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Markov Decision Process (MDP)

RL can be formalized as a MDP with 〈S ,A,P, rγ〉

Markov Property: P(st+1|s1, a1, · · · , st , at) = P(st+1|st , at)

A policy π is a map from state to action

Deternimistic policy: a = π(s) or a = µ(s)

Stochastic policy: π(a|s) = P[at = a|st = s]

Definition
Goal of RL is to find an optimal policy π∗ in order to maximize the expected discounted

reward: J(π) = E
[∑∞

t=1 γ
t−1r(st , at)

]
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Stochastic Problem

Agent chooses action At at time t based on observing state St

State evolves probabilistically based on current state and action taken by agent (Markov
assumption)

Objective is to maximize sum of rewards R
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Crying Baby Problem

Need to decide whether to feed baby given
whether baby is crying

Crying is a noisy indication that the baby
is hungry
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Crying Baby Problem

P(c1|h0) = 0.2 (cry when not hungry)

P(c1|h1) = 0.8 (cry when hungry)
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Partially Observable Markov Decision Process (POMDP)

POMDP = MDP + sensor model

Sensor model: O(o|s) or sometimes O(o|s, a)
Decisions can only be based on history of
observations o1, o2, · · · , ot
Instead of keeping track of arbitrarily long histories,
we keep track of the belief state
A belief state is a distribution over states; in belief
state b, probability b(s) is assigned to being in s
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Partially Observable Markov Decision Process (POMDP)

Agent observes the entire environment → MDP

Agent only observes a part of environment → POMDP

POMDP is popular is the real-world applications

(a) Robot Navigation in Maze (b) Self-Driving Car

Figure: Self-Driving CarAlina Vereshchaka (UB) CSE4/510 Reinforcement Learning, Lecture 23 November 12, 2019 9 / 24



Partially Observable Markov Decision Process (POMDP)

A POMDP is a tuple (S ,A,T ,R,Ω,O, γ), where

S is a set of states

Ai is a set of actions

T is a set of conditional transition probabilities between states

R : S × A→ R is the reward function

Ωi is a set of observations

O is a set of conditional observation probabilities O(s ′, a, o) = P(o | s ′, a)

γ ∈ [0, 1) is the discount factor
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Computing Belief States

Begin with some initial belief state b prior to any observations

Compute new belief state b′ based on current belief state b, action a, and observation o

b′(s ′) = P(s ′|o, a, b)

= P(o|s ′, a, b)P(s ′|a, b)

= O(o|s ′, a)P(s ′|a, b)

= O(o|s ′, a)
∑
s

P(s ′|a, b, s)P(s|a, b)

= O(o|s ′, a)
∑
s

T (s ′|s, a)b(s)

Kalman filter: exact update of the belief state for linear dynamical systems

Particle filter: approximate update for general systems
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Crying Baby Example

b = (h0, h1) = (0.5, 0.5)

No feed, cry
b = (0.0928, 0.9072)

Feed, no cry
b = (1, 0)

No feed, no cry
b = (0.9759, 0.0241)

No feed, no cry
b = (0.9701, 0.0299)

No feed, cry
b = (0.4624, 0.5376)
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POMDP Execution

1 Initialize belief state b

2 Execute a = π(b)

3 Observe o

4 Update b based on b, a, and o

5 Go to 2
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Markov Models
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Dec-POMDP

The decentralized partially observable Markov decision process (Dec-POMDP) is a model
for coordination and decision-making among multiple agents.

It is a probabilistic model that can consider uncertainty in outcomes, sensors and
communication (i.e., costly, delayed, noisy or nonexistent communication)

It is a generalization of a Markov decision process (MDP) and a partially observable
Markov decision process (POMDP) to consider multiple decentralized agents.
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Decentralized Partially Observable Markov Decision Process (Dec-POMDP)

A Dec-POMDP is a tuple (S , {Ai},T ,R,{Ωi},O, γ), where

S is a set of states

Ai is a set of actions for agent i , with A = ×iAi is the set of joint actions

T is a set of conditional transition probabilities between states, T (s, a, s ′) = P(s ′ | s, a)

R : S × A→ R is the reward function

Ωi is a set of observations for agent i , with Ω = ×iΩi is the set of joint observations,

O is a set of conditional observation probabilities O(s ′, a, o) = P(o | s ′, a)

γ ∈ (0, 1] is the discount factor

Alina Vereshchaka (UB) CSE4/510 Reinforcement Learning, Lecture 23 November 12, 2019 17 / 24



Decentralized Partially Observable Markov Decision Process (Dec-POMDP)

Agents must consider the choices of all others in addition to the state and action
uncertainty present in POMDPs

This makes DEC-POMDPs much harder to solve

No common state estimate (centralized belief state)

Each agent depends on the others

This requires a belief over the possible policies of the other agents
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What problems Dec-POMDPs are good for?

Sequential (not “one shot” or greedy)

Cooperative (not single agent or competitive)

Decentralized (not centralized execution or free, instantaneous communication)

Decision-theoretic (probabilities and values)
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MDP, POMDP and Dec-POMDP

Figure: (a) Markov decision process (MDP) (b) Partially observable Markov decision process (POMDP)
(c) Decentralized partially observable Markov decision process with two agents (Dec-POMDP)
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Single Agent
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Single ’Super’ Agent
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Multiagent
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