in the Machine Learning community, and in fact, can be replaced
with any other dataset.

5 Tasks

5.1 Image Tracing
In this task, the agents are supposed to align themselves on the image outline.
The goal of this task is to replicate or trace the image outline, using a sufficient
number of agents and an appropriate agent size, thereby collaboratively "drawing"
a figure. We need to carefully formulate the reward function, r, to achieve this
objective.

We define a function D(C,A) that takes in the image contour, and an agent
as arguments, and determines whether the agent is inside a contour, outside,
or lies on an edge (or coincides with a vertex). It returns a positive (inside),
negative (outside), or zero (on an edge) value, correspondingly. The return value
is the signed distance between the point and the nearest contour edge.

For this task, the reward value needs to decrease as the agent moves further
away from the C, either inside or outside, and is maximum when the agent is
located exactly on C. A collision penalty is also added to the reward function to
discourage collisions between agents. If there are a total of t <=M − 1 collisions
between the agent in concern and all other agents, then the penalty applied is
−t. Thus the overall reward function for this task is as follows:

r = (

M∑
0

−|D(C,Ai)|)− t (4)

5.2 Image Filling
The image filling task requires the agents to fill the area occupied by the image
contour. Therefore, a positive reward is issued when an agent is inside the
contour, zero reward on the edges, and negative reward when the agent moves
outside the contour. In other words the distance function D(C,A) is a sufficient
reward function. After applying the collision penalty t, we get:

r = (

M∑
0

D(C,Ai))− t (5)

The reward functions can be represented graphically as shown in Figure 5.

9

Figure 5: Graphical representations of reward functions for Image Tracing and
Image Filling respectively.

6 Results
We present qualitative results on both the Image Tracing and Image Filling tasks
using the MADDPG algorithm in Figure 6. RL algorithms are notorious for not
converging in short periods of time, and this problem is inevitably more severe
in the MARL case. However, we see that in both tasks, the agents learn to move
towards the image contour. If we observe the Image Filling results Figure 6
(top), the agents occupy the inside of the contour as expected. Given a larger
agent size and population, and more training time, improved performance could
be observed.

Figure 6: Qualitative results on our Image Tracing (top) and Image Filling
(bottom) collaborative drawing tasks.

In the Image Tracing results in Figure 6 (bottom), we notice that the agents
move toward the edges of the contour but cluster together, which results in
poor tracing results. We believe that improved image tracing results can be

10

obtained by modifying the reward function in ?? to include a term that penalizes
agents when they come too close to each other. Naturally, increasing the agent
population increases the computational complexity of the system, and thus we
limit the number of agents, |A| to 20 in our experiments. We set the world size
to (224, 244) and the agent radius, p to 0.02. The MADDPG algorithm was
trained for approximately 10000 episodes on each task, consuming around 8
hours each on a Windows 10 64-bit PC with Core i7-7700HQ @ 2.80 GHz CPU,
16 GB RAM and a 1060 Ti Nvidia GPU, with 6 GB memory.

7 Acknowledgement
We would like to thank Alina for organizing this challenge and for supporting us
throughout its entirety.

References
Peek into Reinforcement Learning

Citations

[1] P. Dayan and G. E. Hinton. Feudal reinforcement learning. In Advances in
neural information processing systems, pages 271–271. Morgan Kaufmann Publishers,
1993.

[2] Mean Field Multi-Agent Reinforcement Learning by Yaodong Yang, Rui Luo,
Minne Li, Ming Zhou, Weinan Zhang, and Jun Wang. arXiv, 2017

[3] Multiagent Bidirectionally-Coordinated Nets for Learning to Play StarCraft
Combat Games by Peng P, Yuan Q, Wen Y, et al. arXiv, 2017.

[4] Hierarchical multi-agent reinforcement learning by Makar, Rajbala, Sridhar
Mahadevan, and Mohammad Ghavamzadeh. The fifth international conference on
Autonomous agents, 2001.

[5] Reinforcement learning to play an optimal Nash equilibrium in team Markov
games by Wang X, Sandholm T. NIPS, 2002.

[6] A reinforcement learning scheme for a partially-observable multi-agent game by
Ishii S, Fujita H, Mitsutake M, et al. Machine Learning, 2005.

[7] Multi-agent Deep Reinforcement Learning with Extremely Noisy Observations
by Ozsel Kilinc,Giovanni Montana,2018

[8] Gradient-Based Learning Applied to Document Recognition by Yann LeCun,Leon
Bottou,Yoshua Bengio and Patrick Haffner,1998

[9] Multi-Agent Actor-Critic fro Mixed Cooperative-Competitive Environments by
Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, Igor Mordatch, 2018

[10] Reinforcement Learning: An Introduction by Richard S. Sutton , Andrew
G.Barto, 2014

[11] Transfer Learning in Natural Language Processing Tutorial Sebastian Ruder,
Matthew Peters, Swabha Swayamdipta, Thomas Wolf, 2017

[12] Playing Atari with Deep Reinforcement Learning , Volodymyr Mnih, Koray
Kavukcuoglu, David Silver, Alex Grave, Ioannis Antonoglou, Daan Wierstra, Martin
Riedmiller

11

[13] Very Deep Convolutional Networks for Large-Scale Image Recognition Karen
Simonyan Andrew Zisserman, 2015

[14] ImageNet Classification with Deep Convolutional Neural Networks Alex
Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton

12

	Abstract
	Introduction
	Multi-Agent Systems
	Multi-Agent RL
	Policy-Gradients
	Actor-critic

	Algorithms
	Deep Deterministic Policy Gradient
	Multi-Agent Deep Deterministic Policy Gradient

	Environments
	Image-Contour Environment

	Tasks
	Image Tracing
	Image Filling

	Results
	Acknowledgement

