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Recap: Markov Models
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Recap: MDP, POMDP and Dec-POMDP

Figure: (a) Markov decision process (MDP) (b) Partially observable Markov decision process (POMDP)
(c) Decentralized partially observable Markov decision process with two agents (Dec-POMDP)

Alina Vereshchaka (UB) CSE4/510 Reinforcement Learning, Lecture 24 November 14, 2019 7 / 51



Table of Contents

1 Recap: Markov Models

2 Multi-agent Reinforcement Learning (MARL)

3 Multi-agent Reinforcement Learning (MARL) Formulation

4 Multi-agent Deep Q-Network (MADQN)

Alina Vereshchaka (UB) CSE4/510 Reinforcement Learning, Lecture 24 November 14, 2019 8 / 51



Multi-agent Applications: Traffic congestion reduction

By intelligently controlling the speed of a few autonomous vehicles we can drastically
increase the traffic flow

Multi-agent can be a requirement here, since in mixed-autonomy settings, it is unrealistic
to model traffic lights and vehicles as a single agent, which would involve the
synchronization of observations and actions across all agents in a wide area.

Flow Project website

Flow simulation, without AVs and then with AV agents (red vehicles)
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Multi-agent Applications: Antenna tilt control

The joint configuration of cellular base stations can be optimized according to the
distribution of usage and topology of the local environment.

Each base station can be modeled as one of multiple agents covering a city.
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Multi-agent Applications: OpenAI Five

Dota 2 AI agents are trained to coordinate with each other to compete against humans.

Each of the five AI players is implemented as a separate neural network policy and trained
together with large-scale PPO.
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Markov Decision Process (MDP)
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Multi-agent Reinforcement Learning (MARL)
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Research in MARL
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Axes of MARL I

Centralized:

One brain / algorithm deployed across many agents

Decentralized:

All agents learn individually

Communication limitations defined by environment

Alina Vereshchaka (UB) CSE4/510 Reinforcement Learning, Lecture 24 November 14, 2019 15 / 51



Axes of MARL I

Centralized:

One brain / algorithm deployed across many agents

Decentralized:

All agents learn individually

Communication limitations defined by environment

Alina Vereshchaka (UB) CSE4/510 Reinforcement Learning, Lecture 24 November 14, 2019 15 / 51



Axes of MARL II

Prescriptive:

Suggests how agents should behave

Descriptive:

Forecast how agent will behave
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Axes of MARL III

Cooperative: Agents cooperate to achieve a goal

Shared team reward

Competitive: Agents compete against each other

Zero-sum games

Individual opposing rewards

Neither: Agents maximize their utility which may require cooperating and/or competing

General-sum games
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Axes of MARL VI

Numbers of agents

One (single-agent)

Two (very common)

Finite

Infinite
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Foundations of (MA)RL
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Foundations of (MA)RL
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Multiagent Models

Normal-form game

Repeated game

Stochastic game
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Normal-Form “One-Shot” Game

Normal-form game consists of:

Finite set of agents i ∈ N = {1, · · · , n}

Each agent i ∈ N has a set of actions Ai ∈ {a1, a2, · · · }

Set of joint actions A = a1 × a2 × · · · × an

Rewards function ri : A→ R, where A = A1 × · · · × An

Each agent i selects policy πi : Ai → [0, 1], takes action ai ∈ Ai with probability πi (ai ), and
receives reward ri (a1, · · · , an). Given policy profile (π1, · · · , πn), expected reward to i is

r(π1, · · · , πn) =
∑
a∈A

π1(a1) ∗ · · ·πn(an) ∗ ri (a)

Agents want to maximise their expected reward.
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Normal-Form Game: Prisoner’s Dilemma

Two prisoners questioned in
isolated cells
Each prisoner can
Cooperate or Defect
Rewards (row = agent 1,
column = agent 2)
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Normal-Form Game: Chicken

Two opposite drivers on the same lane
Each driver can Stay on lane or Leave lane
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Normal-Form Game: Rock-Paper-Scissors

Two players, three actions
Rock beats Scissors beats Paper
beats Rock
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Repeated Game

Normal-form game is single interaction. No experience!

Experience comes from repeated interactions
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More Examples of MARL
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More Examples of MARL
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Benefits of Multi-agent Learning Systems

Sharing experience
via communication, teaching, imitation

Parallel computation
due to decentralized task structure

Robustness
redundancy, having multiple agents to accomplish a task

Alina Vereshchaka (UB) CSE4/510 Reinforcement Learning, Lecture 24 November 14, 2019 29 / 51



Benefits of Multi-agent Learning Systems

Sharing experience
via communication, teaching, imitation

Parallel computation
due to decentralized task structure

Robustness
redundancy, having multiple agents to accomplish a task

Alina Vereshchaka (UB) CSE4/510 Reinforcement Learning, Lecture 24 November 14, 2019 29 / 51



Benefits of Multi-agent Learning Systems

Sharing experience
via communication, teaching, imitation

Parallel computation
due to decentralized task structure

Robustness
redundancy, having multiple agents to accomplish a task

Alina Vereshchaka (UB) CSE4/510 Reinforcement Learning, Lecture 24 November 14, 2019 29 / 51



Challenges

Click!
Alina Vereshchaka (UB) CSE4/510 Reinforcement Learning, Lecture 24 November 14, 2019 30 / 51


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





Challenges in Multi-agent Learning Systems

Curse of dimensionality
Exponential growth in computational complexity from increase in state and action
dimensions. Also a challenge for single-agent problems.

Specifying a good (learning) objective
Agent returns are correlated and cannot be maximized independently.

The system in which to learn is a moving target
As some agents learn, the system which contains these agents changes, and so may the
best policy. Also called a system with non-stationary or time-dependent dynamics.

Need for coordination
Agent actions affect other agents and could confuse other agents (or herself) if not
careful. Also called destabilizing training.
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Challenges: Non-stationarity of Environment
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Challenges: High Variance of Estimates
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Summary of Challenges

In single agent RL, agents need only to adapt their behaviour in accordance with their own
actions and how they change the environment. In MARL agents also need to adapt to
other agents’ learning and actions. The effect is that agents can execute the same action
on the same state and receive different rewards.

MARL agents do not always have a full view of the environment and even if they have,
they normally cannot predict the actions of other agents and the changes in the
environment

The credit assignment problem - the difficulty of deciding which agent is responsible for
successes or failures. How to split the reward signal among the agents and the trade-off
between the use of local and global rewards to achieve fast learning or to guarantee to
converge to a global optimal policy.
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Foundations of (MA)RL

Alina Vereshchaka (UB) CSE4/510 Reinforcement Learning, Lecture 24 November 14, 2019 36 / 51



First MARL Algorithm: Minimax-Q (Littman ‘94)

Q-values are over joint actions: Q(s, a, o)

s = state

a = your action

o = action of the opponent

Instead of playing action with highest Q(s, a, o), play MaxMin

Q(s, a, o) = (1− α)Q(s, a, o) + α(r + γV (s ′))

V (s) = max
πs

min
o

∑
a

Q(s, a, o)πs(a)
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MARL Formulation

The agents choose actions according to their policies.

For agent j , the corresponding policy is defined as πj : S → Ω(Aj), where Ω(Aj) is the
collection of probability distributions over agent j ’s action space Aj .

Let π = [π1, · · · , πN ] - is the joint policy of all agents, then

v jπ(s) = v j(s;π) =
∞∑
t=0

γtEπ,p[r jt |s0 = s,π]

Q-function such that the Q-function Q j
π : S × A1 × · · · × AN → R of agent j under the

joint policy π:

Q j
π(s, a) = r j(s, a) + γEs′∼p[v jπ(s ′)]
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Nash Q-learning

In MARL, the objective of each agent is to learn an optimal policy to maximize its value
function

Optimizing the v jπ for agent j depends on the joint policy π of all agents

A Nash equilibrium is a joint policy π such that no player has incentive to deviate
unilaterally. It is represented by a particular joint policy

π∗ = [π1
∗, · · · , πN∗ ]

such that for all s ∈ S , j ∈ {1, · · · ,N} it satisfies:

v j(s;π∗) = v j(s;πj∗,π
−j
∗ ) ≥ v j(s;πj ,π−j∗ )

Here π−j
∗ is the joint policy of all agents except j as

π−j∗ = [π1
∗, · · · , πj−1

∗ , πj+1
∗ , · · · , πN∗ ]
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Nash Q-learning

In a Nash equilibrium, each agent acts with the best response πj∗ to others, provided that
all other agents follow the policy π−j∗

For a N-agent stochastic game, there is at least one Nash equilibrium with stationary
policies, assuming players are rational

Given Nash policy π∗, the Nash value function

vNash = [v1
π∗(s), · · · , vNπ∗(s)]

Q(s, a)Nash = Es′∼p[r(s, a) + γvNash(s ′)]

where r(s, a) = [r1(s, a), · · · , rN(s, a)]
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all other agents follow the policy π−j∗

For a N-agent stochastic game, there is at least one Nash equilibrium with stationary
policies, assuming players are rational

Given Nash policy π∗, the Nash value function

vNash = [v1
π∗(s), · · · , vNπ∗(s)]

Q(s, a)Nash = Es′∼p[r(s, a) + γvNash(s ′)]

where r(s, a) = [r1(s, a), · · · , rN(s, a)]
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MARL Policies
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Multi-agent Deep Q-Network (MADQN) Example: Pursuit Evasion

n pursuit-evasion – a set of agents (the
pursuers) are attempting to chase another
set of agents (the evaders)
The agents in the problem are
self-interested (or heterogeneous), i.e.
they have different objectives
The two pursuers are attempting to catch
the two evaders
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Multi-agent Deep Q-Network (MADQN): Problem representation

Challenge: defining the problem in such a way that an arbitrary number of agents can be
represented without changing the architecture of the deep Q-Network.

Solution (under some assumptions):

The image tensor is of size 4× W × H, where W and H are the height and width of our
two dimensional domain and four is the number of channels in the image.

Channels:

Background Channel: contains information about any obstacles in the environment

Opponent Channel: contains information about all the opponents

Ally Channel: contains information about all the allies

Self Channel: contains information about the agent making the decision
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Multi-agent Deep Q-Network (MADQN): Four Channel Image
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MADQN: Multi-agent Centralized Training

Train one agent at a time, and fix policies of all the other agents

After a number of iterations distribute the policy learned by the training agent to all the
other agents of its type
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MADQN: Multi-agent Centralized Training
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MADQN: Dealing with agent ambiguity

Challenge: When two ally agents are occupying the same position in the environment, the
image-like state representation for each agent will be identical, so their policies will be
exactly the same.

Solution: To break this symmetry – use a stochastic policy for agents. The actions taken
by the agent are drawn from a distribution derived by taking a softmax over the Q-values
of the neural network. This allows allies to take different actions if they occupy the same
state and break the ambiguity.
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MADQN Architecture: Residual Network Type

MADQN architecture – a Residual
Network type architecture is used to
improve gradient flow throughout the
network
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