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The Imitation Learning problem

The agent needs to come up with a policy whose resulting state, action trajectory distribution
matches the expert trajectory distribution.

Does this remind us of something?
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Imitation Learning

Two broad approaches:

Direct(Behavior cloning): Supervised training of policy (mapping states to actions)
using the demonstration trajectories as groundtruth

Indirect (Inverse Reinforcement Learning): Learn the unknown reward function/goal
of the teacher, and derive the policy from these
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Does it work?
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Data Distribution Mismatch
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Data Distribution Mismatch

Supervised Learning Supervised learning + Control

Train (x , y) ∼ D s ∼ dπ∗
Test (x , y) ∼ D s ∼ dπ

Supervised Learning succeeds when training and test data distributions match

But state distribution under learned π differs from those generated by π∗
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Does it work?
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Solution: Demonstration augmentation

Change pdata(ot) using demonstration augmentation.
Label additional examples generated by the learned policy, drawn from pπlearned (ot).
How?

Use human expert

Synthetically change observed ot and corresponding ut
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What it data augmentation?

Data augmentation 1 significantly increase the diversity of data available for training models,
without actually collecting new data. Data augmentation techniques such as cropping,
padding, and horizontal flipping.

1https : //bair .berkeley .edu/blog/2019/06/07/data_aug/
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Demonstration augmentation: DAVE-2 2

Trained CNN to map raw pixels from a
single front-facing camera directly to
steering commands.
With minimum training data the system
learns to drive in traffic on local roads and
operates in areas with unclear visual
guidance such as in parking lots and on
unpaved roads.
The system learns detecting useful road
features with only the human steering
angle as the training signal.
DAVE-2 driving Lincoln YouTube video

2https : //arxiv .org/pdf /1604.07316.pdf
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DAVE-2: High-level view of the data collection system
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DAVE-2: Training the neural network
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DAVE-2: CNN architecture

The network has about 27 million
connections and 250 thousand parameters.
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Can we make it work more often?
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Can we make it more often?

Can we make pdata(ot) = pπθ
(ot)?

DAgger: Dataset Aggregation

Goal: collect training data from pπθ
(ot) instead of pdata(ot)

How?

Just run πθ(at |ot), but need label at

1 Train πθ(at |ot) from human data D = {o1, a1, . . . , oN , aN}

2 Run πθ(at |ot) to get dataset D = {o1, . . . , oM}

3 Ask human to label Dπ with actions at

4 Aggregare: D ← D ∪ Dπ

5 Go to Step 1
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What is the problem?

DAgger: Dataset Aggregation

1 Train πθ(at |ot) from human data D = {o1, a1, . . . , oN , aN}

2 Run πθ(at |ot) to get dataset D = {o1, . . . , oM}

3 Ask human to label Dπ with actions at

4 Aggregate: D ← D ∪ Dπ

5 Go to Step 1
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Why might we fail to fit the expert?

Non-Markovian behavior

Multimodal behavior
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Non-Markovian behavior

If we see the same thing twice, we do the same thing twice, regardless of what happened
before

Often very unnatural for human demonstrators
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How can we use the whole history?
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Using Recurrent Neural Networks
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Aside: why might this work poorly? 3

3de Haan, Pim, Dinesh Jayaraman, and Sergey Levine. "Causal Confusion in Imitation Learning." (2019)
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Multimodal Behavior
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Imitation learning: what’s the problem?
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Behavior Cloning: Summary
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Learning From Showing and Telling
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Problem Setup
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Inverse Reinforcement Learning (IRL)
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Inverse Reinforcement Learning (IRL)

IRL problem is to find a reward function that can explain the expert behavior
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