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The Imitation Learning problem

The agent needs to come up with a policy whose resulting state, action trajectory distribution
matches the expert trajectory distribution.
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Imitation Learning

Two broad approaches:
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Imitation Learning

Two broad approaches:

m Direct(Behavior cloning): Supervised training of policy (mapping states to actions)
using the demonstration trajectories as groundtruth

m Indirect (Inverse Reinforcement Learning): Learn the unknown reward function/goal
of the teacher, and derive the policy from these
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Terminology & Notations

s; — state
0; — observation ma(az|os) — policy
a; — action mo(ag|s¢) — policy (fully observed)

Markov property
independent of s;_1
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Terminology & Notations

X; — state
0; — observation mg(ug|oy) — policy
u; — action
" abit of history... w
x; — state s; — state L x
u; — action : N a; — action o]
. ynpaenexue Lev Pontryagin Richard Bellman
.
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Imitation Learning

supervised

training learning

data

Trg(at|0t)

behavior cloning

Images: Bojarski et al. ‘16, NVIDIA
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Does it work?

— training trajectory
- = Ty expected trajectory
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Data Distribution Mismatch

DPrx (Ot) 7& Prg (Ot)

Expert trajectory
Learned Policy

No data on >§

how to recover
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Data Distribution Mismatch

H ‘ Supervised Learning | Supervised learning + Control H

Train (x,y)~D S~ drs
Test (x,y) ~ D s~ dr
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Data Distribution Mismatch

H ‘ Supervised Learning | Supervised learning + Control H

Train (x,y)~D S~ drs
Test (x,y) ~ D s~ dr

m Supervised Learning succeeds when training and test data distributions match

m But state distribution under learned 7 differs from those generated by 7
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Does it work?

Does it work?

Video: Bojarski et al. ‘16, NVIDIA
Alina Vereshchaka (UB)
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Solution: Demonstration augmentation

Change pgata(0t) using demonstration augmentation.
Label additional examples generated by the learned policy, drawn from p, iearned (04).
How?

m Use human expert

m Synthetically change observed o; and corresponding u;
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What it data augmentation?

Data augmentation ! significantly increase the diversity of data available for training models,
without actually collecting new data. Data augmentation techniques such as cropping,
padding, and horizontal flipping.

Original Horizontal Flip Pad & Crop Rotate

Lhttps : //bair.berkeley.edu/blog /2019/06/07 /data_aug/
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Demonstration augmentation: DAVE-2 2

m Trained CNN to map raw pixels from a
single front-facing camera directly to
steering commands.

m With minimum training data the system
learns to drive in traffic on local roads and
operates in areas with unclear visual
guidance such as in parking lots and on
unpaved roads.

m The system learns detecting useful road
features with only the human steering
angle as the training signal.

m DAVE-2 driving Lincoln YouTube video

[RLTALELEA

2https : //arxiv.org / pdf /1604.07316.pdf
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https://www.youtube.com/watch?v=NJU9ULQUwng

DAVE-2: High-level view of the data collection system

[ Left camera } [Center camera} [Right camera]

Steering wheel angle
(via CAN bus)

External solid-state
drive for data storage

NVIDIADRIVE™ PX
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DAVE-2: Training the neural network
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DAVE-2: CNN architecture

(@) Qutput: vehicle control
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Can we make it work more often?

— training trajectory
o =y expected trajectory

stability
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Can we make it work more often?

— training trajectory
— Ty expected trajectory

W@(at|0t)

Y ‘ ‘pda.ta(ct‘) -

can we make pdata(0t) = pr,(04)?
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Can we make it more often?

Can we make pyata(0t) = pr,(0r)?
DAgger: Dataset Aggregation
Goal: collect training data from py,(o;) instead of pgata(0t)

How?
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Can we make it more often?

Can we make pyata(0t) = pr,(0r)?
DAgger: Dataset Aggregation

Goal: collect training data from py,(o;) instead of pgata(0t)
How? Just run my(a¢|ot), but need label a;

Train mp(a¢|ot) from human data D = {01, a1,...,0n, an}

Run mg(at|ot) to get dataset D = {o1,...,0m}

Ask human to label D, with actions a;

Aggregare: D < DU D,

Go to Step 1
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What is the problem?

DAgger: Dataset Aggregation
Train mg(a¢|o¢) from human data D = {o1,a1,...,0n,an}
Run mg(at|or) to get dataset D = {o1,...,0m}
Ask human to label D, with actions a;
Aggregate: D <+ DU D,
Go to Step 1
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What is the problem?

DAgger: Dataset Aggregation
Train mp(a¢|ot) from human data D = {01, a1,...,0n, an}
Run mg(a¢|ot) to get dataset D = {o1,...,0m}
Ask human to label D, with actions a;
Aggregate: D «+ DU D,
Go to Step 1

Oy ag
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Why might we fail to fit the expert?

m Non-Markovian behavior

m Multimodal behavior
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Non-Markovian behavior

mo(az|ot) mo(a¢|oq, ..., 0¢)
behavior depends only behavior depends on
on current observation all past observations
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Non-Markovian behavior

mo(az|ot) mo(a¢|oq, ..., 0¢)
behavior depends only behavior depends on
on current observation all past observations

m If we see the same thing twice, we do the same thing twice, regardless of what happened
before

m Often very unnatural for human demonstrators
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How can we use the whole history?

variable number of frames,
too many weights
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Using Recurrent Neural Networks

ﬂ—+ RNN state

RNN state

Typically, LSTM cells work better here
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Aside: why might this work poorly? 3

Scenario A: Full Information Scenario B: Incomplete Information

policy attends to brake indicator policy attends to pedestrian

Figure 1: Causal confusion: more information yields worse imitation learning performance. Model A relies on
the braking indicator to decide whether to brake. Model B instead correctly attends to the pedestrian.

3de Haan, Pim, Dinesh Jayaraman, and Sergey Levine. "Causal Confusion in Imitation Learning." (2019)
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Multimodal Behavior

ik AL _he o YOREE)
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Imitation learning: what's the problem?

* Humans need to provide data, which is typically finite
* Deep learning works best when data is plentiful

* Humans are not good at providing some kinds of actions

BTL) PGS) PTR)

* Humans can learn autonomously; can our machines do the same?
* Unlimited data from own experience
* Continuous self-improvement
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Behavior Cloning: Summary

training supervised

data learning Wg(at‘ot)

* Often (but not always) insufficient by itself
* Distribution mismatch problem X

* Sometimes works well P =
* Hacks (e.g. left/right images)

* Samples from a stable trajectory distribution %
* Add more on-policy data, e.g. using Dagger > '

* Better models that fit more accurately oy T
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Learning From Showing and Telling
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Inverse Reinforcement Learning (IRL)

Computer Games Real World Scenarios
reward

robotics dialog autonomous driving
[ AR R
— /s

q -
R T

Mnih et al. ‘15 what is the reward?
often use a proxy

frequently easier to provide expert data
Inverse reinforcement learning: infer reward function from roll-outs of expert policy
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ement Learning (IRL)

Inverse Optimal Control / Inverse Reinforcement Learning:
infer reward function from demonstrations

(IOC/IRL) (Kalman ‘64, Ng & Russell '00)
given: goal:
- state & action space - recover reward function
- samples from * - then use reward to get policy

- dynamics model (sometimes)

Challenges
underdefined problem
difficult to evaluate a learned reward
demonstrations may not be precisely optimal

A O-4A
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Problem Setup

¢ Given:
- State space, action space - Dynamics (sometimes) Ty o[S¢+1|8¢, a4
« Noreward function - Teacher’s demonstration:

50, @o, 51, 01, 82, 42, ...
(= trace of the teacher’s policy 7*)

* Inverse RL
« Can we recover R?
* Apprenticeship learning via inverse RL
« Can we then use this R to find a good policy?
* Behavioral cloning (previous)

« Can we directly learn the teacher’s policy using supervised learning?
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ement Learning (IRL)

Reinforcement Learning Inverse Reinforcement Learning

Environment

4

Rewards « IRL « Behavior

Environment

4

Rewards » RL » Behavior
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Inverse Reinforcement Learning (IRL)

"forward” reinforcement learning : inverse reinforcement learning
given: given:
states s € S, actions a € A states s € S, actions a € A
(sometimes) transitions p(s’[s, a) i (sometimes) transitions p(s'|s,a)
reward function r(s,a) i samples {r;} sampled from 7*(7)

learn 7*(als) learn 7y (s, a)

H N reward parameters

i ..and then use it to learn 7*(als)

NN N N R R RN R RN R R R N NN NN N AR AN NEE NSRS NN EREEEREEEEERERERERRRREREREREE

) ) neural net reward function:
linear reward function:

ry(s,a) =3, ¥ fi(s,a) = vTf(s,a) a Ty (S, a)

© parameters v
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Inverse Reinforcement Learning (IRL)

IRL problem is to find a reward function that can explain the expert behavior

Environment
Model (MDP)

hd

c(s)

Cost Function - Inverse Reinforcement

Learning (IRL)

hd

expert
trajectories
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