TABULAR METHODS OVERVIEW

Lecture 5.1
CSE4/510: Reinforcement Learning
June 11, 2019
MDP
MDP

Agent

Environment

state S_t

reward R_t

R_{t+1}

S_{t+1}

action A_t
TRUE / FALSE?

Markov Decision Process is defined as:

\[(s, a, O, P, \gamma)\]
Markov Decision Process is defined as:

\[(s, a, O, P, r, \gamma)\]
Policy

1. Deterministic

2. Stochastic

A. \[\pi(a|s) = \mathbb{P}_\pi[A = a|S = s] \]

B. \[\pi(s) = a \]
ENVIRONMENT
Deterministic / Stochastic?

POLICY
Deterministic / Stochastic?
RL agents goal?
Types of value functions?
Value Functions

Types of value functions:

State value function describes the value of a state when following a policy. It is the expected return when starting from state s acting according to our policy π:

$$V^\pi(s) = \mathbb{E}_\pi[R_t|S_t = s]$$

Action value function tells us the value of taking an action a in state s when following a certain policy π. It is the expected return given the state and action under π:

$$Q^\pi(s, a) = \mathbb{E}_\pi[R_t|S_t = s, A_t = a]$$
Value Functions

$V(s)$ can also be interpreted, as the cumulative future reward

Are we missing something?
Value Functions

$V(s)$ can also be interpreted, as the expected cumulative future discounted reward.
Dynamic Programming

1. Evaluate

A. \[V_\pi(s) = \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \ldots | S_t = s] \]

2. Improve

B. \[\pi' = \text{greedy}(V_\pi) \]
Dynamic Programming

Evaluate

\[V_\pi(s) = \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \ldots | S_t = s] \]

Improve

\[\pi' = \text{greedy}(V_\pi) \]
Dynamic Programming

Given a policy π

- **Evaluate** the policy π

 $$V_\pi(s) = \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \ldots | S_t = s]$$

- **Improve** the policy by acting greedily with respect to v_π

 $$\pi' = \text{greedy}(V_\pi)$$

\[\pi_0 \xrightarrow{E} V_{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} V_{\pi_1} \xrightarrow{I} \pi_2 \xrightarrow{E} V_{\pi_2} \xrightarrow{E} \ldots \xrightarrow{I} \pi_* \xrightarrow{E} V_*\]
Dynamic Programming

\[V = V^\pi \]

starting

\[V \pi \]

\[\pi = \text{greedy}(V) \]

\[V^* \]

\[\pi^* \]
Dynamic Programming

1. Distribution model
 A. Produce a single outcome taken according to its probability of occurring

2. Sample model
 B. List all possible outcomes and their probabilities
Overview
Overview

Model-free RL
Overview

Planning (or model-based RL)

- Experience
- Model
- Value function
- Policy

Interaction with Environment
Model learning
Simulation
Direct RL methods
Planning
Greedification
Bootstrapping

MC
DP
TD
Bootstrapping

Bootstrapping

MC

DP

TD
Sampling

MC
DP
TD
Sampling

MC
DP
TD
Value Based RL

Dynamic Programming

A. \(V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t)) \)

Monte Carlo

B. \(V(S_t) \leftarrow E_x[R_{t+1} + \gamma V(S_{t+1})] = \sum_a \pi(a|S_t) \sum_{s', r} p(s', r|S_t, a)[r + \gamma V(s')] \)

Temporal Difference

C. \(V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t)) \)
Value Based RL

Dynamic Programming

\[V(S_t) \leftarrow E_\pi \left[R_{t+1} + \gamma V(S_{t+1}) \right] = \sum_a \pi(a|S_t) \sum_{s',r} p(s',r|S_t,a)[r + \gamma V(s')] \]

Monte Carlo

\[V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t)) \]

Temporal Difference

\[V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t)) \]
Dynamic Programming

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization
 $V(s) \in \mathbb{R}$ and $\pi(s) \in A(s)$ arbitrarily for all $s \in S$

2. Policy Evaluation
 Loop:
 \[
 \Delta \leftarrow 0
 \]
 Loop for each $s \in S$:
 \[
 v \leftarrow V(s)
 \]
 \[
 V(s) \leftarrow \sum_{s', r} p(s', r | s, \pi(s)) [r + \gamma V(s')]
 \]
 \[
 \Delta \leftarrow \max(\Delta_0, |v - V(s)|)
 \]
 until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement
 \textit{policy-stable} \leftarrow true
 For each $s \in S$:
 \[
 \text{old-action} \leftarrow \pi(s)
 \]
 \[
 \pi(s) \leftarrow \arg\max_a \sum_{s', r} p(s', r | s, a) [r + \gamma V(s')]
 \]
 If $\text{old-action} \neq \pi(s)$, then $\text{policy-stable} \leftarrow$ false
 If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2
Q-Learning / SARSA?

\[Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)] \]
TD / MC

TD / Monte Carlo?