

Actor-Critic Methods (A2C, A3C)

Alina Vereshchaka

CSE4/510 Reinforcement Learning
Fall 2019

avereshc@buffalo.edu

October 31, 2019

*Slides are adopted from Deep Reinforcement Learning by Sergey Levine & Policy Gradients by David Silver

Table of Contents

1 Types of RL Algorithms

2 Actor-Critic

3 Asynchronous Advantage Actor Critic (A3C)

$$\theta^* = \arg \max_{\theta} R_{\tau \sim p_{\theta}(\tau)} \left[\sum_t r(s_t, a_t) \right]$$

- Model-based RL:

$$\theta^* = \arg \max_{\theta} R_{\tau \sim p_{\theta}(\tau)} \left[\sum_t r(s_t, a_t) \right]$$

- **Model-based RL:** estimate the transition model and then:

- Use it for planning (no explicit policy)
- Use it to improve a policy

$$\theta^* = \arg \max_{\theta} R_{\tau \sim p_{\theta}(\tau)} \left[\sum_t r(s_t, a_t) \right]$$

- **Model-based RL:** estimate the transition model and then:
 - Use it for planning (no explicit policy)
 - Use it to improve a policy
- **Value-based:**

$$\theta^* = \arg \max_{\theta} R_{\tau \sim p_{\theta}(\tau)} \left[\sum_t r(s_t, a_t) \right]$$

- **Model-based RL:** estimate the transition model and then:
 - Use it for planning (no explicit policy)
 - Use it to improve a policy
- **Value-based:** estimate value function or Q-function of the current policy (no explicit policy)
- **Policy-gradient:**

$$\theta^* = \arg \max_{\theta} R_{\tau \sim p_{\theta}(\tau)} \left[\sum_t r(s_t, a_t) \right]$$

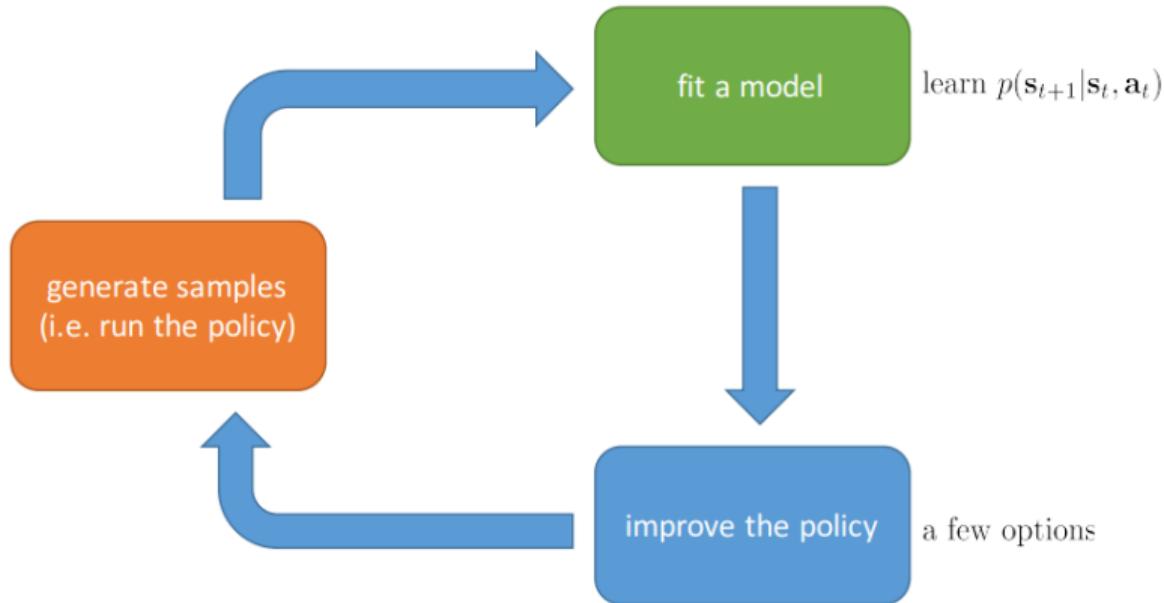
- **Model-based RL:** estimate the transition model and then:
 - Use it for planning (no explicit policy)
 - Use it to improve a policy
- **Value-based:** estimate value function or Q-function of the current policy (no explicit policy)
- **Policy-gradient:** directly differentiate the objective
- **Actor-critic:**

Types of RL algorithms

$$\theta^* = \arg \max_{\theta} R_{\tau \sim p_{\theta}(\tau)} \left[\sum_t r(s_t, a_t) \right]$$

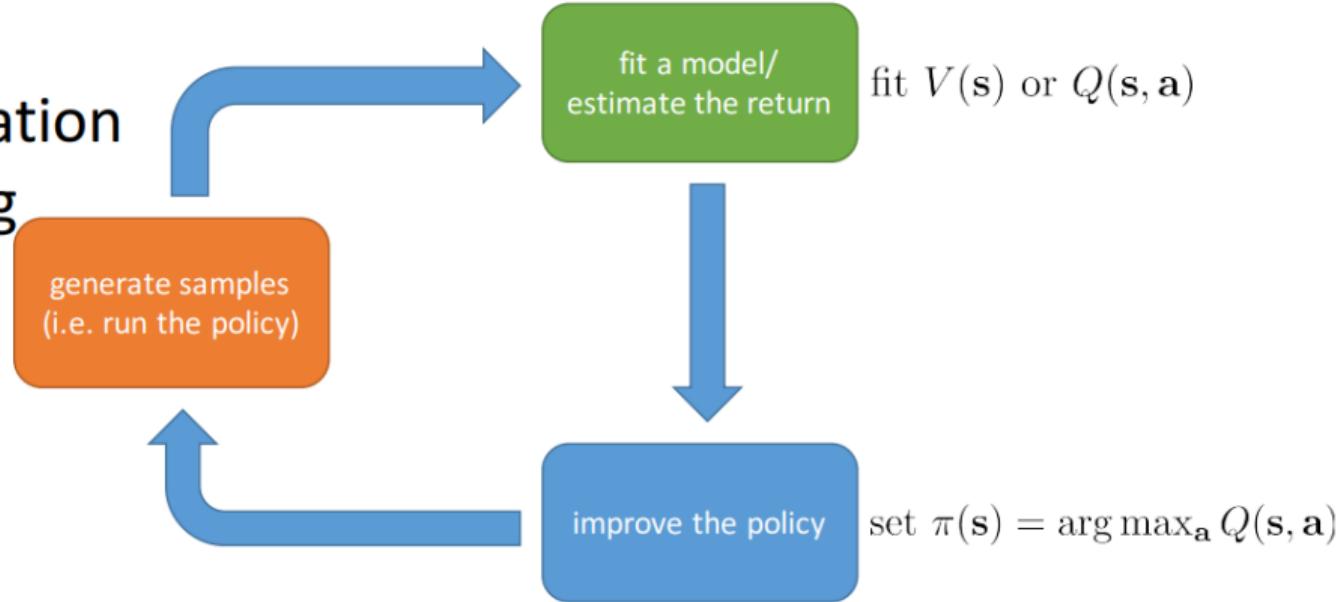
- **Model-based RL:** estimate the transition model and then:
 - Use it for planning (no explicit policy)
 - Use it to improve a policy
- **Value-based:** estimate value function or Q-function of the current policy (no explicit policy)
- **Policy-gradient:** directly differentiate the objective
- **Actor-critic:** estimate value function or Q-function of the current policy, use it to improve the policy

Model-based Algorithms

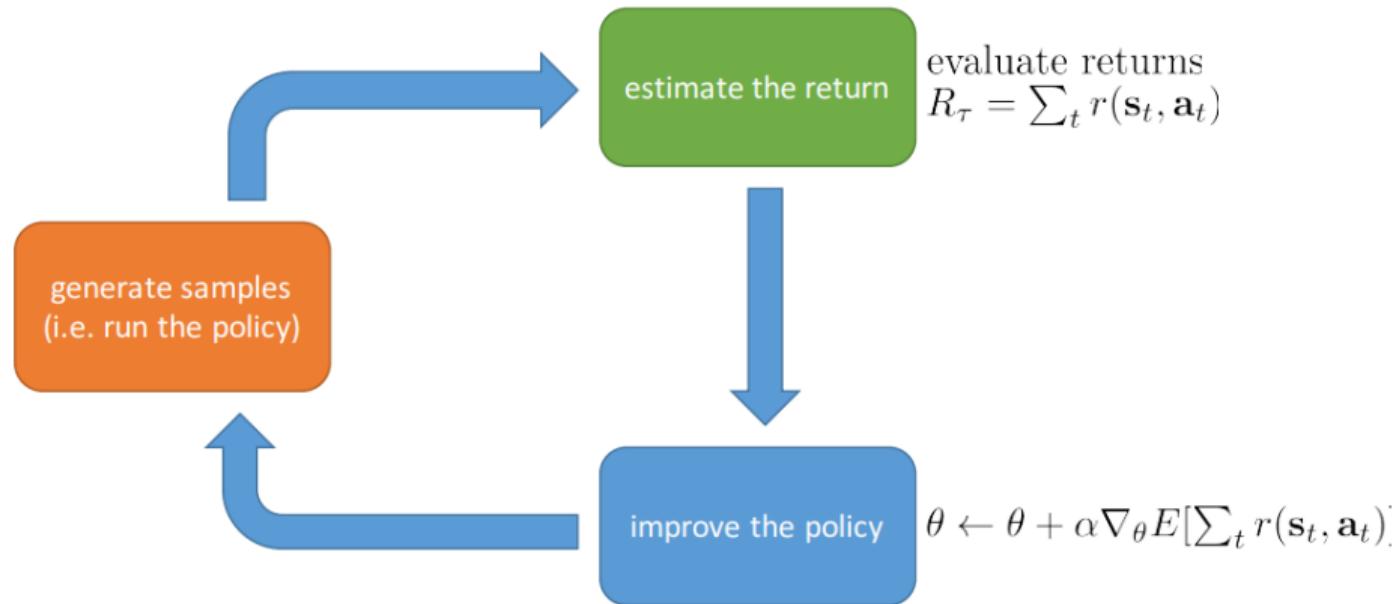


Examples:

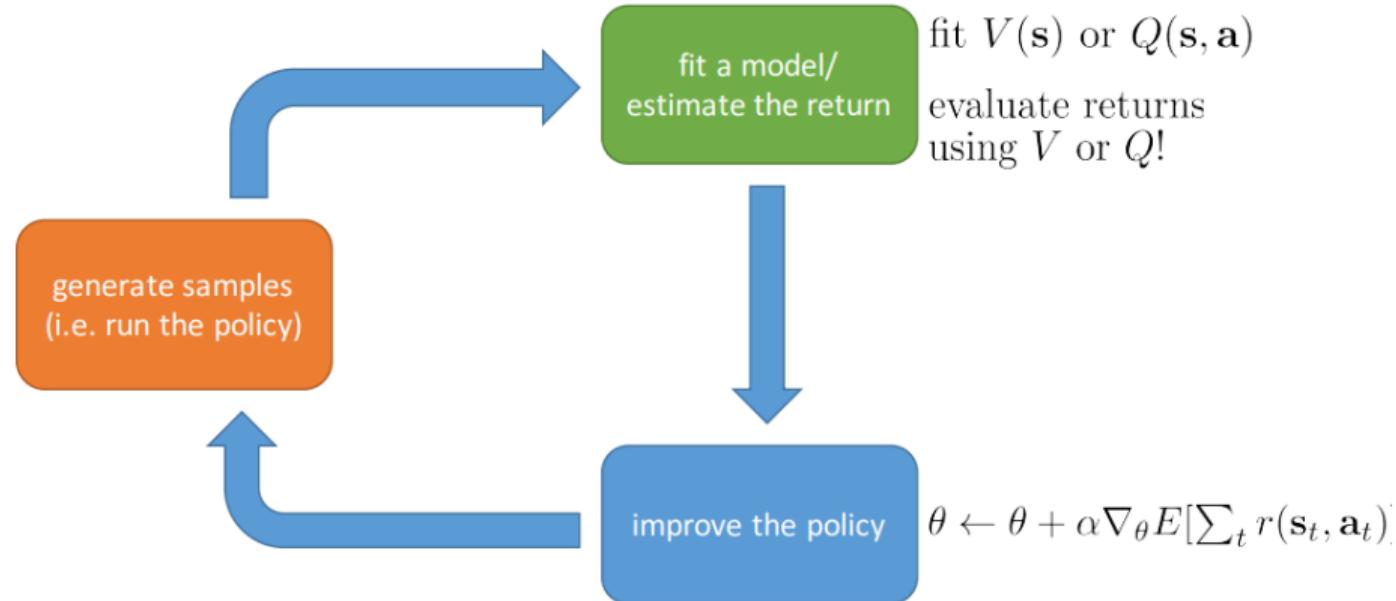
- Value-Iteration
- Q-Learning
- DQN



Direct Policy Gradient



Actor-critic: Value Function + Policy Gradients



Comparison: Sample Efficiency

- **Sample efficiency:** How many samples do we need to get a good policy?

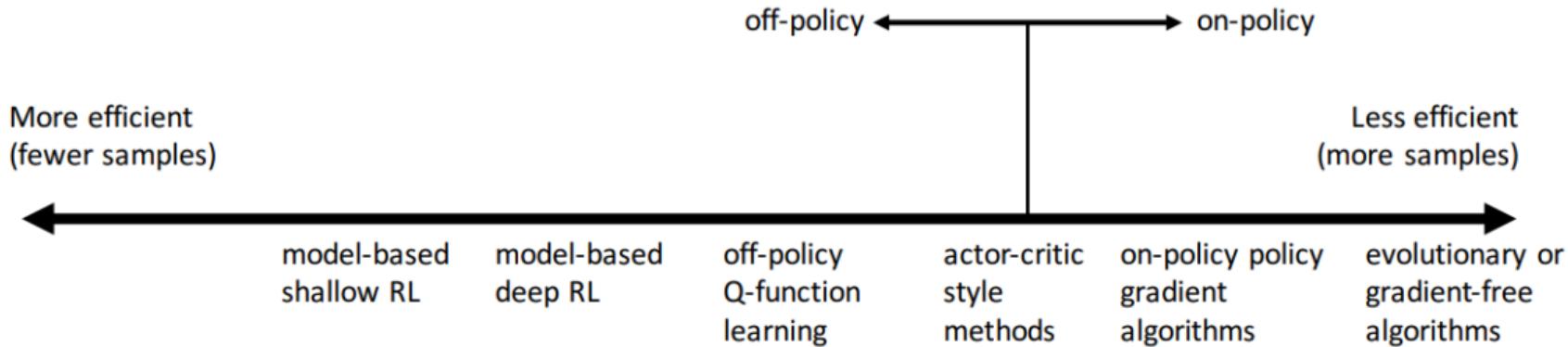
Comparison: Sample Efficiency

- **Sample efficiency:** How many samples do we need to get a good policy?
- Most important questions: Is the algorithm off policy?
 - **Off policy:** able to improve the policy without generating new samples from that policy

Comparison: Sample Efficiency

- **Sample efficiency:** How many samples do we need to get a good policy?
- Most important questions: Is the algorithm off policy?
 - **Off policy:** able to improve the policy without generating new samples from that policy
 - **On policy:** each time the policy is changed, even a little bit, we need to generate new samples

Comparison: Sample Efficiency



REINFORCE (Monte-Carlo Policy Gradient)

- ▶ Update parameters by stochastic gradient ascent
- ▶ Using policy gradient theorem
- ▶ Using return G_t as an unbiased sample of $Q^{\pi_\theta}(s_t, a_t)$

$$\Delta\theta_t = \alpha G_t \nabla_\theta \log \pi_\theta(s_t, a_t)$$

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization $\pi(a|s, \theta)$, $\forall a \in \mathcal{A}, s \in \mathcal{S}, \theta \in \mathbb{R}^n$

Initialize policy weights θ

Repeat forever:

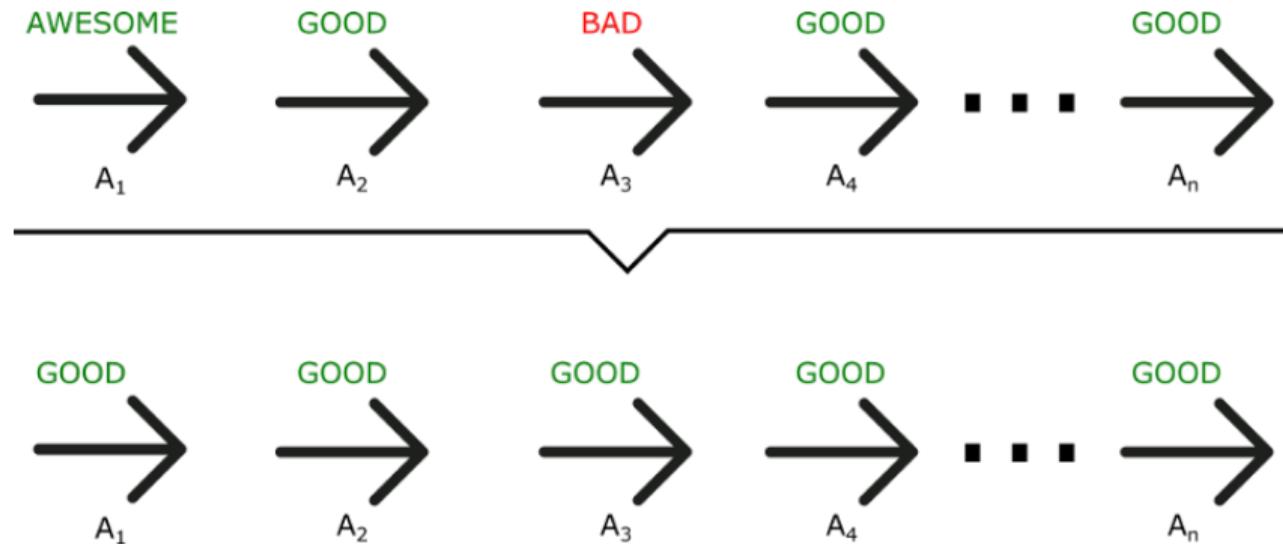
 Generate an episode $S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}, R_T$, following $\pi(\cdot| \cdot, \theta)$

 For each step of the episode $t = 0, \dots, T-1$:

$G_t \leftarrow$ return from step t

$\theta \leftarrow \theta + \alpha \gamma^t G_t \nabla_\theta \log \pi(A_t | S_t, \theta)$

REINFORCE: Problem



Solution

Policy Update: $\Delta\theta = \alpha * \nabla_\theta * (\log \pi(S_t, A_t, \theta)) * \cancel{R(t)}$

New update: $\Delta\theta = \alpha * \nabla_\theta * (\log \pi(S_t, A_t, \theta)) * \boxed{Q(S_t, A_t)}$

Table of Contents

1 Types of RL Algorithms

2 Actor-Critic

3 Asynchronous Advantage Actor Critic (A3C)

Actor-Critic

- Monte-Carlo policy gradient still has **high variance**
- We can use a **critic** to estimate the action-value function:

$$Q_w(s, a) \approx Q_{\pi_\theta}(s, a)$$

Actor-Critic

- Monte-Carlo policy gradient still has **high variance**
- We can use a **critic** to estimate the action-value function:

$$Q_w(s, a) \approx Q_{\pi_\theta}(s, a)$$

- Actor-critic algorithms maintain *two* sets of parameters
 - **Critic** Updates action-value function parameters w

Actor-Critic

- Monte-Carlo policy gradient still has **high variance**
- We can use a **critic** to estimate the action-value function:

$$Q_w(s, a) \approx Q_{\pi_\theta}(s, a)$$

- Actor-critic algorithms maintain *two* sets of parameters
 - **Critic** Updates action-value function parameters w
 - **Actor** Updates policy parameters θ , in direction suggested by critic

Actor-Critic

- Monte-Carlo policy gradient still has **high variance**
- We can use a **critic** to estimate the action-value function:

$$Q_w(s, a) \approx Q_{\pi_\theta}(s, a)$$

- Actor-critic algorithms maintain *two* sets of parameters
 - **Critic** Updates action-value function parameters w
 - **Actor** Updates policy parameters θ , in direction suggested by critic
- Actor-critic algorithms follow an approximate policy gradient

$$\nabla_\theta J(\theta) \approx E_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s, a) Q_w(s, a)]$$

Actor-Critic

- Monte-Carlo policy gradient still has **high variance**
- We can use a **critic** to estimate the action-value function:

$$Q_w(s, a) \approx Q_{\pi_\theta}(s, a)$$

- Actor-critic algorithms maintain *two* sets of parameters
 - **Critic** Updates action-value function parameters w
 - **Actor** Updates policy parameters θ , in direction suggested by critic
- Actor-critic algorithms follow an approximate policy gradient

$$\nabla_\theta J(\theta) \approx E_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s, a) Q_w(s, a)]$$

$$\Delta\theta = \alpha \nabla_\theta \log \pi_\theta(s, a) Q_w(s, a)$$

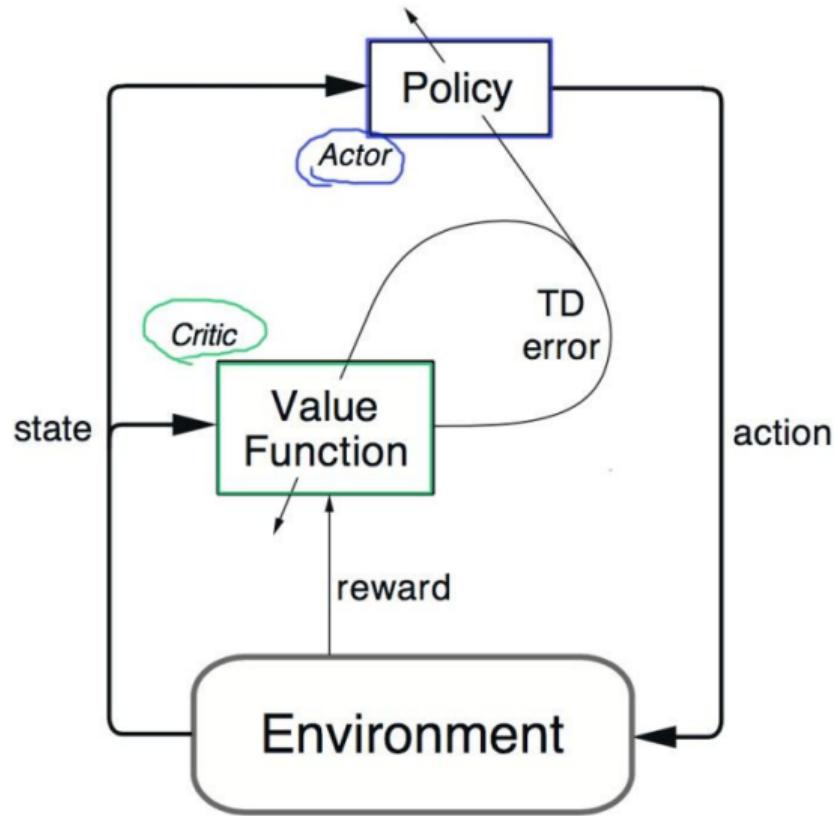
Actor

Critic

- The **actor** is the policy $\pi_\theta(a|s)$ with parameters θ which conducts actions in an environment.

- The **actor** is the policy $\pi_\theta(a|s)$ with parameters θ which conducts actions in an environment.
- The **critic** computes value functions to help assist the actor in learning. These are usually the state value, state-action value, or advantage value, denoted as $V(s)$, $Q(s, a)$, and $A(s, a)$, respectively.

Actor-Critic



- The **critic** is solving a familiar problem: policy evaluation
- How good is policy π_θ for current parameters θ ?

- The **critic** is solving a familiar problem: policy evaluation
- How good is policy π_θ for current parameters θ ?
- To estimate, use any policy evaluation method:
 - Monte-Carlo policy evaluation
 - Temporal-Difference learning
 - Least-squares policy evaluation

Estimating the TD Error

- For the true value function $V_{\pi_\theta}(s)$, the TD error δ_{π_θ}

$$\delta_{\pi_\theta} =$$

Estimating the TD Error

- For the true value function $V_{\pi_\theta}(s)$, the TD error δ_{π_θ}

$$\delta_{\pi_\theta} = r + \gamma V_{\pi_\theta}(s') - V_{\pi_\theta}(s)$$

Estimating the TD Error

- For the true value function $V_{\pi_\theta}(s)$, the TD error δ_{π_θ}

$$\delta_{\pi_\theta} = r + \gamma V_{\pi_\theta}(s') - V_{\pi_\theta}(s)$$

- is an unbiased estimate of the advantage function

$$\mathbb{E}_{\pi_\theta}[\delta_{\pi_\theta}|s, a] = \mathbb{E}_{\pi_\theta} \left[r + \gamma V_{\pi_\theta}(s') | s, a \right] - V_{\pi_\theta}(s)$$

Estimating the TD Error

- For the true value function $V_{\pi_\theta}(s)$, the TD error δ_{π_θ}

$$\delta_{\pi_\theta} = r + \gamma V_{\pi_\theta}(s') - V_{\pi_\theta}(s)$$

- is an unbiased estimate of the advantage function

$$\begin{aligned}\mathbb{E}_{\pi_\theta}[\delta_{\pi_\theta}|s, a] &= \mathbb{E}_{\pi_\theta}\left[r + \gamma V_{\pi_\theta}(s')|s, a\right] - V_{\pi_\theta}(s) \\ &= Q_{\pi_\theta}(s, a) - V_{\pi_\theta}(s)\end{aligned}$$

Estimating the TD Error

- For the true value function $V_{\pi_\theta}(s)$, the TD error δ_{π_θ}

$$\delta_{\pi_\theta} = r + \gamma V_{\pi_\theta}(s') - V_{\pi_\theta}(s)$$

- is an unbiased estimate of the advantage function

$$\begin{aligned}\mathbb{E}_{\pi_\theta}[\delta_{\pi_\theta}|s, a] &= \mathbb{E}_{\pi_\theta}\left[r + \gamma V_{\pi_\theta}(s')|s, a\right] - V_{\pi_\theta}(s) \\ &= Q_{\pi_\theta}(s, a) - V_{\pi_\theta}(s) \\ &= A_{\pi_\theta}(s, a)\end{aligned}$$

Estimating the TD Error

- For the true value function $V_{\pi_\theta}(s)$, the TD error δ_{π_θ}

$$\delta_{\pi_\theta} = r + \gamma V_{\pi_\theta}(s') - V_{\pi_\theta}(s)$$

- is an unbiased estimate of the advantage function

$$\begin{aligned}\mathbb{E}_{\pi_\theta}[\delta_{\pi_\theta}|s, a] &= \mathbb{E}_{\pi_\theta}\left[r + \gamma V_{\pi_\theta}(s')|s, a\right] - V_{\pi_\theta}(s) \\ &= Q_{\pi_\theta}(s, a) - V_{\pi_\theta}(s) \\ &= A_{\pi_\theta}(s, a)\end{aligned}$$

- So we can use the TD error to compute the policy gradient

$$\nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s, a) \delta_{\pi_\theta}]$$

Estimating the TD Error

- For the true value function $V_{\pi_\theta}(s)$, the TD error δ_{π_θ}

$$\delta_{\pi_\theta} = r + \gamma V_{\pi_\theta}(s') - V_{\pi_\theta}(s)$$

- is an unbiased estimate of the advantage function

$$\begin{aligned}\mathbb{E}_{\pi_\theta}[\delta_{\pi_\theta}|s, a] &= \mathbb{E}_{\pi_\theta}\left[r + \gamma V_{\pi_\theta}(s')|s, a\right] - V_{\pi_\theta}(s) \\ &= Q_{\pi_\theta}(s, a) - V_{\pi_\theta}(s) \\ &= A_{\pi_\theta}(s, a)\end{aligned}$$

- So we can use the TD error to compute the policy gradient

$$\nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s, a) \delta_{\pi_\theta}]$$

- In practice we can use an approximate TD error, that requires one set of parameters w

$$\delta_w = r + \gamma V_w(s') - V_w(s)$$

Actor-Critic: Critic (Linear TD(0)) + Actor (policy gradient)

One-step Actor-Critic (episodic), for estimating $\pi_\theta \approx \pi_*$

Input: a differentiable policy parameterization $\pi(a|s, \theta)$

Input: a differentiable state-value function parameterization $\hat{v}(s, w)$

Parameters: step sizes $\alpha^\theta > 0$, $\alpha^w > 0$

Initialize policy parameter $\theta \in \mathbb{R}^{d'}$ and state-value weights $w \in \mathbb{R}^d$ (e.g., to $\mathbf{0}$)

Loop forever (for each episode):

 Initialize S (first state of episode)

$I \leftarrow 1$

 Loop while S is not terminal (for each time step):

$A \sim \pi(\cdot|S, \theta)$

 Take action A , observe S', R

$\delta \leftarrow R + \gamma \hat{v}(S', w) - \hat{v}(S, w)$ (if S' is terminal, then $\hat{v}(S', w) \doteq 0$)

$w \leftarrow w + \alpha^w \delta \nabla \hat{v}(S, w)$

$\theta \leftarrow \theta + \alpha^\theta I \delta \nabla \ln \pi(A|S, \theta)$

$I \leftarrow \gamma I$

$S \leftarrow S'$

REINFORCE with Baseline (episodic), for estimating $\pi_{\theta} \approx \pi_*$

Input: a differentiable policy parameterization $\pi(a|s, \theta)$

Input: a differentiable state-value function parameterization $\hat{v}(s, w)$

Algorithm parameters: step sizes $\alpha^{\theta} > 0$, $\alpha^w > 0$

Initialize policy parameter $\theta \in \mathbb{R}^{d'}$ and state-value weights $w \in \mathbb{R}^d$ (e.g., to 0)

Loop forever (for each episode):

Generate an episode $S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}, R_T$, following $\pi(\cdot| \cdot, \theta)$

Loop for each step of the episode $t = 0, 1, \dots, T-1$:

$$G \leftarrow \sum_{k=t+1}^T \gamma^{k-t-1} R_k \tag{G_t}$$

$$\delta \leftarrow G - \hat{v}(S_t, w)$$

$$w \leftarrow w + \alpha^w \delta \nabla \hat{v}(S_t, w)$$

$$\theta \leftarrow \theta + \alpha^{\theta} \gamma^t \delta \nabla \ln \pi(A_t | S_t, \theta)$$

Advantage Actor Critic (A2C)

- The advantage function can significantly reduce variance of policy gradient

Advantage Actor Critic (A2C)

- The advantage function can significantly reduce variance of policy gradient
- So the critic should really estimate the advantage function
- For example, by estimating both $V_{\pi_{\theta}}(s)$ and $Q_{\pi_{\theta}}(s, a)$

Advantage Actor Critic (A2C)

- The advantage function can significantly reduce variance of policy gradient
- So the critic should really estimate the advantage function
- For example, by estimating both $V_{\pi_\theta}(s)$ and $Q_{\pi_\theta}(s, a)$
- Using two function approximators and two parameter vectors,

$$V_v(s) \approx V_{\pi_\theta}(s)$$

Advantage Actor Critic (A2C)

- The advantage function can significantly reduce variance of policy gradient
- So the critic should really estimate the advantage function
- For example, by estimating both $V_{\pi_\theta}(s)$ and $Q_{\pi_\theta}(s, a)$
- Using two function approximators and two parameter vectors,

$$\begin{aligned}V_v(s) &\approx V_{\pi_\theta}(s) \\Q_w(s, a) &\approx Q_{\pi_\theta}(s, a)\end{aligned}$$

Advantage Actor Critic (A2C)

- The advantage function can significantly reduce variance of policy gradient
- So the critic should really estimate the advantage function
- For example, by estimating both $V_{\pi_\theta}(s)$ and $Q_{\pi_\theta}(s, a)$
- Using two function approximators and two parameter vectors,

$$V_v(s) \approx V_{\pi_\theta}(s)$$

$$Q_w(s, a) \approx Q_{\pi_\theta}(s, a)$$

$$A(s, a) = Q_w(s, a) - V_v(s)$$

Advantage Actor Critic (A2C)

- The advantage function can significantly reduce variance of policy gradient
- So the critic should really estimate the advantage function
- For example, by estimating both $V_{\pi_\theta}(s)$ and $Q_{\pi_\theta}(s, a)$
- Using two function approximators and two parameter vectors,

$$\begin{aligned}V_v(s) &\approx V_{\pi_\theta}(s) \\Q_w(s, a) &\approx Q_{\pi_\theta}(s, a) \\A(s, a) &= Q_w(s, a) - V_v(s)\end{aligned}$$

- And updating *both* value functions by e.g. TD learning

Summary of Policy Gradient Algorithms

- The **policy gradient** has many equivalent forms

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) G_t]$$

Summary of Policy Gradient Algorithms

- The **policy gradient** has many equivalent forms

$$\begin{aligned}\nabla_{\theta} J(\theta) &= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) \textcolor{red}{G_t}] && \text{REINFORCE} \\ &= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) \textcolor{red}{Q_w}(s, a)]\end{aligned}$$

Summary of Policy Gradient Algorithms

- The **policy gradient** has many equivalent forms

$$\begin{aligned}\nabla_{\theta} J(\theta) &= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) G_t] \\ &= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) Q_w(s, a)] \\ &= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) A_w(s, a)]\end{aligned}$$

REINFORCE

Q Actor-Critic

Summary of Policy Gradient Algorithms

- The **policy gradient** has many equivalent forms

$$\begin{aligned}\nabla_{\theta} J(\theta) &= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) G_t] \\ &= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) Q_w(s, a)] \\ &= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) A_w(s, a)] \\ &= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) \delta]\end{aligned}$$

REINFORCE

Q Actor-Critic

Advantage Actor-Critic (A2C)

Summary of Policy Gradient Algorithms

- The **policy gradient** has many equivalent forms

$$\begin{aligned}\nabla_{\theta} J(\theta) &= \mathbb{E}_{\pi_{\theta}}[\nabla_{\theta} \log \pi_{\theta}(s, a) G_t] \\ &= \mathbb{E}_{\pi_{\theta}}[\nabla_{\theta} \log \pi_{\theta}(s, a) Q_w(s, a)] \\ &= \mathbb{E}_{\pi_{\theta}}[\nabla_{\theta} \log \pi_{\theta}(s, a) A_w(s, a)] \\ &= \mathbb{E}_{\pi_{\theta}}[\nabla_{\theta} \log \pi_{\theta}(s, a) \delta]\end{aligned}$$

REINFORCE

Q Actor-Critic

Advantage Actor-Critic (A2C)

TD Actor-Critic

- Each leads a stochastic gradient ascent algorithm
- Critic uses **policy evaluation** (e.g. MC or TD learning) to estimate $Q_{\pi}(s, a)$, $A_{\pi}(s, a)$ or $V_{\pi}(s)$.

Table of Contents

1 Types of RL Algorithms

2 Actor-Critic

3 Asynchronous Advantage Actor Critic (A3C)

Asynchronous Advantage Actor Critic (A3C)

A3C stands for Asynchronous Advantage Actor Critic

- **Asynchronous:** the algorithm involves executing a set of environments in parallel to increase the diversity of training data, and with gradient updates performed in a Hogwild! style procedure. No experience replay is needed, though one could add it if desired.

Asynchronous Advantage Actor Critic (A3C)

A3C stands for Asynchronous Advantage Actor Critic

- **Asynchronous:** the algorithm involves executing a set of environments in parallel to increase the diversity of training data, and with gradient updates performed in a Hogwild! style procedure. No experience replay is needed, though one could add it if desired.
- **Advantage:** the policy gradient updates are done using the advantage function $A(s, a)$

Asynchronous Advantage Actor Critic (A3C)

A3C stands for Asynchronous Advantage Actor Critic

- **Asynchronous:** the algorithm involves executing a set of environments in parallel to increase the diversity of training data, and with gradient updates performed in a Hogwild! style procedure. No experience replay is needed, though one could add it if desired.
- **Advantage:** the policy gradient updates are done using the advantage function $A(s, a)$
- **Actor:** this is an actor-critic method which involves a policy that updates with the help of learned state-value functions.

Asynchronous Advantage Actor Critic (A3C)

- A3C (Mnih et al. 2016) idea: Sample for data can be parallelized using several copies of the same agent

Asynchronous Advantage Actor Critic (A3C)

- A3C (Mnih et al. 2016) idea: Sample for data can be parallelized using several copies of the same agent
 - use N copies of the agents (workers) working in parallel collecting samples and computing gradients for policy and value function

Asynchronous Advantage Actor Critic (A3C)

- A3C (Mnih et al. 2016) idea: Sample for data can be parallelized using several copies of the same agent
 - use N copies of the agents (workers) working in parallel collecting samples and computing gradients for policy and value function
 - After some time, pass gradients to a main network that updates actor and critic using the gradients of all agents

Asynchronous Advantage Actor Critic (A3C)

- A3C (Mnih et al. 2016) idea: Sample for data can be parallelized using several copies of the same agent
 - use N copies of the agents (workers) working in parallel collecting samples and computing gradients for policy and value function
 - After some time, pass gradients to a main network that updates actor and critic using the gradients of all agents
 - After some time the workers copy the weights of the global network

Asynchronous Advantage Actor Critic (A3C)

- A3C (Mnih et al. 2016) idea: Sample for data can be parallelized using several copies of the same agent
 - use N copies of the agents (workers) working in parallel collecting samples and computing gradients for policy and value function
 - After some time, pass gradients to a main network that updates actor and critic using the gradients of all agents
 - After some time the workers copy the weights of the global network
- This parallelism decorrelates the agents' data, so no Experience Replay Buffer needed

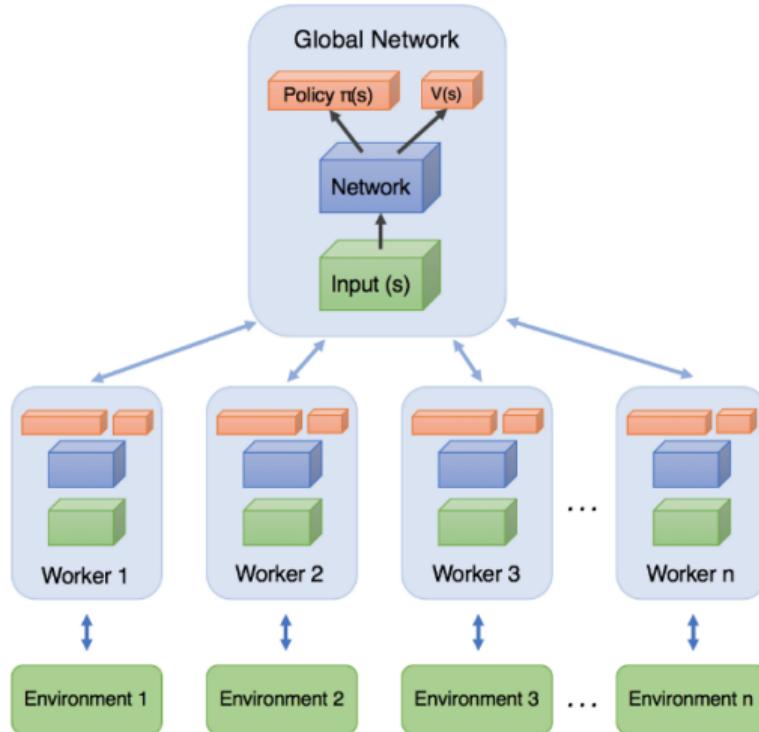
Asynchronous Advantage Actor Critic (A3C)

- A3C (Mnih et al. 2016) idea: Sample for data can be parallelized using several copies of the same agent
 - use N copies of the agents (workers) working in parallel collecting samples and computing gradients for policy and value function
 - After some time, pass gradients to a main network that updates actor and critic using the gradients of all agents
 - After some time the workers copy the weights of the global network
- This parallelism decorrelates the agents' data, so no Experience Replay Buffer needed
- Even one can explicitly use different exploration policies in each actor-learner to maximize diversity

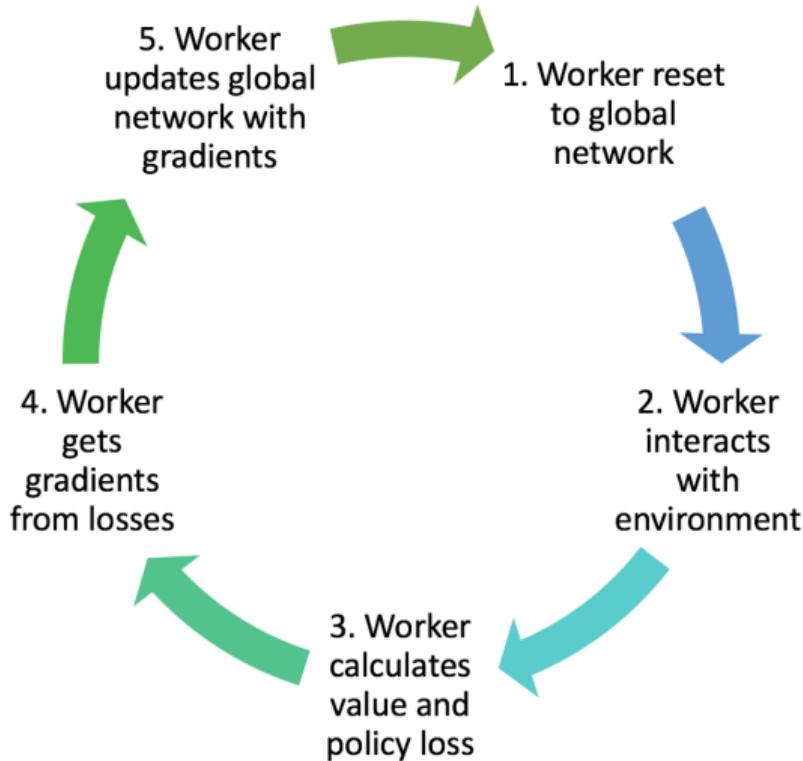
Asynchronous Advantage Actor Critic (A3C)

- A3C (Mnih et al. 2016) idea: Sample for data can be parallelized using several copies of the same agent
 - use N copies of the agents (workers) working in parallel collecting samples and computing gradients for policy and value function
 - After some time, pass gradients to a main network that updates actor and critic using the gradients of all agents
 - After some time the workers copy the weights of the global network
- This parallelism decorrelates the agents' data, so no Experience Replay Buffer needed
- Even one can explicitly use different exploration policies in each actor-learner to maximize diversity
- Asynchronism can be extended to other update mechanisms (SARSA, Q-learning, etc) but it works better in Advantage Actor critic setting

Asynchronous Advantage Actor Critic (A3C)



Asynchronous Advantage Actor Critic (A3C)



Asynchronous Advantage Actor Critic (A3C)

Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.

// Assume global shared parameter vectors θ and θ_v and global shared counter $T = 0$

// Assume thread-specific parameter vectors θ' and θ'_v

Initialize thread step counter $t \leftarrow 1$

repeat

 Reset gradients: $d\theta \leftarrow 0$ and $d\theta_v \leftarrow 0$.

 Synchronize thread-specific parameters $\theta' = \theta$ and $\theta'_v = \theta_v$

$t_{start} = t$

 Get state s_t

repeat

 Perform a_t according to policy $\pi(a_t|s_t; \theta')$

 Receive reward r_t and new state s_{t+1}

$t \leftarrow t + 1$

$T \leftarrow T + 1$

until terminal s_t **or** $t - t_{start} == t_{max}$

$R = \begin{cases} 0 & \text{for terminal } s_t \\ V(s_t, \theta'_v) & \text{for non-terminal } s_t // \text{Bootstrap from last state} \end{cases}$

for $i \in \{t - 1, \dots, t_{start}\}$ **do**

$R \leftarrow r_i + \gamma R$

 Accumulate gradients wrt θ' : $d\theta \leftarrow d\theta + \nabla_{\theta'} \log \pi(a_i|s_i; \theta')(R - V(s_i; \theta'_v))$

 Accumulate gradients wrt θ'_v : $d\theta_v \leftarrow d\theta_v + \partial (R - V(s_i; \theta'_v))^2 / \partial \theta'_v$

end for

 Perform asynchronous update of θ using $d\theta$ and of θ_v using $d\theta_v$.

until $T > T_{max}$
