Advanced Actor-Critic Methods (DPG, DDPG, Importance Sampling)

Alina Vereshchaka

CSE4/510 Reinforcement Learning
Fall 2019

avereshc@buffalo.edu

November 5, 2019

*Slides are adopted from Deep Reinforcement Learning by Sergey Levine & Policy Gradients Algorithms by Lilian Weng
Table of Contents

1. Recap: Actor-Critic
2. Deterministic Policy Gradient (DPG)
3. Deep Deterministic Policy Gradient (DDPG)
4. Importance Sampling
Value Based and Policy-Based RL

- **Value Based**
 - Learn Value Function
 - Implicit policy

- **Policy Based**
 - No Value Function
 - Learn Policy
 - Actor-Critic
 - Learn Value Function
 - Learn Policy
Value Based and Policy-Based RL

- Value Based
 - Learn Value Function
 - Implicit policy

- Policy Based
 - No Value Function
 - Learn Policy

Value-Based

Policy-Based

Actor Critic
Value Based and Policy-Based RL

- **Value Based**
 - Learn Value Function
 - Implicit policy
- **Policy Based**
 - No Value Function
 - Learn Policy
Value Based and Policy-Based RL

- **Value Based**
 - Learn Value Function
 - Implicit policy
- **Policy Based**
 - No Value Function
 - Learn Policy
- **Actor-Critic**
 - Learn Value Function
 - Learn Policy
Actor-Critic

- Monte-Carlo policy gradient still has **high variance**
- We can use a critic to estimate the action-value function:

\[
Q_w(s, a) \approx Q_{\pi_\theta}(s, a)
\]
Actor-Critic

- Monte-Carlo policy gradient still has high variance
- We can use a critic to estimate the action-value function:
 \[Q_w(s, a) \approx Q_{\pi_{\theta}}(s, a) \]

- Actor-critic algorithms maintain two sets of parameters
 - Critic Updates action-value function parameters \(w \)
Actor-Critic

- Monte-Carlo policy gradient still has high variance
- We can use a critic to estimate the action-value function:

\[Q_w(s, a) \approx Q_{\pi_\theta}(s, a) \]

- Actor-critic algorithms maintain two sets of parameters
 - **Critic** Updates action-value function parameters \(w \)
 - **Actor** Updates policy parameters \(\theta \), in direction suggested by critic
Actor-Critic

- Monte-Carlo policy gradient still has **high variance**
- We can use a **critic** to estimate the action-value function:
 \[Q_w(s, a) \approx Q_{\pi\theta}(s, a) \]

- Actor-critic algorithms maintain **two** sets of parameters
 - **Critic** Updates action-value function parameters \(w \)
 - **Actor** Updates policy parameters \(\theta \), in direction suggested by critic
- Actor-critic algorithms follow an approximate policy gradient
 \[\nabla_\theta J(\theta) \approx E_{\pi\theta}[\nabla_\theta \log \pi_{\theta}(s, a)Q_w(s, a)] \]
Actor-Critic

- Monte-Carlo policy gradient still has **high variance**
- We can use a **critic** to estimate the action-value function:

\[Q_w(s, a) \approx Q_{\pi_\theta}(s, a) \]

- Actor-critic algorithms maintain **two** sets of parameters
 - **Critic** Updates action-value function parameters \(w \)
 - **Actor** Updates policy parameters \(\theta \), in direction suggested by critic

- Actor-critic algorithms follow an approximate policy gradient

\[
\nabla_\theta J(\theta) \approx E_{\pi_\theta} [\nabla_\theta \log \pi_\theta(s, a)Q_w(s, a)] \\
\Delta \theta = \alpha \nabla_\theta \log \pi_\theta(s, a)Q_w(s, a)
\]
Actor-Critic
Policy gradient methods maximize the expected total reward by repeatedly estimating the
gradient $g := \nabla_{\theta} \mathbb{E} \left[\sum_{t=0}^{\infty} r_t \right]$. There are several different related expressions for the policy gradient, which have the form

$$
g = \mathbb{E} \left[\sum_{t=0}^{\infty} \Psi_t \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right], \quad (1)$$

where Ψ_t may be one of the following:

1. $\sum_{t=0}^{\infty} r_t$: total reward of the trajectory.
2. $\sum_{t'=t}^{\infty} r_{t'}$: reward following action a_t.
3. $\sum_{t'=t}^{\infty} r_{t'} - b(s_t)$: baselined version of previous formula.
4. $Q^\pi(s_t, a_t)$: state-action value function.
5. $A^\pi(s_t, a_t)$: advantage function.
6. $r_t + V^\pi(s_{t+1}) - V^\pi(s_t)$: TD residual.

The latter formulas use the definitions

$$
V^\pi(s_t) := \mathbb{E}_{s_{t+1}, a_{t+\infty}, t+\infty} \left[\sum_{l=0}^{\infty} r_{t+l} \right], \quad Q^\pi(s_t, a_t) := \mathbb{E}_{s_{t+1}, a_{t+\infty}, t+\infty} \left[\sum_{l=0}^{\infty} r_{t+l} \right], \quad (2)
$$

$$
A^\pi(s_t, a_t) := Q^\pi(s_t, a_t) - V^\pi(s_t), \quad \text{(Advantage function)} \quad (3)
$$

The policy gradient has many equivalent forms

\[\nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s, a) G_t] \]
The policy gradient has many equivalent forms

\[\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_\theta} [\nabla_{\theta} \log \pi_\theta(s, a) G_t] \]

\[= \mathbb{E}_{\pi_\theta} [\nabla_{\theta} \log \pi_\theta(s, a) Q_w(s, a)] \]

REINFORCE
Summary of Policy Gradient Algorithms

- The **policy gradient** has many equivalent forms

\[
\nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta} [\nabla_\theta \log \pi_\theta(s, a) G_t]
= \mathbb{E}_{\pi_\theta} [\nabla_\theta \log \pi_\theta(s, a) Q_w(s, a)]
= \mathbb{E}_{\pi_\theta} [\nabla_\theta \log \pi_\theta(s, a) A_w(s, a)]
\]

REINFORCE
Q Actor-Critic
The policy gradient has many equivalent forms

\[\nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta} [\nabla_\theta \log \pi_\theta(s, a) G_t] \]
\[= \mathbb{E}_{\pi_\theta} [\nabla_\theta \log \pi_\theta(s, a) Q_w(s, a)] \]
\[= \mathbb{E}_{\pi_\theta} [\nabla_\theta \log \pi_\theta(s, a) A_w(s, a)] \]
\[= \mathbb{E}_{\pi_\theta} [\nabla_\theta \log \pi_\theta(s, a) \delta] \]

REINFORCE
Q Actor-Critic
Advantage Actor-Critic (A2C)
Summary of Policy Gradient Algorithms

- The policy gradient has many equivalent forms

\[
\nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s, a) G_t] = \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s, a) Q_w(s, a)] = \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s, a) A_w(s, a)] = \mathbb{E}_{\pi_\theta}[\nabla_\theta \log \pi_\theta(s, a) \delta]
\]

REINFORCE
Q Actor-Critic
Advantage Actor-Critic (A2C)
TD Actor-Critic

- Each leads a stochastic gradient ascent algorithm

- Critic uses policy evaluation (e.g. MC or TD learning) to estimate \(Q_\pi(s, a), A_\pi(s, a) \) or \(V_\pi(s) \).
1 Recap: Actor-Critic

2 Deterministic Policy Gradient (DPG)

3 Deep Deterministic Policy Gradient (DDPG)

4 Importance Sampling
- Stochastic policy is defined as probability distribution over actions A

$$\pi(.|s)$$
Recap: Policies

- Stochastic policy is defined as probability distribution over actions A
 \[\pi(.|s) \]

- Deterministic policy gradient (DPG) instead models the policy as a deterministic decision:
 \[a = \mu(s) \]
Deterministic Policy Gradient: Notations

- $\rho_0(s)$:

The initial distribution over states $\rho_0(s)$:

Starting from state s, the visitation probability density at state s' after k steps by policy μ is:

$$\rho_\mu(s') = \int_0^{\infty} \sum_{k=1}^{\infty} \gamma^{k-1} \rho_0(s) \rho_\mu(s \to s', k) \, ds$$

The objective function to optimize is:

$$J(\theta) = \int S \rho_\mu(s) Q(s, \mu_\theta(s)) \, ds$$

1 Deterministic Policy Gradient Algorithms by David Silver et. al. 2014
Deterministic Policy Gradient: Notations

- $\rho_0(s)$: The initial distribution over states
Deterministic Policy Gradient: Notations

- $\rho_0(s)$: The initial distribution over states
- $\rho^{\mu}(s \rightarrow s', k)$:
Deterministic Policy Gradient: Notations

- $\rho_0(s)$: The initial distribution over states
- $\rho^\mu(s \rightarrow s', k)$: Starting from state s, the visitation probability density at state s' after moving k steps by policy μ

1 Deterministic Policy Gradient Algorithms by David Silver et. al. 2014
Deterministic Policy Gradient: Notations

- $\rho_0(s)$: The initial distribution over states
- $\rho^\mu(s \to s', k)$: Starting from state s, the visitation probability density at state s' after moving k steps by policy μ
- $\rho^\mu(s')$: Discounted state distribution, defined as

$$
\rho^\mu(s') = \int_S \sum_{k=1}^\infty \gamma^{k-1} \rho_0(s) \rho^\mu(s \to s', k) ds
$$
Deterministic Policy Gradient: Notations

- \(\rho_0(s) \): The initial distribution over states
- \(\rho^\mu(s \rightarrow s', k) \): Starting from state \(s \), the visitation probability density at state \(s' \) after moving \(k \) steps by policy \(\mu \)
- \(\rho^\mu(s') \): Discounted state distribution, defined as
 \[
 \rho^\mu(s') = \int_S \sum_{k=1}^{\infty} \gamma^{k-1} \rho_0(s) \rho^\mu(s \rightarrow s', k) ds
 \]
- The objective function to optimize is
 \[
 J(\theta) = \int_S \rho^\mu(s) Q(s, \mu_\theta(s)) ds
 \]

\(^1\)Deterministic Policy Gradient Algorithms by David Silver et. al. 2014
Let’s consider an example of on-policy actor-critic algorithm. In each iteration of on-policy actor-critic, two actions are taken deterministically $a = \mu_\theta(s)$ and the SARSA update on policy parameters relies on the new gradient that we just computed above:

$$
\delta_t = R_t + \gamma Q_w(s_{t+1}, a_{t+1}) - Q_w(s_t, a_t) \quad ; \text{TD error in SARSA}
$$
Let’s consider an example of on-policy actor-critic algorithm. In each iteration of on-policy actor-critic, two actions are taken deterministically $a = \mu_\theta(s)$ and the SARSA update on policy parameters relies on the new gradient that we just computed above:

$$\delta_t = R_t + \gamma Q_w(s_{t+1}, a_{t+1}) - Q_w(s_t, a_t)$$

$$w_{t+1} = w_t + \alpha_w \delta_t \nabla_w Q_w(s_t, a_t)$$

; TD error in SARSA
Let's consider an example of on-policy actor-critic algorithm. In each iteration of on-policy actor-critic, two actions are taken deterministically \(a = \mu_{\theta}(s) \) and the SARSA update on policy parameters relies on the new gradient that we just computed above:

\[
\delta_t = R_t + \gamma Q_w(s_{t+1}, a_{t+1}) - Q_w(s_t, a_t) \quad ; \text{TD error in SARSA}
\]

\[
w_{t+1} = w_t + \alpha_w \delta_t \nabla_w Q_w(s_t, a_t)
\]

\[
\theta_{t+1} = \theta_t + \alpha_{\theta} \nabla_a Q_w(s_t, a_t) \nabla_{\theta} \mu_{\theta}(s)_{a=\mu_{\theta}(s)} \quad ; \text{Deterministic policy gradient theorem}
\]
Deterministic Policy Gradient (DPG)

However, unless there is sufficient noise in the environment, it is very hard to guarantee enough exploration due to the determinacy of the policy.

- We can either add noise into the policy (ironically this makes it nondeterministic!)
- Learn it off-policy-ly by following a different stochastic behavior policy to collect samples
Say, in the off-policy approach, the training trajectories are generated by a stochastic policy \(\beta(a|s) \) and thus the state distribution follows the corresponding discounted state density \(\rho^\beta \):

\[
J^\beta(\theta) = \int_S \rho^\beta Q^\mu(s, \mu_\theta(s)) \, ds
\]

\[
\nabla_\theta J^\beta(\theta) = \mathbb{E}_{s \sim \rho^\beta} [\nabla_a Q^\mu(s, a) \nabla_\theta \mu_\theta(s)|a=\mu_\theta(s)]
\]

Note that because the policy is deterministic, we only need \(Q^\mu(s, \mu_\theta(s)) \) rather than \(\sum_a \pi(a|s) Q^\pi(s, a) \) as the estimated reward of a given state \(s \).
Table of Contents

1 Recap: Actor-Critic

2 Deterministic Policy Gradient (DPG)

3 Deep Deterministic Policy Gradient (DDPG)

4 Importance Sampling
Deep Deterministic Policy Gradient (DDPG) \(^2\)

- Deep Deterministic Policy Gradient (Lillicrap, et al., 2015) (DDPG) is an algorithm which concurrently learns a Q-function and a policy.
- It is a model-free off-policy actor-critic algorithm, combining DPG with DQN.

\(^2\)Continuous Control With Deep Reinforcement Learning by Lillicrap et al, 2015
Deep Deterministic Policy Gradient (DDPG) \(^2\)

- Deep Deterministic Policy Gradient (Lillicrap, et al., 2015) (DDPG) is an algorithm which concurrently learns a Q-function and a policy.

- It is a model-free off-policy actor-critic algorithm, combining DPG with DQN.

- Recall: How DQN stabilizes the learning of Q-function?

\(^2\)Continuous Control With Deep Reinforcement Learning by Lillicrap et al, 2015
Deep Deterministic Policy Gradient (DDPG) is an algorithm which concurrently learns a Q-function and a policy. It is a model-free off-policy actor-critic algorithm, combining DPG with DQN. Recall: How DQN stabilizes the learning of Q-function? By experience replay and the frozen target network.
Deep Deterministic Policy Gradient (DDPG) \(^2\)

- Deep Deterministic Policy Gradient (Lillicrap, et al., 2015) (DDPG) is an algorithm which concurrently learns a Q-function and a policy.
- It is a model-free off-policy actor-critic algorithm, combining DPG with DQN.
- Recall: How DQN stabilizes the learning of Q-function?
 - By experience replay and the frozen target network.
- Is DQN works in discrete or continuous space?

\(^2\)Continuous Control With Deep Reinforcement Learning by Lillicrap et al, 2015
Deep Deterministic Policy Gradient (DDPG) \(^2\)

- Deep Deterministic Policy Gradient (Lillicrap, et al., 2015) (DDPG) is an algorithm which concurrently learns a Q-function and a policy.
- It is a model-free off-policy actor-critic algorithm, combining DPG with DQN.
- Recall: How DQN stabilizes the learning of Q-function?
 - By experience replay and the frozen target network.
- Is DQN works in discrete or continuous space?
 - The original DQN works in discrete space, and DDPG extends it to continuous space with the actor-critic framework while learning a deterministic policy.

\(^2\)Continuous Control With Deep Reinforcement Learning by Lillicrap et al, 2015
Recap

- Optimal action in DQN

\[\text{Recall: How do we explore in DQN?} \]

In DQN we use \(\epsilon \)-greedy approach to ensure exploration.
Optimal action in DQN

\[a^*(s) = \arg \max_a Q^*(s, a) \]
Recap

- Optimal action in DQN

\[a^*(s) = \arg \max_a Q^*(s, a) \]

- Not practical for continuous action space

- Using deterministic policy, we can use:

\[a = \mu(s|\theta^\mu) \]
Recap

- Optimal action in DQN

 \[a^*(s) = \arg \max_a Q^*(s, a) \]

- Not practical for continuous action space

- Using deterministic policy, we can use:

 \[a = \mu(s|\theta^\mu) \]

- But deterministic policy gradient might not explore the full state and action space. To overcome this, we are adding noise \(\mathcal{N} \).
Recap

- Optimal action in DQN

\[a^*(s) = \arg \max_a Q^*(s, a) \]

- Not practical for continuous action space

- Using deterministic policy, we can use:

\[a = \mu(s|\theta^\mu) \]

- But deterministic policy gradient might not explore the full state and action space. To overcome this, we are adding noise \(\mathcal{N} \)

\[a = \mu(s|\theta^\mu) + \mathcal{N} \]

- Recall: How do we explore in DQN?
Recap

- Optimal action in DQN

\[a^*(s) = \arg \max_a Q^*(s, a) \]

- Not practical for continuous action space

- Using deterministic policy, we can use:

\[a = \mu(s | \theta^\mu) \]

- But deterministic policy gradient might not explore the full state and action space. To overcome this, we are adding noise \(\mathcal{N} \)

\[a = \mu(s | \theta^\mu) + \mathcal{N} \]

- Recall: How do we explore in DQN?

- In DQN we use \(\epsilon \)-greedy approach to ensure exploration
DDPG does soft updates ("conservative policy iteration") on the parameters of both actor and critic

\[\theta' \leftarrow \tau \theta + (1 - \tau)\theta' \]
Deep Deterministic Policy Gradient (DDPG)

DDPG does soft updates ("conservative policy iteration") on the parameters of both actor and critic

\[\theta' \leftarrow \tau \theta + (1 - \tau)\theta' \]

In this way, the target network values are constrained to change slowly, different from the design in DQN that the target network stays frozen for some period of time.
DDPG: Parameters

\(\theta^Q \): Q network
\(\theta^{Q'} \): Target Q network
\(\theta^\mu \): Deterministic policy function
\(\theta^{\mu'} \): Target policy network
Deep Deterministic Policy Gradient (DDPG)

Actor directly maps states to actions instead of outputting the probability distribution across a discrete action space.
Deep Deterministic Policy Gradient (DDPG)

Algorithm 1 DDPG algorithm

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ.
Initialize target network Q' and μ' with weights $\theta^Q' \leftarrow \theta^Q$, $\theta^\mu' \leftarrow \theta^\mu$.
Initialize replay buffer R.

for episode = 1, M do
 Initialize a random process N for action exploration.
 Receive initial observation state s_1.
 for $t = 1, T$ do
 Select action $a_t = \mu(s_t|\theta^\mu) + \mathcal{N}_a$ according to the current policy and exploration noise.
 Execute action a_t and observe reward r_t and observe new state s_{t+1}.
 Store transition (s_t, a_t, r_t, s_{t+1}) in R.
 Sample a random minibatch of N transitions $(s_{i}, a_i, r_i, s_{i+1})$ from R.
 Set $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^\mu'||\theta^Q')$.
 Update critic by minimizing the loss: $L = \frac{1}{N} \sum_i (y_i - Q(s_i, a_i|\theta^Q))^2$.
 Update the actor policy using the sampled policy gradient:
 $$\nabla_{\theta^\mu} J \approx \frac{1}{N} \sum_i \nabla a Q(s, a|\theta^Q)|_{s=s_i, a=\mu(s_i)} \nabla_{\theta^\mu} \mu(s|\theta^\mu)|_{s_i}$$
 Update the target networks:
 $$\theta^Q' \leftarrow \tau \theta^Q + (1 - \tau) \theta^Q'$$
 $$\theta^\mu' \leftarrow \tau \theta^\mu + (1 - \tau) \theta^\mu'$$
 end for
end for
- DDPG is an algorithm which concurrently learns a Q-function and a policy
- DDPG is an algorithm which concurrently learns a Q-function and a policy
- DDPG is an off-policy algorithm
Deep Deterministic Policy Gradient (DDPG)

- DDPG is an algorithm which concurrently learns a Q-function and a policy
- DDPG is an off-policy algorithm
- DDPG can only be used for environments with continuous action spaces
Deep Deterministic Policy Gradient (DDPG)

- DDPG is an algorithm which concurrently learns a Q-function and a policy
- DDPG is an off-policy algorithm
- DDPG can only be used for environments with continuous action spaces
- DDPG can be thought of as being deep Q-learning for continuous action spaces
<table>
<thead>
<tr>
<th></th>
<th>Recap: Actor-Critic</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Deterministic Policy Gradient (DPG)</td>
</tr>
<tr>
<td>3</td>
<td>Deep Deterministic Policy Gradient (DDPG)</td>
</tr>
<tr>
<td>4</td>
<td>Importance Sampling</td>
</tr>
</tbody>
</table>
Problems in Policy Gradient

\[\pi_{\theta_1}(a_t | s_t) \]

\[\pi_{\theta_{old}}(a_t | s_t) \]

\[\pi_{\theta_2}(a_t | s_t) \]
\[\theta^* = \arg \max_{\theta} J(\theta) \]

\[J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)}[r(\tau)] \]

\[\nabla_{\theta} J(\theta) = E_{\tau \sim \pi_{\theta}(\tau)}[\nabla_{\theta} \log \pi_{\theta}(\tau) r(\tau)] \]

- Neural networks change only a little bit with each gradient step
- On-policy learning can be extremely inefficient!

REINFORCE algorithm:
1. sample \(\{\tau^i\} \) from \(\pi_{\theta}(a_t|s_t) \) (run it on the robot)
2. \(\nabla_{\theta} J(\theta) \approx \sum_i \left(\sum_t \nabla_{\theta} \log \pi_{\theta}(a^i_t|s^i_t) \right) \left(\sum_t r(s^i_t, a^i_t) \right) \)
3. \(\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta) \)
On-policy Sampling

Sample collection with θ^k

Update from θ^k to θ^{k+1}

Sample collection with θ^{k+1}

Update from θ^{k+1} to θ^{k+2}

Sample collection with θ^{k+2}

Update from θ^{k+2} to θ^{k+3}
Off-policy Sampling

\[\theta^* = \arg \max_{\theta} J(\theta) \]

\[J(\theta) = E_{\tau \sim \pi_\theta(\tau)}[r(\tau)] \]

what if we don’t have samples from \(\pi_\theta(\tau) \)?
(we have samples from some \(\bar{\pi}(\tau) \) instead)

\[J(\theta) = E_{\tau \sim \bar{\pi}(\tau)} \left[\frac{\pi_\theta(\tau)}{\bar{\pi}(\tau)} r(\tau) \right] \]

\[\pi_\theta(\tau) = p(s_1) \prod_{t=1}^{T} \pi_\theta(a_t|s_t)p(s_{t+1}|s_t, a_t) \]

\[\frac{\pi_\theta(\tau)}{\bar{\pi}(\tau)} = \frac{p(s_1) \prod_{t=1}^{T} \pi_\theta(a_t|s_t)p(s_{t+1}|s_t, a_t)}{p(s_1) \prod_{t=1}^{T} \bar{\pi}(a_t|s_t)p(s_{t+1}|s_t, a_t)} = \frac{\prod_{t=1}^{T} \pi_\theta(a_t|s_t)}{\prod_{t=1}^{T} \bar{\pi}(a_t|s_t)} \]

importance sampling

\[E_{x \sim p(x)}[f(x)] = \int p(x)f(x)dx \]

\[= \int \frac{q(x)}{q(x)} p(x)f(x)dx \]

\[= \int q(x) \frac{p(x)}{q(x)} f(x)dx \]

\[= E_{x \sim q(x)} \left[\frac{p(x)}{q(x)} f(x) \right] \]
Off-Policy Sampling

Sample collection with θ^k

Update from θ^k to θ^{k+1}

Update from θ^{k+1} to θ^{k+2}

Update from θ^{k+2} to θ^{k+3}

Sample collection with θ^{k+3}

Update from θ^{k+3} to θ^{k+4}