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Types of RL algorithms

*
0 :arger:qax r~opo(T [E rst,at]
t

m Model-based RL: estimate the transition model and then:
m Use it for planning (no explicit policy)
m Use it to improve a policy

m Value-based: estimate value function or Q-function of the current policy (no explicit
policy)
m Policy-gradient: directly differentiate the objective

m Actor-critic: estimate value function or Q-function of the current policy, use it to improve
the policy
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Model-based Algorithms

fit a model learn p(s;y1|s;.a;)

generate samples

(i.e. run the policy)

improve the policy ([EREURS RIS
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Value Based Algorithms

Exa m ples; fit a model/

* VaIUE'lte I‘ation estimate the return
* Q-Learning
¢ DQN generate samples

(i.e. run the policy)

fit V(s) or Q(s,a)

[ GE TR set m(s) = arg max, (s, a)

Alina Vereshchaka (UB) CSE4/510 Reinforcement Learning, Lecture 20 October 31, 2019 5/29



Direct Policy Gradient

N evaluate returns
estimate the return il
R; = Zt r(sr,ay)

generate samples
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-critic: Value Function + Policy Gradients

fit V(s) or (s,a)

fit a model/
Sl g evaluate returns
using V' or Q!

generate samples

(i.e. run the policy)

(RGN 6 <— 0 + Ve E[> ", r(s;. a;)
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Comparison: Sample Efficiency

m Sample efficiency: How many samples do we need to get a good policy?
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Comparison: Sample Efficiency

m Sample efficiency: How many samples do we need to get a good policy?
m Most important questions: Is the algorithm off policy?
m Off policy: able to improve the policy without generating new samples from that policy

m On policy: each time the policy is changed, even a little bit, we need to generate new samples
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Comparison: Sample Efficiency

off-policy » on-policy
More efficient Less efficient
(fewer samples) (more samples)
< >
model-based  model-based off-policy actor-critic  on-policy policy evolutionary or
shallow RL deep RL Q-function style gradient gradient-free
learning methods algorithms algorithms
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REINFORCE (Monte-Carlo Policy Gradient)

» Update parameters by stochastic gradient ascent

» Using policy gradient theorem

» Using return G, as an unbiased sample of Q™ (s, at)

Al = aGy Vg log mp(se, ay)

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization 7(a|s, #),Va € A,s € 8,0 € R"
Initialize policy weights 6
Repeat forever:
Generate an episode Sy, Ag, Ry, ..., S7_1, Ar_1, Ry, following m(-|-,8)
For each step of the episode t =0,...,7 — 1:
G} + return from step ¢
0 «— 0 + av' Gy Vg log m(A¢|S;, 0)
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REINFORCE: Problem

AWESOME GOOD BAD GOOD GOOD
> > > >
A Az As As An

GOOD GOOD GOOD GOOD GOOD
> > > >
A Ay As A An
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policyupdate: A = v x Vg * (log (S, Ay, 0)) *F{q{)\
New update: A = o % V@ * (Zog ’fr(St, At, 9)) * Q(St, At

Alina Vereshchaka (UB) CSE4/510 Reinforcement Learning, Lecture 20 October 31, 2019 12 /29



Table of Contents

© Actor-Critic

Alina Vereshchaka (UB) CSE4/510 Reinforcement Learning, Lecture 20 October 31, 2019 13 /29



Actor-Critic

m Monte-Carlo policy gradient still has high variance

m We can use a critic to estimate the action-value function:

Quw(s,a) = Qr,(s,a)
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Actor-Critic

m Monte-Carlo policy gradient still has high variance

m We can use a critic to estimate the action-value function:

Qw(s,a) = Qx, (s, a)

m Actor-critic algorithms maintain two sets of parameters
m Critic Updates action-value function parameters w

m Actor Updates policy parameters 6, in direction suggested by critic

m Actor-critic algorithms follow an approximate policy gradient

VoJ(0) =~ Ex,[Vglog m(s, a)Qu (s, a)]
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Actor-Critic

m Monte-Carlo policy gradient still has high variance

m We can use a critic to estimate the action-value function:

QW(Sa 3) ~ Qﬂ'e(sv a)

m Actor-critic algorithms maintain two sets of parameters

m Critic Updates action-value function parameters w

m Actor Updates policy parameters 6, in direction suggested by critic
m Actor-critic algorithms follow an approximate policy gradient

VoJ(0) =~ Ex,[Vglog m(s, a)Qu (s, a)]
A0 = aVylogmy(s,a)Qu(s, a)
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Actor-Critic
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Actor-Critic

m The actor is the policy my(als) with parameters 6 which conducts actions in an
environment.
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Actor-Critic

m The actor is the policy my(als) with parameters 6 which conducts actions in an
environment.

m The critic computes value functions to help assist the actor in learning. These are usually
the state value, state-action value, or advantage value, denoted as V/(s), Q(s, a), and
A(s, a), respectively.
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Actor-Critic
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Actor-Critic

m The critic is solving a familiar problem: policy evaluation

m How good is policy 7y for current parameters 67
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Actor-Critic

m The critic is solving a familiar problem: policy evaluation
m How good is policy 7y for current parameters 67
m To estimate, use any policy evaluation method:

m Monte-Carlo policy evaluation

m Temporal-Difference learning

m Least-squares policy evaluation
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Estimating the TD Error

m For the true value function Vi, (s), the TD error d,

Oy =
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Estimating the TD Error

m For the true value function Vi, (s), the TD error d,

Omg = 1 +'7V7F9(51) - V7T9(5)
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Estimating the TD Error

m For the true value function Vi, (s), the TD error d,

Omg = 1+ YV (s') — Vi, (5)
m is an unbiased estimate of the advantage function

Er,[0r,ls,a) = Er, [r + Vi, ()]s, a] — Vi (5)
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Estimating the TD Error

m For the true value function Vi, (s), the TD error d,

Omg = 1+ YV (s') — Vi, (5)
m is an unbiased estimate of the advantage function
Er,[0r,ls,a) = Er, [r + Vi, ()]s, a] — Vi (5)
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Estimating the TD Error

m For the true value function Vi, (s), the TD error d,

Omg = 1+ YV (s') — Vi, (5)
m is an unbiased estimate of the advantage function
Er,[0r,ls,a) = Er, [r + Vi, ()]s, a] — Vi (5)
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Estimating the TD Error

m For the true value function Vi, (s), the TD error d,

Omg = 1+ YV (s') — Vi, (5)
m is an unbiased estimate of the advantage function
Er,[0r,ls,a) = Er, [r + Vi, ()]s, a] — Vi (5)

= Qr(s,3) = Vi, (s)
= Ar,(s,a)
m So we can use the TD error to compute the policy gradient

VHJ(Q) = ]Eﬂ'a [VG log 770(57 a)éﬂe]
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Estimating the TD Error

m For the true value function Vi, (s), the TD error d,

Omg = 1+ YV (s') — Vi, (5)
m is an unbiased estimate of the advantage function
B s l5.8] = By |49V ()2 Vo9

= Qry(s,a) — Vi, (s)
= Ar, (s, a)
m So we can use the TD error to compute the policy gradient
VHJ(Q) = ]Eﬂ'@ [VG log 770(57 a)éﬂe]
m In practice we can use an approximate TD error, that requires one set of parameters w

Sw=r+vVu(s') — Vi(s)
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Actor-Critic: Critic (Linear TD(0)) + Actor (policy gradient)

One-step Actor—Critic (episodic), for estimating mg =~ .

Input: a differentiable policy parameterization 7(als, )
Input: a differentiable state-value function parameterization v(s,w)
Parameters: step sizes o > 0, % >0
Initialize policy parameter @ € R and state-value weights w € R? (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

I+1
Loop while S is not terminal (for each time step):
A~ x(-|S,0)
Take action A, observe S’, R
0 R+~9(8".w) —0(S.w) (if S is terminal, then #(S",w) = 0)

|W < W+ aVoVi(Sw)

|B +—0+a’10VInn(AlS, B)I
1 vl

S+« 5
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Recap: REINFORCE with Baseline

REINFORCE with Baseline (episodic), for estimating wg ~ 7,

Input: a differentiable policy parameterization 7(a|s, )

Input: a differentiable state-value function parameterization (s, w)
Algorithm parameters: step sizes a® > 0, a¥ > 0

Initialize policy parameter 8 € R? and state-value weights w € R? (e.g., to 0)

Loop forever (for each episode):
Generate an episode Sp, Ao, R1,...,S7_1, Ar_1, Ry, following 7(-|-, )
Loop for each step of the episode t =0,1,...,T —1:
G Yemspr V1R (GY)
§ + G —0(S;,w)
w w4+ aVIVo(Sy,w)
0 + 0+ a5V Inw(As|S:, 0)
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Advantage Actor Critic (A2C)

m The advantage function can significantly reduce variance of policy gradient
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Advantage Actor Critic (A2C)

m The advantage function can significantly reduce variance of policy gradient
m So the critic should really estimate the advantage function

m For example, by estimating both V,,(s) and Qy,(s, a)
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Advantage Actor Critic (A2C)

m The advantage function can significantly reduce variance of policy gradient
m So the critic should really estimate the advantage function
m For example, by estimating both V,,(s) and Qy,(s, a)

m Using two function approximators and two parameter vectors,

Vi(s) = Vi, (s)
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Advantage Actor Critic (A2C)

m The advantage function can significantly reduce variance of policy gradient
m So the critic should really estimate the advantage function

m For example, by estimating both V,,(s) and Qy,(s, a)

m Using two function approximators and two parameter vectors,

Vi(s) = Vi, (s)
Qu(s,a) = Qr,(s, a)
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Advantage Actor Critic (A2C)

The advantage function can significantly reduce variance of policy gradient
So the critic should really estimate the advantage function
For example, by estimating both V;,(s) and Q,(s, a)
Using two function approximators and two parameter vectors,
Vi(s) = Vi, (s)

Qu(s,a) = Qr,(s, a)
A(s,a) = Qu(s,a) — V,(s)
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Advantage Actor Critic (A2C)

m The advantage function can significantly reduce variance of policy gradient
m So the critic should really estimate the advantage function
m For example, by estimating both V,,(s) and Qy,(s, a)
m Using two function approximators and two parameter vectors,
Vi(s) = Vi, (s)

Qw(57 a) ~ Qﬂ'e(sv a)
A(s,a) = Qu(s,a) — Vi(s)

m And updating both value functions by e.g. TD learning
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Summary of Policy Gradient Algorithms

m The policy gradient has many equivalent forms

VoJ(0) = Er,[Volog (s, a) G
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Summary of Policy Gradient Algorithms

m The policy gradient has many equivalent forms

VoJ(0) = Ex, [V log (s, a) G REINFORCE
=E.,[Vologmy(s,a)Qu(s. a)]
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Summary of Policy Gradient Algorithms

m The policy gradient has many equivalent forms
VoJ(0) = Ex, [V log (s, a) G REINFORCE

=E,[Vologmy(s,a)Qu(s, a)] Q Actor-Critic
= Er,[Volog my(s, a)Aw(s, a)]
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Summary of Policy Gradient Algorithms

m The policy gradient has many equivalent forms

VoJ(0) = Er,[Volog o (s, a) G¢] REINFORCE
= Ewe [VG |Og 779( 73) QW( )] Q Actor-Critic
= Er,[Volog my(s, a)Aw(s, a)] Advantage Actor-Critic (A2C)

)

=E,,[Vologmy(s, a)d]
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Summary of Policy Gradient Algorithms

m The policy gradient has many equivalent forms

VoJ(0) = Ey, [V log (s, 3)G:] REINFORCE
= Er,[Vologmy(s, a)Qu (s, a)l Q Actor-Critic
= E, [V log my(s,a)Aw(s, a)] Advantage Actor-Critic (A2C)
= Er,y[Vologmo(s, a)d] TD Actor-Critic

m Each leads a stochastic gradient ascent algorithm

m Critic uses policy evaluation (e.g. MC or TD learning) to estimate Q. (s, a), Ax(s, a) or
Vi(s).
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Asynchronous Advantage Actor Critic (A3C)

A3C stands for Asynchronous Advantage Actor Critic

m Asynchronous: the algorithm involves executing a set of environments in parallel to
increase the diversity of training data, and with gradient updates performed in a Hogwild!
style procedure. No experience replay is needed, though one could add it if desired.
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Asynchronous Advantage Actor Critic (A3C)

A3C stands for Asynchronous Advantage Actor Critic

m Asynchronous: the algorithm involves executing a set of environments in parallel to
increase the diversity of training data, and with gradient updates performed in a Hogwild!
style procedure. No experience replay is needed, though one could add it if desired.

m Advantage: the policy gradient updates are done using the advantage function A(s, a)

m Actor: this is an actor-critic method which involves a policy that updates with the help of
learned state-value functions.
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Asynchronous Advantage Actor Critic (A3C)

m A3C (Mnih et al. 2016) idea: Sample for data can be parallelized using several copies of
the same agent
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m use N copies of the agents (workers) working in parallel collecting samples and computing
gradients for policy and value function

m After some time, pass gradients to a main network that updates actor and critic using the
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Asynchronous Advantage Actor Critic (A3C)

m A3C (Mnih et al. 2016) idea: Sample for data can be parallelized using several copies of
the same agent

m use N copies of the agents (workers) working in parallel collecting samples and computing
gradients for policy and value function

m After some time, pass gradients to a main network that updates actor and critic using the
gradients of all agents

m After some time the worker copy the weights of the global network
m This parallelism decorrelates the agents’ data, so no Experience Replay Buffer needed

m Even one can explicitly use different exploration policies in each actor-learner to maximize
diversity
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Asynchronous Advantage Actor Critic (A3C)

m A3C (Mnih et al. 2016) idea: Sample for data can be parallelized using several copies of
the same agent

m use N copies of the agents (workers) working in parallel collecting samples and computing
gradients for policy and value function

m After some time, pass gradients to a main network that updates actor and critic using the
gradients of all agents

m After some time the worker copy the weights of the global network
m This parallelism decorrelates the agents’ data, so no Experience Replay Buffer needed

m Even one can explicitly use different exploration policies in each actor-learner to maximize
diversity

m Asynchronism can be extended to other update mechanisms (SARSA, Q-learning, etc) but
it works better in Advantage Actor critic setting
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Asynchronous Advantage Actor Critic (A3C)

Global Network
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Asynchronous Advantage Actor Critic (A3C)

5. Worker q
updates global 1. Worker reset
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Asynchronous Advantage Actor Critic (A3C)

Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.

# Assume global shared parameter vectors 6 and 0., and global shared counter T = ()
/ Assume thread-specific parameter vectors 8" and 8,
Initialize thread step counter ¢ +— 1
repeat
Reset gradients: df « 0 and d@, < 0.
Synchronize thread-specific parameters @' = § and 6}, = 6,

totare =1
Get state sy
repeat

Perform a; according to policy 7(a¢|s:; 6")
Receive reward r, and new state sy41

te—t+1
T+ T+1
until terminal sy or £ — tor00t == tmax
R= 0 for terminal s¢
T Vise, ) for non-terminal s,// Bootstrap from last state
forie{t—1,... toar:} do
Reri++R

Accumulate gradients wrt 6': df + df + Vs log m(ai|s:; 6') (R — V(si;65))
Accumulate gradients wrt 6 déy, « dfl, + 8 (R — V(s:;6.)) /86!,
end for
Perform asynchronous update of 8 using df and of #,, using d#,..
until 7" > Trnaw
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