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Planning

Planning: any computational process that uses a model to create or improve a policy

Model

Planning−−−−→ Policy
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Model

Model
Model is anything the agent can use to predict how the environment will respond to its actions,
concretely, the state transition T (s ′|s, a) or reward function r(s, a).
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Model Learning

We will be learning the model using experience tuples, that will convert it into a supervised
learning problem.
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Recap: Reinforcement Learning Objective

What is the main objective?
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Recap: Model-Free Reinforcement Learning
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Reinforcement Learning Problem
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Model-based vs Model-free

In Model-free RL, we ignore the model. We perform sampling and simulation to estimate
rewards

In Model-based RL, if we can define a cost function ourselves, we can calculate the
optimal actions using the model directly
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Model Based

Alina Vereshchaka (UB) CSE4/510 Reinforcement Learning, Lecture 25 November 19, 2019 18 / 56



Table of Contents

1 Recap: Planning and RL Problem Formulation

2 Model-based Reinforcement Learning

Alina Vereshchaka (UB) CSE4/510 Reinforcement Learning, Lecture 25 November 19, 2019 19 / 56



Model-based Reinforcement Learning

In many games, like GO, chess – the rule of the
game is the model

In other cases, it can be the law of Physics
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Why Model-Based?

Sample efficiency
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Why Model-Based?

Sample efficiency

Transferability & generality. A model can be reused for achieving different tasks.
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Model-based RL Formulation

Consider a MDP with a set of states S , a set of actions A, and a state transition
distribution p(s ′|s, a)

The goal of RL is to select actions in such a way as to maximize the expected sum of
rewards over a trajectory

Model-based RL:

Learning an approximate model p̂θ(s ′|s, a) or f̂θ(s, a), parameterized by θ, that approximates
the unknown transition distribution p(s ′|s, a) of the underlying system dynamics. The
parameters θ can be learned to maximize the log-likelihood of observed data D.

Learned model’s predictions can then be used to

learn a policy, or

perform online planning to select optimal actions
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Model Based

Mathematically, the model predicts the next state.

xt = fθ(xt−1, at−1)

We can define this model with rules or equations

We can model it, like using the Gaussian Process, Gaussian Mixture Model (GMM) or
deep networks

To fit these models, we run a controller to collect sample trajectories and train the models
with supervised learning.
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Model Learning

Model-based control: given an initial state s0 estimate action sequence to reach a
desired goal or maximize reward by unrolling the model forward in time

Model-based RL
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Model-based Control

For model-based control we want either

1

min
a1,··· ,aT

||sT − s ∗ ||, s.t. ∀t, st+1 = f̂θ(s, a)

2

max
a1,··· ,aT

T∑
t=1

rt , s.t. ∀t, (st+1, rt+1) = f̂θ(s, a)
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Model-based Control - SGD

1 Given an initial action sequence
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Model-based Control - SGD

1 Given an initial action sequence

2 Unroll the model forward in time

3 Compare and compute error against a desired final state

Alina Vereshchaka (UB) CSE4/510 Reinforcement Learning, Lecture 25 November 19, 2019 30 / 56



Model-based Control - SGD

1 Given an initial action sequence

2 Unroll the model forward in time
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Model-based Control - SGD

1 Given an initial action sequence

2 Unroll the model forward in time

3 Compare and compute error against a desired final state or compute sum of rewards

4 Backpropagate the error to the action sequence
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Model-based Control - SGD

Does it work?

Yes
PROBLEMS:

Tiny errors accumulate fast along the trajectory

The search space cab be too big for any base policy to cover full

We may land in areas where the model has not been learned yet
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Model Predictive Control

1 Given an initial action sequence

2 Unroll the model forward in time

3 Compare and compute error against a desired final state or compute sum of rewards

4 Backpropagate the error to the action sequence

Execute only the first action and then GOTO 2, to avoid error accumulation. (Model
Predictive Control)
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Model-based RL

Alternating between model and policy learning
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Model-based RL: Backprop through model to optimize policy
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Model-based RL: Backprop through model to optimize policy

Does it work?

Yes

Essentially how system identification works in classical robotics

Some care should be taken to design a good base policy

Particularly effective if we can hand-engineer a dynamics representation using our
knowledge of physics, and fit just a few parameters
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Model-based RL: Backprop through model to optimize policy

Problem

Distribution mismatch problem becomes exacerbated as we use more expressive model classes
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Model-based RL: Can we do better?

Alina Vereshchaka (UB) CSE4/510 Reinforcement Learning, Lecture 25 November 19, 2019 39 / 56



Model-based RL: What if we make a mistake?
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Model-based RL: Model-predictive Control
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Model-based RL: An alternative way to choose actions
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Summary So Far

Version 0: collect random samples, train dynamics, plan

Pro: simple, no iterative procedure
Con: distribution mismatch problem

Version 1: iteratively collect data, refit model

Pro: simple, solves distribution mismatch
Con: might make mistakes with imperfect model

Version 2: iteratively collect data using MPC (replan at each step)

Pro: robust to small model errors
Con: computationally expensive, but have a planning algorithm available

Two ways to optimize policy w.r.t. model:

backprop through model into policy
sampling-based optimization
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Example: Google Brain SimPLe
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Example: Google Brain SimPLe

SimPLe (Simulated Policy Learning) an entirely model-based deep reinforcement learning
algorithm based on video prediction models

Achieves competitive results on a series of Atari games

Outperforms model-free algorithms in terms of learning speed on nearly all of the games

The best model-free reinforcement learning algorithms require tens or hundreds of millions
of time steps — equivalent to several weeks. SimPLe has obtained competitive results
with only 100K interactions
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Google Brain SimPLe: Main Loop
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Google Brain SimPLe: PseudoCode
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Complex Observation
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Learning in Latent Space
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Learning in Latent Space
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Challenges in Model Learning

Under-modelling: we cannot represent complex dynamics, e.g., contact dynamics that are
not smooth

Over-fitting: If the model class is very expressive (e.g., neural networks) the model will
overfit, especially in the beginning of training, where we have few samples

Errors compound through unrolling

Need to capture different futures (stochasticity of the environment)

Need to represent uncertainty outside of the training data
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Model-Based vs. Model-Free Algorithms

MODEL-BASED
Pros:

Easy to collect data in a scalable way
(self-supervised)
Possibility to transfer across tasks
Typically require a smaller quantity of
supervised data

Cons:
Models don’t optimize for task
performance
Sometimes harder to learn than a policy
Often need assumptions to learn complex
skills (continuity,resets)

MODEL-FREE
Pros:

Makes little assumptions beyond a
reward function
Effective for learning complex policies

Cons:
Require a lot of experience (slower)
Not transferable across tasks
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Notes

Model-based RL is an under-explored area of research
Two active, exciting areas:

model-based approaches with high-dimensional observations

combining elements of model-based planning & model-free policies
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Example: Learning Dexterous Manipulation
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