Learning and Planning with Tabular Methods
Monte Carlo and Temporal-Difference

Lecture 8.1

Alina Vereshchaka

University at Buffalo
avereshc@buffalo.edu

June 24, 2019
Overview

1. Monte Carlo (MC) Methods
2. Temporal Difference
3. SARSA
4. Q-Learning
Monte Carlo methods are learning methods
- Experience → values, policy

Monte Carlo uses the simplest possible idea: \(\text{value} = \text{mean return} \)

Monte Carlo methods can be used in two ways:
- Model-free: No model necessary and still attains optimality
- Simulated: Needs only a simulation, not a full model

Monte Carlo methods learn from complete sample returns
- Only defined for episodic tasks (this class)
- All episodes must terminate (no bootstrapping)
Monte-Carlo Policy Evaluation

- **Goal:** Learn $v_\pi(s)$ from episodes of experience under policy π

 $S_1, A_1, R_2, \ldots, S_k \sim \pi$

- Remember that the **return** is the total discounted reward:

 $$G_t = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{T-1} R_T$$

- Remember that the **value function** is the expected return:

 $$v_\pi(s) = \mathbb{E}_\pi [G_t \mid S_t = s]$$

- Monte-Carlo policy evaluation uses **empirical mean return** instead of expected return.
Monte-Carlo Policy Evaluation

- **Goal:** learn $v_\pi(s)$ from episodes of experience under policy π
- **Idea:** Average returns observed after visits to s:

```
 1 --2-- 3 --4-- 5
```

- **Every-Visit MC:** average returns for every time s is visited in an episode
- **First-visit MC:** average returns only for first time s is visited in an episode
- Both converge asymptotically
To evaluate state s

The first time-step t that state s is visited in an episode,

 Increment counter: $N(s) \leftarrow N(s) + 1$

 Increment total return: $S(s) \leftarrow S(s) + G_t$

 Value is estimated by mean return $V(s) = S(s)/N(s)$

 By law of large numbers $V(s) \rightarrow v_{\pi}(s)$ as $N(s) \rightarrow \infty$
Every-Visit MC Policy Evaluation

- To evaluate state s
- Every time-step t that state s is visited in an episode,
 - Increment counter: $N(s) \leftarrow N(s) + 1$
 - Increment total return: $S(s) \leftarrow S(s) + G_t$
 - Value is estimated by mean return $V(s) = S(s)/N(s)$
 - By law of large numbers $V(s) \to v_\pi(s)$ as $N(s) \to \infty$
Backup Diagram for Monte Carlo

- Entire rest of episode included
- Only **one choice** considered at each state (unlike DP)
 - thus, there will be an explore/exploit dilemma
- Does **not bootstrap** from successor state’s values (unlike DP)
- Value is estimated by **mean return**
- Time required to estimate one state **does not depend** on the total number of states

`terminal state`
The mean μ_1, μ_2, \ldots of a sequence x_1, x_2, \ldots can be computed incrementally:

$$
\mu_k = \frac{1}{k} \sum_{j=1}^{k} x_j \\
= \frac{1}{k} \left(x_k + \sum_{j=1}^{k-1} x_j \right) \\
= \frac{1}{k} \left(x_k + (k - 1)\mu_{k-1} \right) \\
= \mu_{k-1} + \frac{1}{k} (x_k - \mu_{k-1})
$$
Incremental Monte Carlo Updates

- Update $V(s)$ incrementally after episode $S_1, A_1, R_2, ..., S_T$

- For each state S_t with return G_t

 $$N(S_t) \leftarrow N(S_t) + 1$$
 $$V(S_t) \leftarrow V(S_t) + \frac{1}{N(S_t)} (G_t - V(S_t))$$

- In non-stationary problems, it can be useful to track a running mean, i.e. forget old episodes.

 $$V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$$
MC policy iteration step: Policy evaluation using MC methods followed by policy improvement

Policy improvement step: greedify with respect to value (or action-value) function
Monte-Carlo Algorithm

Initialize, for all \(s \in S \), \(a \in A(s) \):
\[
Q(s, a) \leftarrow \text{arbitrary} \\
\pi(s) \leftarrow \text{arbitrary} \\
\text{Returns}(s, a) \leftarrow \text{empty list}
\]

Repeat forever:
Choose \(S_0 \in S \) and \(A_0 \in A(S_0) \) s.t. all pairs have probability > 0
Generate an episode starting from \(S_0, A_0 \), following \(\pi \)
For each pair \(s, a \) appearing in the episode:
\(G \leftarrow \text{return following the first occurrence of } s, a \)
Append \(G \) to \(\text{Returns}(s, a) \)
\(Q(s, a) \leftarrow \text{average}(\text{Returns}(s, a)) \)
For each \(s \) in the episode:
\(\pi(s) \leftarrow \arg\max_a Q(s, a) \)
Monte Carlo

Advantages

- MC can be used to learn optimal behavior directly from interaction with the environment. It does not require a model of the environment’s dynamics.

- MC can be used with simulation or sample models.

- MC can be used to focus on one region of special interest and be accurately evaluated without having to evaluate the rest of the state set.

Disadvantages

- MC only works for episodic (terminating) environments. It does not work with environment with no terminating states.

- MC must have a complete episodes, it does not have bootstrapping, meaning it does not give an estimates of the other states.

- MC must wait until the end of an episode before return is known. For problems with very
Table of Contents

1 Monte Carlo (MC) Methods

2 Temporal Difference

3 SARSA

4 Q-Learning
Online decision-making involves a fundamental choice:

- **Exploitation**: Make the best decision given current information (greedy)
- **Exploration**: Gather more information

The greedy algorithm selects action with highest value:

\[a^*_t = \arg \max_a Q_t(s, a) \]
Exploration vs Exploitation

ϵ — greedy algorithm:

- With probability ϵ choose a random action a
- With probability $1 - \epsilon$ choose “greedy” action a with the highest Q-value.
In ϵ-greedy action selection, for the case of two actions $[a_1, a_2]$ and $\epsilon = 0.5$, what is the probability that the greedy action is selected?
Monte Carlo (MC) and Temporal Difference (TD) Learning

- **Goal:** learn $v_\pi(s)$ from episodes of experience under policy π

- Incremental **every-visit Monte-Carlo:**
 - Update value $V(S_t)$ toward actual return G_t
 \[V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t)) \]

- Simplest **Temporal-Difference** learning algorithm: TD(0)
 - Update value $V(S_t)$ toward estimated returns $R_{t+1} + \gamma V(S_{t+1})$
 \[V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t)) \]

- $R_{t+1} + \gamma V(S_{t+1})$ is called the **TD target**

- $\delta_t = R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$ is called the **TD error.**
Remember:

\[v_\pi(s) = \mathbb{E}_\pi[G_t \mid S_t = s] \]

\[= \mathbb{E}_\pi\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \mid S_t = s \right] \]

\[= \mathbb{E}_\pi R_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^k R_{t+k+2} \mid S_t = s \]

\[= \mathbb{E}_\pi[R_{t+1} + \gamma v_\pi(S_{t+1}) \mid S_t = s] . \]

MC: sample average return approximates expectation

TD: combine both: Sample expected values and use a current estimate \(V(S_{t+1}) \) of the true \(v_\pi(S_{t+1}) \)

DP: the expected values are provided by a model. But we use a current estimate \(V(S_{t+1}) \) of the true \(v_\pi(S_{t+1}) \)
Dynamic Programming

$$V(S_t) \leftarrow E_{\pi} \left[R_{t+1} + \gamma V(S_{t+1}) \right] = \sum_a \pi(a | S_t) \sum_{s', r} p(s', r | S_t, a) [r + \gamma V(s')]$$
Monte Carlo

\[V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t)) \]
TD(0) Method

\[V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t)) \]
- **Bootstrapping**: update involves an estimate
 - MC does not bootstrap
 - DP bootstrap
 - TD bootstrap

- **Sampling**: update does not involve an expected value
 - MC samples
 - DP does not sample
 - TD samples
TD(0) Method

- **Policy Evaluation** (the prediction problem):
 - for a given policy \(\pi \), compute the state-value function \(v_\pi \)

- **Remember:** Simple every-visit Monte Carlo method:
 \[
 V(S_t) \leftarrow V(S_t) + \alpha \left[G_t - V(S_t) \right]
 \]
 \textbf{target:} the actual return after time \(t \)

- The simplest **Temporal-Difference** method TD(0):
 \[
 V(S_t) \leftarrow V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right]
 \]
 \textbf{target:} an estimate of the return
Example: Driving Home

<table>
<thead>
<tr>
<th>State</th>
<th>Elapsed Time (minutes)</th>
<th>Predicted Time to Go</th>
<th>Predicted Total Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>leaving office, friday at 6</td>
<td>0</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>reach car, raining</td>
<td>5</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>exiting highway</td>
<td>20</td>
<td>15</td>
<td>35</td>
</tr>
<tr>
<td>2ndary road, behind truck</td>
<td>30</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>entering home street</td>
<td>40</td>
<td>3</td>
<td>43</td>
</tr>
<tr>
<td>arrive home</td>
<td>43</td>
<td>0</td>
<td>43</td>
</tr>
</tbody>
</table>
Example: Driving Home

Changes recommended by Monte Carlo methods (\(\alpha=1\))

Changes recommended by TD methods (\(\alpha=1\))
Advantage of TD Learning

- TD methods **do not require a model of the environment**, only experience
- You can learn before knowing the final outcome:
 - Less memory
 - Less computation
- You can learn without the final outcome: from incomplete sequences
- Both MC and TD converge (under certain assumptions)
Table of Contents

1 Monte Carlo (MC) Methods

2 Temporal Difference

3 SARSA

4 Q-Learning
Learning an Action-Value Function

- Estimate q_{π} for the current policy π

After every transition from a nonterminal state, S_t, do this:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right]$$

If S_{t+1} is terminal, then define $Q(S_{t+1}, A_{t+1}) = 0$
SARSA

Turn this into a control method by always updating the policy to be greedy with respect to the current estimate

<table>
<thead>
<tr>
<th>Sarsa (on-policy TD control) for estimating $Q \approx q_*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$</td>
</tr>
<tr>
<td>Initialize $Q(s, a)$, for all $s \in S^+, a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$</td>
</tr>
<tr>
<td>Loop for each episode:</td>
</tr>
<tr>
<td>Initialize S</td>
</tr>
<tr>
<td>Choose A from S using policy derived from Q (e.g., ε-greedy)</td>
</tr>
<tr>
<td>Loop for each step of episode:</td>
</tr>
<tr>
<td>Take action A, observe R, S'</td>
</tr>
<tr>
<td>Choose A' from S' using policy derived from Q (e.g., ε-greedy)</td>
</tr>
<tr>
<td>$Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma Q(S', A') - Q(S, A) \right]$</td>
</tr>
<tr>
<td>$S \leftarrow S'$; $A \leftarrow A'$;</td>
</tr>
<tr>
<td>until S is terminal</td>
</tr>
</tbody>
</table>
Instead of the sample value-of-next-state, use the **expectation**!

\[
Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \mathbb{E}[Q(S_{t+1}, A_{t+1}) | S_{t+1}] - Q(S_t, A_t) \right]
\]

\[
\leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \sum \pi(a|S_{t+1}) Q(S_{t+1}, a) - Q(S_t, A_t) \right]
\]

- **Expected Sarsa** performs better than Sarsa (but costs more)
SARSA is an on-policy algorithm which means that while learning the optimal policy it uses the current estimate of the optimal policy to generate the behaviour.

SARSA converges to an optimal policy as long as all state-action pairs are visited an infinite number of times and the policy converges in the limit to the greedy policy ($\epsilon = \frac{1}{t}$).
Table of Contents

1. Monte Carlo (MC) Methods
2. Temporal Difference
3. SARSA
4. Q-Learning
In Q-learning the learned action-value function, Q, directly approximates the optimal action-value function, independent of the policy being followed.

$$Q(s_t, a_t) \leftarrow (s_t, a_t) + \alpha \left(r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t) \right)$$
Q-Learning Algorithm

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$
Initialize $Q(s, a)$, for all $s \in S^+, a \in A(s)$, arbitrarily except that $Q(\text{terminal}, \cdot) = 0$

Loop for each episode:
 Initialize S
 Loop for each step of episode:
 Choose A from S using policy derived from Q (e.g., ε-greedy)
 Take action A, observe R, S'
 $Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_a Q(S', a) - Q(S, A) \right]$
 $S \leftarrow S'$
 until S is terminal