Multi-agent Reinforcement Learning (MARL)

Alina Vereshchaka

CSE4/510 Reinforcement Learning Fall 2019

avereshc@buffalo.edu

November 14, 2019

- Recap: Markov Models
- 2 Multi-agent Reinforcement Learning (MARL)
- 3 Multi-agent Reinforcement Learning (MARL) Formulation
- Multi-agent Deep Q-Network (MADQN)

- Egorov, Maxim. "Multi-agent deep reinforcement learning." CS231n: Convolutional Neural Networks for Visual Recognition (2016). (paper)
- Scaling Multi-Agent Reinforcement Learning by Eric Liang and Richard Liaw. OpenAl (blog post)
- Decision Making under Uncertainty by Mykel J. Kochenderfer
- Lowe, Ryan, et al. "Multi-agent actor-critic for mixed cooperative-competitive environments." Advances in Neural Information Processing Systems. 2017.
- Multiagent Reinforcement Learning presentation by Marc Lanctot RLSS @ Lille, July 11th 2019 (pdf)
- Multiagent Learning Foundations and Recent Trends by Stefano Albrecht and Peter Stone Tutorial at IJCAI 2017 conference (presentation)

Recap: Markov Models

2 Multi-agent Reinforcement Learning (MARL)

3 Multi-agent Reinforcement Learning (MARL) Formulation

4 Multi-agent Deep Q-Network (MADQN)

	No Agents	Single Agent	Multiple Agents
State Known			
State Observed Indirectly			

	No Agents	Single Agent	Multiple Agents
State Known	Markov Chain	Markov Decision Process (MDP)	Markov Game (a.k.a. Stochastic Game)
State Observed Indirectly	Hidden Markov Model (HMM)	Partially-Observable Markov Decision Process (POMDP)	Partially-Observable Stochastic Game (POSG)

Recap: MDP, POMDP and Dec-POMDP

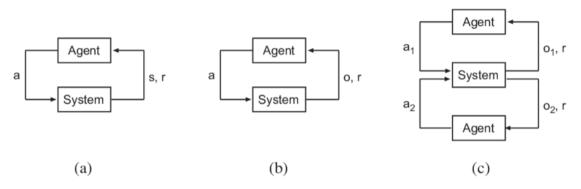


Figure: (a) Markov decision process (MDP) (b) Partially observable Markov decision process (POMDP) (c) Decentralized partially observable Markov decision process with two agents (Dec-POMDP)

Recap: Markov Models

2 Multi-agent Reinforcement Learning (MARL)

3 Multi-agent Reinforcement Learning (MARL) Formulation

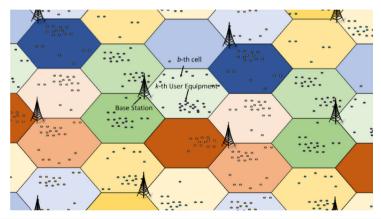
4 Multi-agent Deep Q-Network (MADQN)

Multi-agent Applications: Traffic congestion reduction

- By intelligently controlling the speed of a few autonomous vehicles we can drastically increase the traffic flow
- Multi-agent can be a requirement here, since in mixed-autonomy settings, it is unrealistic to model traffic lights and vehicles as a single agent, which would involve the synchronization of observations and actions across all agents in a wide area.
- Flow Project website
- Flow simulation, without AVs and then with AV agents (red vehicles)

Multi-agent Applications: Antenna tilt control

- The joint configuration of cellular base stations can be optimized according to the distribution of usage and topology of the local environment.
- Each base station can be modeled as one of multiple agents covering a city.



Alina Vereshchaka (UB)

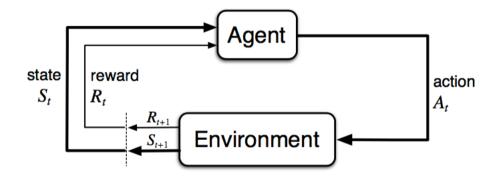
CSE4/510 Reinforcement Learning, Lecture 24

Multi-agent Applications: OpenAl Five

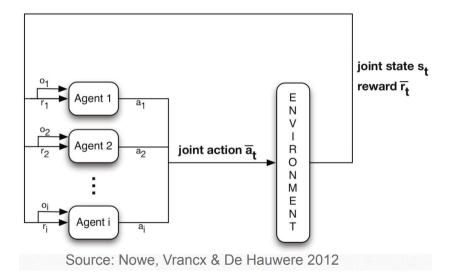
- Dota 2 Al agents are trained to coordinate with each other to compete against humans.
- Each of the five AI players is implemented as a separate neural network policy and trained together with large-scale PPO.

CSE4/510 Reinforcement Learning, Lecture 24

Markov Decision Process (MDP)



Multi-agent Reinforcement Learning (MARL)



_		
Large Problems	Approximate Solution Methods	Approximate Solution Methods
Small Problems	Tabular Solution Methods	Tabular Solution Methods
	Single Agent	Multiple (e.g. 2) Agents

Centralized:

• One brain / algorithm deployed across many agents

Centralized:

One brain / algorithm deployed across many agents

Decentralized:

- All agents learn individually
- Communication limitations defined by environment

Prescriptive:

Suggests how agents should behave

Prescriptive:

Suggests how agents should behave

Descriptive:

Forecast how agent will behave

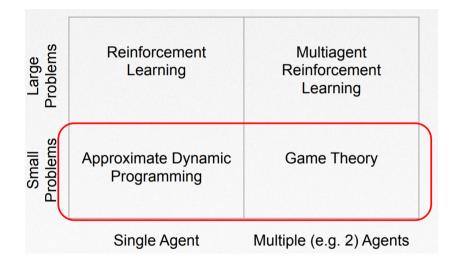
- Cooperative: Agents cooperate to achieve a goal
 - Shared team reward

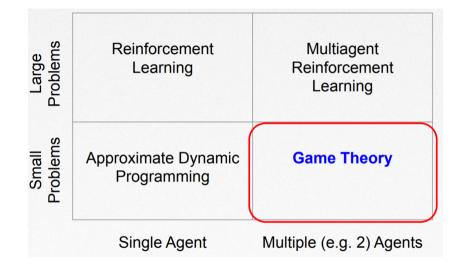
- Cooperative: Agents cooperate to achieve a goal
 - Shared team reward
- Competitive: Agents compete against each other
 - Zero-sum games
 - Individual opposing rewards

- Cooperative: Agents cooperate to achieve a goal
 - Shared team reward
- Competitive: Agents compete against each other
 - Zero-sum games
 - Individual opposing rewards
- Neither: Agents maximize their utility which may require cooperating and/or competing
 - General-sum games

Numbers of agents

- One (single-agent)
- Two (very common)
- Finite
- Infinite





- Normal-form game
- Repeated game
- Stochastic game

Normal-form game consists of:

• Finite set of agents $i \in \mathcal{N} = \{1, \cdots, n\}$

Normal-form game consists of:

- Finite set of agents $i \in \mathcal{N} = \{1, \cdots, n\}$
- Each agent $i \in N$ has a set of actions $A_i \in \{a_1, a_2, \cdots\}$

Normal-form game consists of:

- Finite set of agents $i \in \mathcal{N} = \{1, \cdots, n\}$
- Each agent $i \in N$ has a set of actions $A_i \in \{a_1, a_2, \cdots\}$
- Set of joint actions $A = a_1 \times a_2 \times \cdots \times a_n$

Normal-form game consists of:

- Finite set of agents $i \in \mathcal{N} = \{1, \cdots, n\}$
- Each agent $i \in N$ has a set of actions $A_i \in \{a_1, a_2, \cdots\}$
- Set of joint actions $A = a_1 \times a_2 \times \cdots \times a_n$
- Rewards function $r_i : A \to \mathbb{R}$, where $A = A_1 \times \cdots \times A_n$

Normal-form game consists of:

- Finite set of agents $i \in \mathcal{N} = \{1, \cdots, n\}$
- Each agent $i \in N$ has a set of actions $A_i \in \{a_1, a_2, \cdots\}$
- Set of joint actions $A = a_1 \times a_2 \times \cdots \times a_n$
- Rewards function $r_i : A \to \mathbb{R}$, where $A = A_1 \times \cdots \times A_n$

Each agent *i* selects policy $\pi_i : A_i \to [0, 1]$, takes action $a_i \in A_i$ with probability $\pi_i(a_i)$, and receives reward $r_i(a_1, \dots, a_n)$.

Normal-form game consists of:

- Finite set of agents $i \in \mathcal{N} = \{1, \cdots, n\}$
- Each agent $i \in N$ has a set of actions $A_i \in \{a_1, a_2, \cdots\}$

• Set of joint actions
$$A = a_1 \times a_2 \times \cdots \times a_n$$

• Rewards function $r_i : A \to \mathbb{R}$, where $A = A_1 \times \cdots \times A_n$

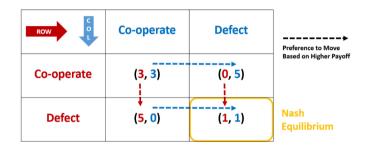
Each agent *i* selects policy $\pi_i : A_i \to [0, 1]$, takes action $a_i \in A_i$ with probability $\pi_i(a_i)$, and receives reward $r_i(a_1, \dots, a_n)$. Given policy profile (π_1, \dots, π_n) , expected reward to *i* is

$$r(\pi_1,\cdots,\pi_n)=\sum_{a\in A}\pi_1(a_1)*\cdots\pi_n(a_n)*r_i(a)$$

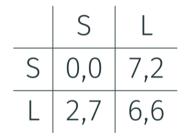
Agents want to maximise their expected reward.

Alina Vereshchaka (UB)

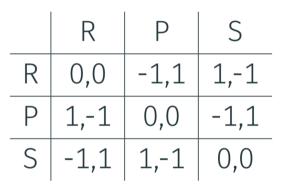
- Two prisoners questioned in isolated cells
- Each prisoner can Cooperate or Defect
- Rewards (row = agent 1, column = agent 2)



Two opposite drivers on the same laneEach driver can Stay on lane or Leave lane



Two players, three actions
 Rock beats Scissors beats Paper beats Rock



- Normal-form game is single interaction. No experience!
- Experience comes from repeated interactions

More Examples of MARL

User interfaces

Multi-robot rescue

Sharing experience

via communication, teaching, imitation

Sharing experience via communication, teaching, imitation

Parallel computation

due to decentralized task structure

Sharing experience

via communication, teaching, imitation

Parallel computation

due to decentralized task structure

Robustness

redundancy, having multiple agents to accomplish a task

Exponential growth in computational complexity from increase in state and action dimensions. Also a challenge for single-agent problems.

Exponential growth in computational complexity from increase in state and action dimensions. Also a challenge for single-agent problems.

Specifying a good (learning) objective

Agent returns are correlated and cannot be maximized independently.

Exponential growth in computational complexity from increase in state and action dimensions. Also a challenge for single-agent problems.

■ Specifying a good (learning) objective

Agent returns are correlated and cannot be maximized independently.

• The system in which to learn is a moving target

As some agents learn, the system which contains these agents changes, and so may the best policy. Also called a system with non-stationary or time-dependent dynamics.

Exponential growth in computational complexity from increase in state and action dimensions. Also a challenge for single-agent problems.

■ Specifying a good (learning) objective

Agent returns are correlated and cannot be maximized independently.

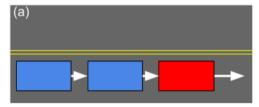
The system in which to learn is a moving target

As some agents learn, the system which contains these agents changes, and so may the best policy. Also called a system with non-stationary or time-dependent dynamics.

Need for coordination

Agent actions affect other agents and could confuse other agents (or herself) if not careful. Also called destabilizing training.

Challenges: Non-stationarity of Environment



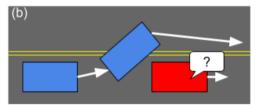


Figure 2: Non-stationarity of environment: Initially (a), the red agent learns to regulate the speed of the traffic by slowing down. However, over time the blue agents learn to bypass the red agent (b), rendering the previous experiences of the red agent invalid.

Challenges: High Variance of Estimates

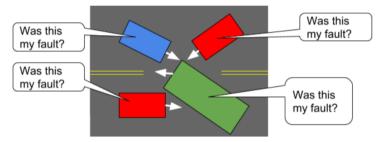


Figure 4: High variance of advantage estimates: In this traffic gridlock situation, it is unclear which agents' actions contributed most to the problem – – and when the gridlock is resolved, from any global reward it will be unclear which agents get credit.

In single agent RL, agents need only to adapt their behaviour in accordance with their own actions and how they change the environment. In MARL agents also need to adapt to other agents' learning and actions. The effect is that agents can execute the same action on the same state and receive different rewards.

- In single agent RL, agents need only to adapt their behaviour in accordance with their own actions and how they change the environment. In MARL agents also need to adapt to other agents' learning and actions. The effect is that agents can execute the same action on the same state and receive different rewards.
- MARL agents do not always have a full view of the environment and even if they have, they normally cannot predict the actions of other agents and the changes in the environment

- In single agent RL, agents need only to adapt their behaviour in accordance with their own actions and how they change the environment. In MARL agents also need to adapt to other agents' learning and actions. The effect is that agents can execute the same action on the same state and receive different rewards.
- MARL agents do not always have a full view of the environment and even if they have, they normally cannot predict the actions of other agents and the changes in the environment
- The credit assignment problem the difficulty of deciding which agent is responsible for successes or failures. How to split the reward signal among the agents and the trade-off between the use of local and global rewards to achieve fast learning or to guarantee to converge to a global optimal policy.

Recap: Markov Models

2 Multi-agent Reinforcement Learning (MARL)

Multi-agent Reinforcement Learning (MARL) Formulation

Multi-agent Deep Q-Network (MADQN)

Foundations of (MA)RL

First MARL Algorithm: Minimax-Q (Littman '94)

Q-values are over joint actions: Q(s, a, o)

- s = state
- a = your action
- o = action of the opponent

First MARL Algorithm: Minimax-Q (Littman '94)

Q-values are over joint actions: Q(s, a, o)

- s = state
- a = your action
- \blacksquare o = action of the opponent

Instead of playing action with highest Q(s, a, o), play MaxMin

$$Q(s, a, o) = (1 - \alpha)Q(s, a, o) + \alpha(r + \gamma V(s'))$$
$$V(s) = \max_{\pi_s} \min_o \sum_a Q(s, a, o)\pi_s(a)$$

• The agents choose actions according to their policies.

- The agents choose actions according to their policies.
- For agent *j*, the corresponding policy is defined as $\pi^j : S \to \Omega(A^j)$, where $\Omega(A^j)$ is the collection of probability distributions over agent *j*'s action space A^j .

- The agents choose actions according to their policies.
- For agent *j*, the corresponding policy is defined as $\pi^j : S \to \Omega(A^j)$, where $\Omega(A^j)$ is the collection of probability distributions over agent *j*'s action space A^j .
- Let $\boldsymbol{\pi} = [\pi^1, \cdots, \pi^N]$ is the joint policy of all agents, then

$$v^j_{\pi}(s) = v^j(s;\pi) = \sum_{t=0}^{\infty} \gamma^t \mathbb{E}_{\pi,p}[r^j_t|s_0=s,\pi]$$

- The agents choose actions according to their policies.
- For agent *j*, the corresponding policy is defined as $\pi^j : S \to \Omega(A^j)$, where $\Omega(A^j)$ is the collection of probability distributions over agent *j*'s action space A^j .
- Let $\boldsymbol{\pi} = [\pi^1, \cdots, \pi^N]$ is the joint policy of all agents, then

$$v^{j}_{\boldsymbol{\pi}}(s) = v^{j}(s; \boldsymbol{\pi}) = \sum_{t=0}^{\infty} \gamma^{t} \mathbb{E}_{\boldsymbol{\pi}, p}[r^{j}_{t}|s_{0}=s, \boldsymbol{\pi}]$$

• Q-function such that the Q-function $Q_{\pi}^{j}: S \times A^{1} \times \cdots \times A^{N} \to \mathbb{R}$ of agent j under the joint policy π :

$$Q^j_{\boldsymbol{\pi}}(s, \boldsymbol{a}) = r^j(s, \boldsymbol{a}) + \gamma \mathbb{E}_{s' \sim \rho}[v^j_{\boldsymbol{\pi}}(s')]$$

Nash Q-learning

 In MARL, the objective of each agent is to learn an optimal policy to maximize its value function

Nash Q-learning

- In MARL, the objective of each agent is to learn an optimal policy to maximize its value function
- Optimizing the v_{π}^{j} for agent j depends on the joint policy π of all agents

Nash Q-learning

- In MARL, the objective of each agent is to learn an optimal policy to maximize its value function
- Optimizing the v_{π}^{j} for agent j depends on the joint policy π of all agents
- A Nash equilibrium is a joint policy π such that no player has incentive to deviate unilaterally. It is represented by a particular joint policy

$$\boldsymbol{\pi_*} = [\pi_*^1, \cdots, \pi_*^N]$$

such that for all $s \in S, j \in \{1, \cdots, N\}$ it satisfies:

$$v^{j}(s; \pi_{*}) = v^{j}(s; \pi^{j}_{*}, \pi^{-j}_{*}) \geq v^{j}(s; \pi^{j}, \pi^{-j}_{*})$$

Here π_*^{-j} is the joint policy of all agents except j as

$$\boldsymbol{\pi}_*^{-j} = [\pi_*^1, \cdots, \pi_*^{j-1}, \pi_*^{j+1}, \cdots, \pi_*^N]$$

In a Nash equilibrium, each agent acts with the best response π_*^j to others, provided that all other agents follow the policy π_*^{-j}

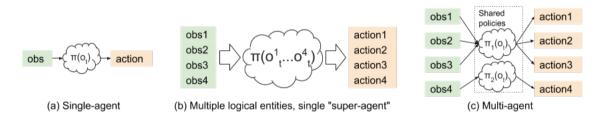
- In a Nash equilibrium, each agent acts with the best response π_*^j to others, provided that all other agents follow the policy π_*^{-j}
- For a *N*-agent stochastic game, there is at least one Nash equilibrium with stationary policies, assuming players are rational

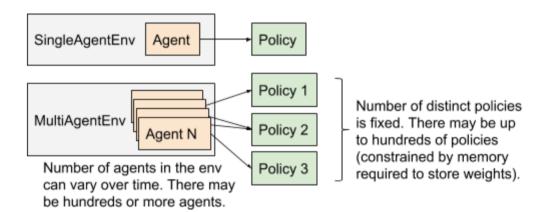
- In a Nash equilibrium, each agent acts with the best response π_*^j to others, provided that all other agents follow the policy π_*^{-j}
- For a *N*-agent stochastic game, there is at least one Nash equilibrium with stationary policies, assuming players are rational
- Given Nash policy π_* , the Nash value function

$$oldsymbol{v}^{\mathsf{Nash}} = [v_{\pi_*}^1(s), \cdots, v_{\pi_*}^N(s)]$$

 $oldsymbol{Q}(s, oldsymbol{a})^{\mathsf{Nash}} = \mathbb{E}_{s' \sim
ho}[oldsymbol{r}(s, oldsymbol{a}) + \gamma oldsymbol{v}^{\mathsf{Nash}}(s')]$

where $\boldsymbol{r}(s, \boldsymbol{a}) = [r^1(s, \boldsymbol{a}), \cdots, r^N(s, \boldsymbol{a})]$





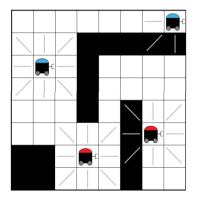
Recap: Markov Models

2 Multi-agent Reinforcement Learning (MARL)

3 Multi-agent Reinforcement Learning (MARL) Formulation

Multi-agent Deep Q-Network (MADQN)

- n pursuit-evasion a set of agents (the pursuers) are attempting to chase another set of agents (the evaders)
- The agents in the problem are self-interested (or heterogeneous), i.e. they have different objectives
- The two pursuers are attempting to catch the two evaders



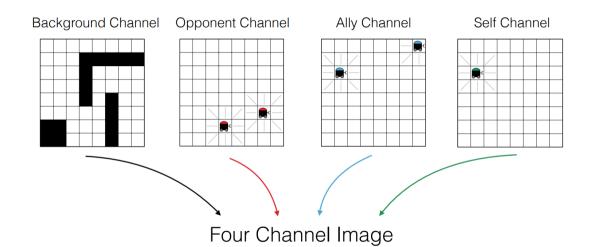
Challenge: defining the problem in such a way that an arbitrary number of agents can be represented without changing the architecture of the deep Q-Network.

Challenge: defining the problem in such a way that an arbitrary number of agents can be represented without changing the architecture of the deep Q-Network.

Solution (under some assumptions):

- The image tensor is of size 4× W × H, where W and H are the height and width of our two dimensional domain and four is the number of channels in the image.
- Channels:
 - Background Channel: contains information about any obstacles in the environment
 - **Opponent Channel:** contains information about all the opponents
 - Ally Channel: contains information about all the allies
 - **Self Channel:** contains information about the agent making the decision

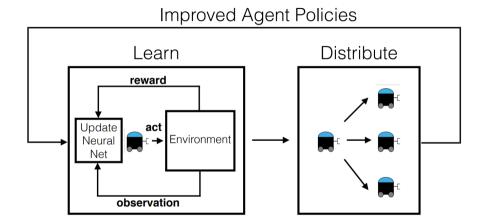
Multi-agent Deep Q-Network (MADQN): Four Channel Image



Train one agent at a time, and fix policies of all the other agents

- Train one agent at a time, and fix policies of all the other agents
- After a number of iterations distribute the policy learned by the training agent to all the other agents of its type

MADQN: Multi-agent Centralized Training

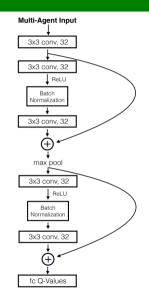


Challenge: When two ally agents are occupying the same position in the environment, the image-like state representation for each agent will be identical, so their policies will be exactly the same.

- Challenge: When two ally agents are occupying the same position in the environment, the image-like state representation for each agent will be identical, so their policies will be exactly the same.
- Solution: To break this symmetry use a stochastic policy for agents. The actions taken by the agent are drawn from a distribution derived by taking a softmax over the Q-values of the neural network. This allows allies to take different actions if they occupy the same state and break the ambiguity.

MADQN Architecture: Residual Network Type

MADQN architecture – a Residual Network type architecture is used to improve gradient flow throughout the network



MADQN Architecture

