
Tic-Tac-Toe with Deep Multi-Agent
Reinforcement Learning

 Zhi Wen Huang Weijin Zhu
 zhiwenhu@buffalo.edu weijinzh@buffalo.edu

Abstract
We approached a stock market problem of getting profit, by modeling this
scenario as a game Tic Tac Toe using multi-agents. The game tic-tac-toe, a
3x3 board is our environment which allows agents to determine how to play
their game. Using deep neural networks, we are able to teach agents to learn
the game and allowing them to become experts as tic-tac-toe player. With
multiple agents learning to maximize their own performance and only one
can win the game, there will be hard for both agents to be at their best
performances at all time. We gave two situations to overcome this problem.
One is to use Minimax algorithm to maximize one agent and minimize the
other. This approach will help us teach one of the agents to learn how to win
the game while other will keep losing. Second we want to set the
maximization to a tie where no one wins. Both agents will learn to take move
optimally so that no agent will always win. Our key goal is to let agents to
learn within themselves and allow them to make decision wisely by looking
at each other’s maximum output action. We applied a value-based
approximation method – Deep Q-Network. Two agents are able to first learn
how to make a move, then how to win the game, and eventually both agents
can tie the game. The point we want to revel is not only the game itself, but
furthermore we want to make connection between the idea behind the game
with current stock market.

1 Introduction

In order to play any type of board game, there are always some sort of strategy into it to let
you become a better player. Everyone at their young age had come across tic-tac-toe and
sometimes lose, sometimes win, and many times it could be a tie. As we play more and more
of the game, we seem to notice a certain pattern of the game which makes every game a tie if
you play the right move.

Have you notice, going first will allow you make an initial move that it gave you a higher
chance to win the game? Will yes, theatrically in a board game like tic-tac-toe, going first
will initiate your first move and will allow you to plan your game plan before the second
player that goes second. However, playing the game well, the second player can always tie
the game if they know your game plan in the beginning.

Tic-tac-toe is not a big board, we can easily hand written the entire win, lose, and tie state
condition for all possible outcome. In this problem, we want our agents to learn to play the
game and to learn all different possible outcome instead of we supervised them to force them
play into one of the three outcome. The challenge is that teaching two agents facing each
other to reach the maximum of both sides starting with no knowledge of the game.

The task cooperates with the environment and updating the states each time one of the agents
takes an action. Then observing the board, they will decide their next action base on their
previous experience. Every new game will be saved and bring up to depending on the states
of the game. Our goal is to have both agents play and learn to their maximum potential and
neither of the agent will play in their minimum valued actions.

One approach for the two agent to play against each other is to let one of the agent always
play to win such that it focusses on getting 3 in a row as fast as possible. This way, the agent
will learn how to win the game and not lose the game. Then putting the knowledge of
winning will help the other agent to tried to take better actions as more game approaches. To
do this we implement Q-learning has to reward and punish system for each step the agents
takes if they win the game or lose the game respectively.

The second approach is to set the learning steps base on how many tied games the two agent
have. This way, we will let both agent to play the game optimally from both side, unlike the
first approach where one agent play with maximum potential while the other agent always
loses. The learning style of the two approach will affect how agent behave if the order is
used differently.

Eventually we want to make a connection between current stock market with the game tic-
tac-toe. We want to reveal of how stock market is also unpredictable just like the moves by
your opponents, and at the end you either win or losing the game just you either gain the
profits or lose profits from stock market.

2 Reinforcement Learning

In this challenge we implement Deep-Q-Networks(DQN) to let agent observe and learn after
taking each step of actions. We want to maximize the reward by giving the agent reward for
each step closer to the win condition or tie condition whereas the reward function is defined
as Rt = rt + γrt+1 + γ 2 rt+2…, where rt is the reward at time t and gamma as the discount factor.
This function will get the reward for the steps and in order to get the optimal action value, we want
take the max of the current state and action as a pair Q(s,a), s being the state and a being the
action. As the agent take more steps on their way, they will have a more accurate choice of actions
given from the Q-learning function. This allow us to let the agent use their previous experience to
build up dataset of games that been played already to train by sampling them into batches and
predict the next outcome. The complete algorithm for Deep-Q-Network is shown below: [1]

Each agent will have their own DQN that works based on their experience. Let say we take
approach one first and let agent 1 to win all the time getting all types of win situations. Then agent
2 will only lose and have a huge punishment as reward. Which then allows us to use approach two
where we let tie as our largest reward allow and punishing them for. This will teach agent 2 how to
win the game and at the same time rewarding if agent 2 can make a tie. Although they have their
independent network, the both agent will ultimately learn to the game by losing and winning,
making the game at a certain point to be all ties.

3 Setup of the Game

Setting up the environment, we use only 1 environment for both agents to observe and take action
on. They both shared the environment and making their action upon on their individual reward
system. Our board will be like a 3x3 grid representing the places the agent can act on.

The environment is really simple as you can see in the
left. At the start, this represent no moves where each
block is available for agents to act on. Each block start at
the most top-left represent an action from [1 to 9]. Each
step when an agent takes, it will update the board and
change the block color to its individual color. For
example, agent 1 takes an action in block 3, the board will
then update the color for agent 1. We keep track each turn
by mod the time or steps by 2. When the mod outcome is
positive then it will be agent 1 turn if it is odd then it will
be agent 2 turn. Let say after agent 1 act on block 3 and
agent 2 act on block 4, then each turn the states changes.

Ultimately the board game will go on until one of the agent wins or the board is filled up and no
one wins which then it will lead to a tie.

The figure above is an example of 1 episode. Here agent 2 won in the end since agent 2 got the 3
in a row first before agent 1. Agent 1 represent grey and agent 2 represent black. Both agent work
on the same environment until the game is over. They communicate as the game plays on and
using their own strategy and knowledge to play the game.

4 How it works

We created out neural network input as our states condition. In the beginning, the states are all
initiated as 0. Either agent 1 moves or agent 2 moves, the value will be change to 1 for agent 1 and
-1 for agent 2. As our dimension for our network, we will have 9 inputs as our possible states
including the current state. 1 hidden layer that representing the possible next possible states. The
dimension of the hidden layer will be 9x9 being the next possible states and connected to the
output which represent the actions that are closest to winning condition train based on rewards.
Since we are applying Q-learning, therefore there is highest reward that is provided by the
environment, one of our agents can perform that action which would result in this amount of
reward.

The two graphs above show the
rewards for both agents for 50000
episodes. One agent is winning while
another agent is losing. Based on the
graph on the left, it combines both
reward graphs together. As we could
see one agent keeps winning at the
beginning, and the other agent keeps
losing. However, once both of them
have learn how to play the game, we
could see the lines start to change. Our
prediction for episodes after 50000 is
the two reward lines remind constant,

and that is our goal of training the agents.

One problem for Q-learning is that at initial agents have no ideas which action to pick, therefore
we introduce exponential-decay. The exponential-decay formula for epsilon can be shown as:

 The goal of introducing epsilon is to randomly select
actions at the beginning based on ‘exploration rate’.

The figure shown on the left is the
epsilon for our game. As you can see
the value initially is high as our agents
perform random actions. As the agents
been trained for more episodes, they
would stop taking random actions, and
start to take the action that result in
highest rewards.

5 Summary/Future Work

Our goal is to make the game tie for both agents. But how can we relate it to real stock market
scenario? In stock market, we want to maximize the profits. However, there always risk exist in
the market. Comparing to we want to revel the idea of minimize the risk by exploring the stock
market, and like we want our agents to explore the board as well. The idea we come up with is to
train multi-agents to predict future stock prices. First agent could possibly train based on historical
price of that stock, second agent may train based on news, third agent may train based on the trend
of stock market itself. At the end we could possible perform a major voting, or taking the average
of our agents result to be the predict of the stock price.

Reference

[1] Mnih, V., K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare, A. Graves et
al. "Human-level control through deep reinforcement learning. Nature." (2015).

