Dueling DQN & Prioritised Experience Reply

Alina Vereshchaka

CSE4/510 Reinforcement Learning
Fall 2019

avereshc@buffalo.edu

October 10, 2019

*Slides are based on paper by Wang, Ziyu, et al. "Dueling network architectures for deep reinforcement learning." (2015)

Overview

1 Recap: DQN
2 Recap: Double DQN
3 Dueling DQN
4 Prioritized Experience Replay (PER)
Recap: Deep Q-Networks (DQN)

- Represent value function by deep Q-network with weights w

$$Q(s, a, w) \approx Q^\pi(s, a)$$

- Define objective function

$$\mathcal{L}(w) = \mathbb{E} \left[\left(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w) \right)^2 \right]$$

- Leading to the following Q-learning gradient

$$\frac{\partial \mathcal{L}(w)}{\partial w} = \mathbb{E} \left[\left(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w) \right) \frac{\partial Q(s, a, w)}{\partial w} \right]$$

- Optimize objective end-to-end by SGD, using $\frac{\partial \mathcal{L}(w)}{\partial w}$
Deep Q-Network (DQN) Architecture

Naive DQN

Optimized DQN used by DeepMind

Q-value

Network

State Action

Q-value 1

Q-value 2

Q-value n

Network

State
Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ
Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$

For episode $= 1, M$ do
 Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(x_1)$
 For $t = 1, T$ do
 With probability ε select a random action a_t
 otherwise select $a_t = \text{argmax}_a Q(\phi(s_t), a; \theta)$
 Execute action a_t in emulator and observe reward r_t and image x_{t+1}
 Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$
 Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D
 Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D
 Set $y_j = \begin{cases} r_j & \text{if episode terminates at step } j + 1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$
 Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ
 Every C steps reset $\hat{Q} = Q$
 End For
End For
Table of Contents

1 Recap: DQN
2 Recap: Double DQN
3 Dueling DQN
4 Prioritized Experience Replay (PER)
Double Q-learning

Two estimators:

- **Estimator Q_1:** Obtain best actions
- **Estimator Q_2:** Evaluate Q for the above action

\[
Q_1(s, a) \leftarrow Q_1(s, a) + \alpha (\text{Target} - Q_1(s, a))
\]

Q Target: \(r(s, a) + \gamma \max_{a'} Q_1(s', a') \)

Double Q Target: \(r(s, a) + \gamma Q_2(s', \arg \max_{a'} (Q_1(s', a'))) \)
Double Q-learning

Algorithm 1 Double Q-learning

1: Initialize Q^A, Q^B, s
2: repeat
3: Choose a, based on $Q^A(s, \cdot)$ and $Q^B(s, \cdot)$, observe r, s'
4: Choose (e.g. random) either UPDATE(A) or UPDATE(B)
5: if UPDATE(A) then
6: Define $a^* = \arg \max_a Q^A(s', a)$
7: $Q^A(s, a) \leftarrow Q^A(s, a) + \alpha(s, a) (r + \gamma Q^B(s', a^*) - Q^A(s, a))$
8: else if UPDATE(B) then
9: Define $b^* = \arg \max_a Q^B(s', a)$
10: $Q^B(s, a) \leftarrow Q^B(s, a) + \alpha(s, a) (r + \gamma Q^A(s', b^*) - Q^B(s, a))$
11: end if
12: $s \leftarrow s'$
13: until end
Double Deep Q Network

Two estimators:

- Estimator Q_1: Obtain best actions
- Estimator Q_2: Evaluate Q for the above action
Algorithm 1: Double Q-learning (Hasselt et al., 2015)

Initialize primary network Q_θ, target network $Q_{\theta'}$, replay buffer \mathcal{D}, $\tau << 1$

for each iteration do

for each environment step do

Observe state s_t and select $a_t \sim \pi(a_t, s_t)$
Execute a_t and observe next state s_{t+1} and reward $r_t = R(s_t, a_t)$
Store (s_t, a_t, r_t, s_{t+1}) in replay buffer \mathcal{D}

for each update step do

sample $e_t = (s_t, a_t, r_t, s_{t+1}) \sim \mathcal{D}$

Compute target Q value:

$$Q^*(s_t, a_t) \approx r_t + \gamma \max_{a'} Q_{\theta'}(s_{t+1}, a')$$

Perform gradient descent step on $(Q^*(s_t, a_t) - Q_\theta(s_t, a_t))^2$

Update target network parameters:

$$\theta' \leftarrow \tau \cdot \theta + (1 - \tau) \cdot \theta'$$
1 Recap: DQN

2 Recap: Double DQN

3 Dueling DQN

4 Prioritized Experience Replay (PER)
What is Q-values tells us?
What is Q-values tells us?
How good it is to be at state s and taking an action a at that state $Q(s, a)$.
Advantage Function $A(s, a)$

$$A(s, a) = Q(s, a) - V(s)$$

- If $A(s, a) > 0$: our gradient is pushed in that direction.
- If $A(s, a) < 0$ (our action does worse than the average value of that state) our gradient is pushed in the opposite direction.
How can we decompose $Q^\pi(s, a)$?

\[Q^\pi(s, a) = \]

In Dueling DQN, we separate the estimator of these two elements, using two new streams: one estimates the state value $V^\pi(s)$, one estimates the advantage for each action $A^\pi(s, a)$. Networks that separately compute the advantage and value functions, and combine back into a single Q-function at the final layer.
Dueling DQN

How can we decompose $Q^\pi(s, a)$?

\[
Q^\pi(s, a) = V^\pi(s) + A^\pi(s, a)
\]

$V^\pi(s) =$
How can we decompose $Q^\pi(s, a)$?

$$Q^\pi(s, a) = V^\pi(s) + A^\pi(s, a)$$

$$V^\pi(s) = E_{a \sim \pi(s)}[Q^\pi(s, a)]$$
Dueling DQN

How can we decompose $Q^\pi(s, a)$?

$$Q^\pi(s, a) = V^\pi(s) + A^\pi(s, a)$$

$$V^\pi(s) = E_{a \sim \pi(s)}[Q^\pi(s, a)]$$

In Dueling DQN, we separate the estimator of these two elements, using two new streams:

- one estimates the state value $V(s)$
- one estimates the advantage for each action $A(s, a)$

Networks that separately computes the advantage and value functions, and combines back into a single Q-function at the final layer.
Dueling DQN

DQN

Dueling DQN

Q(s,a)

V(s)

A(s,a)
Dueling DQN

- One stream of fully-connected layers output a scalar $V(s; \theta, \beta)$
- Other stream output an $|A|$-dimensional vector $A(s, a; \theta, \alpha)$

Here, θ denotes the parameters of the convolutional layers, while α and β are the parameters of the two streams of fully-connected layers.

$$Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + A(s, a; \theta, \alpha)$$
Dueling DQN

\[Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + A(s, a; \theta, \alpha) \]

Problem: Equation is unidentifiable → given \(Q \) we cannot recover \(V \) and \(A \) uniquely → poor practical performance.

Solutions:

1. Force the advantage function estimator to have zero advantage at the chosen action

\[Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + (A(s, a; \theta, \alpha) - \max_{a' \in |A|} A(s, a'; \theta, \alpha)) \]
Dueling DQN

\[
Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + A(s, a; \theta, \alpha)
\]

Problem: Equation is unidentifiable \(\rightarrow\) given \(Q\) we cannot recover \(V\) and \(A\) uniquely \(\rightarrow\) poor practical performance.

Solutions:

1. Force the advantage function estimator to have zero advantage at the chosen action

\[
Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + \left(A(s, a; \theta, \alpha) - \max_{a' \in |A|} A(s, a'; \theta, \alpha) \right)
\]

\[
a^* = \arg \max_{a' \in A} Q(s, a'; \theta, \alpha, \beta)
\]
Dueling DQN

\[Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + A(s, a; \theta, \alpha) \]

Problem: Equation is unidentifiable → given \(Q \) we cannot recover \(V \) and \(A \) uniquely → poor practical performance.

Solutions:

1. Force the advantage function estimator to have zero advantage at the chosen action

\[Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + \left(A(s, a; \theta, \alpha) - \max_{a' \in |A|} A(s, a'; \theta, \alpha) \right) \]

\[a^* = \arg \max_{a' \in A} Q(s, a'; \theta, \alpha, \beta) \]

\[= \arg \max_{a' \in A} A(s, a'; \theta, \alpha) \]
\[Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + A(s, a; \theta, \alpha) \]

Problem: Equation is unidentifiable → given \(Q \) we cannot recover \(V \) and \(A \) uniquely → poor practical performance.

Solutions:

1. Force the advantage function estimator to have zero advantage at the chosen action

\[
Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + \left(A(s, a; \theta, \alpha) - \max_{a' \in |A|} A(s, a'; \theta, \alpha) \right)
\]

\[
a^* = \arg \max_{a' \in A} Q(s, a'; \theta, \alpha, \beta)
\]

\[
= \arg \max_{a' \in A} A(s, a'; \theta, \alpha)
\]

\[
Q(s, a^*; \theta, \alpha, \beta) = V(s; \theta, \beta)
\]
Dueling DQN

\[Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + A(s, a; \theta, \alpha) \]

Problem: Equation is unidentifiable → given \(Q \) we cannot recover \(V \) and \(A \) uniquely → poor practical performance.

Solutions:

1. Replaces the max operator with an average

\[
Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + (A(s, a; \theta, \alpha) - \frac{1}{|A|} \sum_{a'} A(s, a'; \theta, \alpha))
\]

It increases the stability of the optimization: the advantages only need to change as fast as the mean, instead of having to compensate any change.
Dueling DQN: Example

Value and advantage saliency maps for two different time steps

- **Leftmost pair** - the value network stream pays attention to the road and the score.
- The advantage stream does not pay much attention to the visual input because its action choice is practically irrelevant when there are no cars in front.
- **Rightmost pair** - the advantage stream pays attention as there is a car immediately in front, making its choice of action very relevant.
Dueling DQN: Summary

- Intuitively, the dueling architecture can learn which states are (or are not) valuable, without having to learn the effect of each action for each state.
- The dueling architecture represents both the value $V(s)$ and advantage $A(s, a)$ functions with a single deep model whose output combines the two to produce a state-action value $Q(s, a)$.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Recap: DQN</td>
</tr>
<tr>
<td>2</td>
<td>Recap: Double DQN</td>
</tr>
<tr>
<td>3</td>
<td>Dueling DQN</td>
</tr>
<tr>
<td>4</td>
<td>Prioritized Experience Replay (PER)</td>
</tr>
</tbody>
</table>
Recap: Experience replay

Problem: Online RL agents incrementally update their parameters while they observe a stream of experience. In their simplest form, they discard incoming data immediately, after a single update. Two issues are

1. Strongly correlated updates that break the i.i.d. assumption
2. Rapid forgetting of possibly rare experiences that would be useful later on.
Recap: Experience replay

Problem: Online RL agents incrementally update their parameters while they observe a stream of experience. In their simplest form, they discard incoming data immediately, after a single update. Two issues are

1. Strongly correlated updates that break the i.i.d. assumption
2. Rapid forgetting of possibly rare experiences that would be useful later on.

Solution: Experience replay

- Break the temporal correlations by mixing more and less recent experience for the updates
- Rare experience will be used for more than just a single update
Prioritized Experience Replay (PER)

Two design choices:

1. Which experiences to store?
2. Which experiences to replay?
Prioritized Experience Replay (PER)

Two design choices:

1. Which experiences to store?
2. Which experiences to replay? **PER tries to solve this**
Two actions: ‘right’ and ‘wrong’

The episode is terminated when ‘wrong’ action is chosen.

Taking the ‘right’ action progresses through a sequence of n states, at the end of which lies a final reward of 1; reward is 0 elsewhere.
Prioritized Experience Replay (PER): TD error

TD error for vanilla DQN:

\[\delta_i = r_t + \gamma \max_{a \in A} Q_\theta(s_{t+1}, a) - Q_\theta(s_t, a_t) \]

TD error for Double DQN:

\[\delta_i = r_t + \gamma Q_\theta(s_{t+1}, \text{argmax}_{a \in A} Q_\theta(s_{t+1}, a)) - Q_\theta(s_t, a_t) \]

we use \(|\delta_i|\) as the magnitude of the TD error.

What \(|\delta_i|\) shows us?
Prioritized Experience Replay (PER): TD error

TD error for vanilla DQN:

\[\delta_i = r_t + \gamma \max_{a \in A} Q_{\theta^-}(s_{t+1}, a) - Q_{\theta}(s_t, a_t) \]

TD error for Double DQN:

\[\delta_i = r_t + \gamma Q_{\theta^-}(s_{t+1}, \text{argmax}_{a \in A} Q_{\theta}(s_{t+1}, a)) - Q_{\theta}(s_t, a_t) \]

we use \(|\delta_i|\) as the magnitude of the TD error.

What \(|\delta_i|\) shows us?

A big difference between our prediction and the TD target \(\rightarrow\) we have to learn a lot
Prioritized Experience Replay (PER)

Two ways of getting priorities, denoted as p_i:

1. Direct, proportional prioritization:

$$p_i = |\delta_i| + \epsilon$$

where ϵ is a small constant ensuring that the sample has some non-zero probability of being drawn.
Prioritized Experience Replay (PER)

Two ways of getting priorities, denoted as p_i:

1. Direct, proportional prioritization:

 $$p_i = |\delta_i| + \epsilon$$

 where ϵ is a small constant ensuring that the sample has some non-zero probability of being drawn

2. A rank based method:

 $$p_i = \frac{1}{\text{rank}(i)}$$

 where $\text{rank}(i)$ is the rank of transition i when the replay memory is sorted according to $|\delta_i|$
Problem: During exploration, p_i terms are not known for brand-new samples.
Solution: interpolate between pure greedy prioritization and uniform random sampling.

Probability of sampling transition i

$$P(i) = \frac{p_i^\alpha}{\sum_k p_k^\alpha}$$

where $p_i > 0$ is the priority of transition i; α is the level of prioritization.
Problem: During exploration, p_i terms are not known for brand-new samples.

Solution: interpolate between pure greedy prioritization and uniform random sampling.

Probability of sampling transition i

$$P(i) = \frac{p_i^\alpha}{\sum_k p_k^\alpha}$$

where $p_i > 0$ is the priority of transition i; α is the level of prioritization.

- If $\alpha \to 0$, there is no prioritization, because all $p(i)^\alpha = 1$ (uniform case)
Problem: During exploration, p_i terms are not known for brand-new samples.

Solution: interpolate between pure greedy prioritization and uniform random sampling.

Probability of sampling transition i

$$P(i) = \frac{p_i^\alpha}{\sum_k p_k^\alpha}$$

where $p_i > 0$ is the priority of transition i; α is the level of prioritization.

- If $\alpha \to 0$, there is no prioritization, because all $p(i)^\alpha = 1$ (uniform case)
- If $\alpha \to 1$, then we get to full prioritization, where sampling data points is more heavily dependent on the actual $|\delta_i|$ values.
Problem: During exploration, p_i terms are not known for brand-new samples.

Solution: interpolate between pure greedy prioritization and uniform random sampling.

Probability of sampling transition i

$$P(i) = \frac{p_i^\alpha}{\sum_k p_k^\alpha}$$

where $p_i > 0$ is the priority of transition i; α is the level of prioritization.

- If $\alpha \to 0$, there is no prioritization, because all $p(i)^\alpha = 1$ (uniform case)
- If $\alpha \to 1$, then we get to full prioritization, where sampling data points is more heavily dependent on the actual $|\delta_i|$ values.

This will ensure that the probability of being sampled is monotonic in a transition’s priority, while guaranteeing a non-zero probability even for the lowest-priority transition.
Use importance sampling weights to adjust the updating by reducing the weights of the often seen samples.

\[w_i = \left(\frac{1}{N} \cdot \frac{1}{P(i)} \right)^\beta \]

\(\beta \) is the exponent, which controls how much prioritization to apply.

For stability reasons, we always normalize weights by \(1/ \max_i w_i \) so that they only scale the update downwards.
Algorithm 1: Double DQN with proportional prioritization

1: **Input:** minibatch k, step-size η, replay period K and size N, exponents α and β, budget T.
2: Initialize replay memory $H = \emptyset$, $\Delta = 0$, $p_1 = 1$
3: Observe S_0 and choose $A_0 \sim \pi_{\theta}(S_0)$
4: **for** $t = 1$ to T **do**
5: Observe S_t, R_t, γ_t
6: Store transition $(S_{t-1}, A_{t-1}, R_t, \gamma_t, S_t)$ in H with maximal priority $p_t = \max_{i < t} p_i$
7: **if** $t \equiv 0 \mod K$ **then**
8: **for** $j = 1$ to k **do**
9: Sample transition $j \sim P(j) = p_j^{\alpha} / \sum_i p_i^{\alpha}$
10: Compute importance-sampling weight $w_j = (N \cdot P(j))^{-\beta} / \max_i w_i$
11: Compute TD-error $\delta_j = R_j + \gamma_j Q_{\text{target}}(S_j, \arg\max_a Q(S_j, a)) - Q(S_{j-1}, A_{j-1})$
12: Update transition priority $p_j \leftarrow |\delta_j|$
13: Accumulate weight-change $\Delta \leftarrow \Delta + w_j \cdot \delta_j \cdot \nabla_{\theta} Q(S_{j-1}, A_{j-1})$
14: **end for**
15: Update weights $\theta \leftarrow \theta + \eta \cdot \Delta$, reset $\Delta = 0$
16: From time to time copy weights into target network $\theta_{\text{target}} \leftarrow \theta$
17: **end if**
18: Choose action $A_t \sim \pi_{\theta}(S_t)$
19: **end for**
Prioritized Experience Replay (PER): Summary

- Built on top of experience replay buffers
Built on top of experience replay buffers

Uniform sampling from a replay buffer is a good default strategy, but it can be improved by prioritized sampling, that will weigh the samples so that “important” ones are drawn more frequently for training.
Prioritized Experience Replay (PER): Summary

- Built on top of experience replay buffers

- Uniform sampling from a replay buffer is a good default strategy, but it can be improved by prioritized sampling, that will weigh the samples so that “important” ones are drawn more frequently for training.

- Key idea is to increase the replay probability of experience tuples that have a high expected learning progress (measured by $|\delta|$). This lead to both faster learning and to better final policy quality, as compared to uniform experience replay.