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Planning

Planning: any computational process that uses a model to create or improve a policy
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Planning: any computational process that uses a model to create or improve a policy
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Model is anything the agent can use to predict how the environment will respond to its actions,
concretely, the state transition T(s'|s,a) or reward function r(s, a).
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Model Learning

We will be learning the model using experience tuples, that will convert it into a supervised
learning problem.

r

gaussian process,
random forest, deep
neural network, linear
function
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Recap: Reinforcement Learning Objective
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Recap: Reinforcement Learning Objective

J

T

pe(Sl,al,---,ST,aT = p(s1 H (at[se)p(set1lse, ar)
T :

o (T)

What is the main objective?
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Recap: Reinforcement Learning Objective

p(s'|s, a) i

po(s1,ai,...,sr,ar) = p(s1) H mo(as[se)p(set1(se, ar)
. T ) t:1

mo(T)

t

0* = arg max Erpo(r) [Z r(st, at)J
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Recap: Model-Free Reinforcement Learning

T
po(si,au,...,sr,ar) = plsi) [ | We(at|st)p®)r@
t=1

' assume this is unknown
mo(T) , .
don’t even attempt to learn it

0* = arg meax ETNpe(T) lz T(St, at)]

t

Alina Vereshchaka (UB) CSE4/510 Reinforcement Learning, Lecture 25 November 19, 2019



Reinforcement Learning Problem

compute Q = Zzzt y'~try (MC policy gradient)
fit a model to
estimate return

generate samples
(i.e. run the policy)

improve the policy
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estimate return . /
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(i.e. run the policy)

0+ 0+ aVyJ(0) (policy gradient)
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optimize 7y (als) (model-based)
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Model-based vs Model-free

m In Model-free RL, we ignore the model. We perform sampling and simulation to estimate

rewards

m In Model-based RL, if we can define a cost function ourselves, we can calculate the
optimal actions using the model directly

November 19, 2019 17 /56
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Model Based

Given Derive
An MDP is defined by: An MDP is defined by:
= Set of states § = Set of states §
it \ model
= Set of actions 4 — = Set of actions 4 /
. . B § . . ,
= Transition function P(s’|s, a) /> = Transition function P(s’|s, a)
= Reward function R(s, a, s’) — | = Reward function R(s, a, 5°)
= Start state s, = Start state s,
= Discount factory = Discount factory
= Horizon H = Horizon H

= Policy n(a|s) (optional)
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Model-based Reinforcement Learning

m In many games, like GO, chess — the rule of the
game is the model

Alina Vereshchaka (UB) CSE4/510 Reinforcement Learning, Lecture 25 November 19, 2019 20 /56



Model-based Reinforcement Learning

m In many games, like GO, chess — the rule of the
game is the model
m In other cases, it can be the law of Physics

Alina Vereshchaka (UB) CSE4/510 Reinforcement Learning, Lecture 25 November 19, 2019 20 /56



Model-based Reinforcement Learning

m In many games, like GO, chess — the rule of the
game is the model
m In other cases, it can be the law of Physics

Alina Vereshchaka (UB) CSE4/510 Reinforcement Learning, Lecture 25 November 19, 2019 20 /56



Why Model-Based?

m Sample efficiency
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Sample Efficiency

off-policy < » on-policy
More efficient Less efficient
(fewer samples) (more samples)
< >
model-based  model-based off-policy actor-critic  on-policy policy  evolutionary or
shallow RL deep RL Q-function style gradient gradient-free
learning methods algorithms algorithms
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Why Model-Based?

m Sample efficiency

m Transferability & generality. A model can be reused for achieving different tasks.
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Model-based RL Formulation

m Consider a MDP with a set of states S, a set of actions A, and a state transition
distribution p(s’|s, a)

m The goal of RL is to select actions in such a way as to maximize the expected sum of
rewards over a trajectory
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= Model-based RL:

m Learning an approximate model py(s’|s, a) or fA}g(s, a), parameterized by 6, that approximates
the unknown transition distribution p(s’|s, a) of the underlying system dynamics. The
parameters 6 can be learned to maximize the log-likelihood of observed data D.
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Model-based RL Formulation

m Consider a MDP with a set of states S, a set of actions A, and a state transition
distribution p(s’|s, a)

m The goal of RL is to select actions in such a way as to maximize the expected sum of
rewards over a trajectory

m Model-based RL:

m Learning an approximate model py(s’|s, a) or fA}g(s, a), parameterized by 6, that approximates
the unknown transition distribution p(s’|s, a) of the underlying system dynamics. The
parameters 6 can be learned to maximize the log-likelihood of observed data D.

m Learned model’s predictions can then be used to
m learn a policy, or

m perform online planning to select optimal actions
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Model Based

Mathematically, the model predicts the next state.

Xt = fe(Xt—L at—l)

m We can define this model with rules or equations

Alina Vereshchaka (UB) CSE4/510 Reinforcement Learning, Lecture 25 November 19, 2019 25 /56



Model Based

Mathematically, the model predicts the next state.

Xt = fe(Xt—L at—l)

m We can define this model with rules or equations

m We can model it, like using the Gaussian Process, Gaussian Mixture Model (GMM) or
deep networks

Alina Vereshchaka (UB) CSE4/510 Reinforcement Learning, Lecture 25 November 19, 2019 25 /56



Model Based

Mathematically, the model predicts the next state.

Xt = fe(Xt—L at—l)

m We can define this model with rules or equations

m We can model it, like using the Gaussian Process, Gaussian Mixture Model (GMM) or
deep networks

m To fit these models, we run a controller to collect sample trajectories and train the models
with supervised learning.
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Model Learning

m Model-based control: given an initial state sp estimate action sequence to reach a
desired goal or maximize reward by unrolling the model forward in time

m Model-based RL
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Model-based Control

For model-based control we want either

min ||sT —s* ||, s.t. Vt, 5001 = f(s, a)
ai,-,ar
-
max Z re, s.t. Vi, (Se41, rev1) = fo(s, a)
At

a a a3

Alina Vereshchaka (UB) CSE4/510 Reinforcement Learning, Lecture 25 November 19, 2019



Model-based Control - SGD

Given an initial action sequence

aq dy as
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Model-based Control - SGD

Given an initial action sequence

Unroll the model forward in time

81 AY)

S4
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Model-based Control - SGD

Given an initial action sequence
Unroll the model forward in time

Compare and compute error against a desired final state

S 2) 83

lls4 — sl
I > [ RN

Alina Vereshchaka (UB) CSE4/510 Reinforcement Learning, Lecture 25 November 19, 2019 30 /56



Model-based Control - SGD

Given an initial action sequence
Unroll the model forward in time

Compare and compute error against a desired final state or compute sum of rewards

r ) 3

in
a, Qb ay ¢ as ¢ =l
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Model-based Control - SGD

Given an initial action sequence
Unroll the model forward in time

Compare and compute error against a desired final state or compute sum of rewards

Backpropagate the error to the action sequence

r ) 3

-

S
<-
5
<
S
<
1M~
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Model-based Control - SGD

Does it work?
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Model-based Control - SGD

Does it work?
Yes

PROBLEMS:

m Tiny errors accumulate fast along the trajectory

m The search space cab be too big for any base policy to cover full

m We may land in areas where the model has not been learned yet

fis not modeled
here before
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Model Predictive Control

Given an initial action sequence

Unroll the model forward in time

Compare and compute error against a desired final state or compute sum of rewards
Backpropagate the error to the action sequence

Execute only the first action and then GOTO 2, to avoid error accumulation. (Model
Predictive Control)

83

¢ ¢ ¢ |lsy — x|l
a* a* a*
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Model-based RL

Alternating between model and policy learning
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Model-based RL: Backprop through model to optimize policy

Algorithm vO0:
1. run base policy mo(a;|s;) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn model f4(s,a) to minimize Z || F5(8i,a:) — 8|2

3. backpropagate through f4(s,a) into E)olicy to optimize mg(a|s)

r(s,a) s,a
/ //r( )
Jo(s,a)——f4(s,a)——F4(s,a) .ngax;’r’(st, at)

RNVAN

mo(s mo(s) 7o (s)

/r(s, a) backpropagate
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Model-based RL: Backprop through model to optimize policy

Does it work?
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Model-based RL: Backprop through model to optimize policy

Does it work? Yes
m Essentially how system identification works in classical robotics
m Some care should be taken to design a good base policy

m Particularly effective if we can hand-engineer a dynamics representation using our
knowledge of physics, and fit just a few parameters

Alina Vereshchaka (UB) CSE4/510 Reinforcement Learning, Lecture 25 November 19, 2019 37 /56



Model-based RL: Backprop through model to optimize policy

Problem

1. run base policy mo(a¢|s:) (e.g., random policy) to collect D = {(s,a,s’);}
Ea 2. learn model fy(s,a) to minimize Z | fo(sir as) —st||?
Pry(8t) 3. backpropagate through fs(s,a) into policy to optimize mg(a;|s;)

er!

pTl'f (St) 7A Pro (St)

Distribution mismatch problem becomes exacerbated as we use more expressive model classes
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Model-based RL: Can we do better?

can we make pr, (St) = pr,(st) ?

need to collect data from pr(s¢)

Algorithm v1:

1. run base policy mo(as|s;) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn model f4(s,a) to minimize Z || fo(si, i) — st |2

3. backpropagate through fy(s,a) into policy to optimize mg(as|s;)
4. run my(ay|s¢), appending visited tuples (s, a,s’) to D

Alina Vereshchaka (UB)
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Model-based RL: What if we make a mistake?
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Model-based RL: Model-predictive Control

(N ] 0 & \WITH MODEL ERRORS

EP\_ANN\NG HELPS

Algorithm v2a:
1. run base policy mo(as|s;) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn model fy(s,a) to minimize Z 1 fs(s:,a:) — st||?

i
3. backpropagate through fs(s,a) to choose actions.
4. execute the first planned action, observe resulting state s’
5. append (s,a,s’) to dataset D

every N steps

model-predictive control (MPC)
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Model-based RL: An alternative way to choose actions

1. run base policy mo(a¢|st) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn model f4(s,a) to minimize Z || fo(s:,a:) — si||?

<‘3. backpropagate through f4(s,a) to choose actions.

4. execute the first planned action, observe resulting state s’
5. append (s,a,s’) to dataset D

every N steps

Can instead sample to choose actions:

A. Sample action sequences from some distribution
(e.g. uniformly at random)

B. Run actions through model to prediction future

C. Choose action leading to the best future
Nagabandi et al. arXiv‘17
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Summary So Far

m Version 0: collect random samples, train dynamics, plan

m Pro: simple, no iterative procedure
m Con: distribution mismatch problem
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Summary So Far

m Version 0: collect random samples, train dynamics, plan

m Pro: simple, no iterative procedure
m Con: distribution mismatch problem

m Version 1: iteratively collect data, refit model

m Pro: simple, solves distribution mismatch
m Con: might make mistakes with imperfect model

m Version 2: iteratively collect data using MPC (replan at each step)

m Pro: robust to small model errors
m Con: computationally expensive, but have a planning algorithm available

m Two ways to optimize policy w.r.t. model:

m backprop through model into policy
m sampling-based optimization
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Example: Google Brain SimPLe

s.LG] 11 Jun 2019

Model Based Reinforcement Learning for Atari

Eukasz Kaiser "' Mohammad Babaeizadeh “?* Piotr Mito§**° Blazej Osinski " *°?3

Roy H Campbell” Konrad Czechowski® Dumitru Erhan' Chelsea Finn' Piotr Kozakowski® Sergey Levine '

Afroz Mohiuddin' Ryan Sepassi' George Tucker ' Henryk Michalewski*>

Abstract

Model-free reinforcement learning (RL) can be
used to learn effective policies for complex tasks,
such as Atari games, even from image observa-
tions. However, this typically requires very large
amounts of interaction — substantially more, in
fact, than a human would need to learn the same
games. How can people learn so quickly? Part
of the answer may be that people can learn how
the game works and predict which actions will
lead to desirable outcomes. In this paper, we ex-
plore how video prediction models can similarly
enable agents to solve Atari games with fewer in-
teractions than model-free methods. We describe

CSE4/510 Reinforcem

games so much faster? Perhaps part of the puzzle is that
humans possess an intuitive understanding of the physical
processes that are represented in the game: we know that
planes can fly, balls can roll, and bullets can destroy aliens.
‘We can therefore predict the outcomes of our actions. In
this paper, we explore how learned video models can enable
learning in the Atari Learning Environment (ALE) bench-
mark (Bellemare et al., 2015; Machado et al., 2017) with a
budget restricted to 100K time steps — roughly to two hours
of a play time.

Although prior works have proposed training predictive
models for next-frame, future-frame, as well as combined
future-frame and reward predictions in Atari games (Oh

hiappa et al., 2017; Leibfried et al., 2016),

Lecture 25 November 19, 2019
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Example: Google Brain SimPLe

SimPLe (Simulated Policy Learning) an entirely model-based deep reinforcement learning
algorithm based on video prediction models

m Achieves competitive results on a series of Atari games
m Qutperforms model-free algorithms in terms of learning speed on nearly all of the games

m The best model-free reinforcement learning algorithms require tens or hundreds of millions
of time steps — equivalent to several weeks. SimPLe has obtained competitive results
with only 100K interactions
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Google Brain SimPLe: Main Loop

World Model
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Google Brain SimPLe: Main Loop

=) i

Policy Observations

World Model

Training

Agent Evaluation
In Real World

Self-Supervised*

World Model
Training

Observations World Model

World Model Policy

Agent Training
In World Model
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Google Brain SimPLe: PseudoCode

Algorithm 1: Pseudocode for SimPLe
Initialize policy «
Initialize model environment env’
Initialize empty set 1D
while not done do
> collect observations from real env.
D + D UCOLLECT(enwv, )
> update model using collected data.
env’ <— TRAIN_SUPERVISED(env’, D)

7 < TRAIN_RL(7, env’)
end while
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PseudoCode

Google Brain SimPLe:

freeway
ms_pacman
crazy_climber
asterix
kung_fu_master
pong
abert
seaquest
read_runner
boxing
breakout
alien
assault
chopper_command
frostbite
battle_zone
kangaroa
up_n_down
Jamesbond
amidar
hero
bank_heist
gopher
krull [l
demon_attack [l
private eve [

0 2 4 6 B8 10 12 14 16

Figure 3. Comparison with Rainbow. Each bar illustrates the num-

ber of interactions with environment required by Rainbow to

achieve the same score as our method (SimPLe). The red line
the 100K i i used by our method.

alien
ms_pacman
crazy_climber
pong
freeway
frostbite
hero
boxing
qbert
breakout
asterix
road_runner
seaquest
gopher
assault
amidar
kung_fu_master
jamesbond
bank_heist
up_n_down
chopper_command
il |
demon_attack |
battle_zone |
kangaroo |
private_eye |

0 2 4 6 & 10 12 14 16 18 20 22
les

Figure 4. Comparison with PPO. Each bar illustrates the number
of interactions with environment required by PPO to achieve the
same score as our method (SimPLe). The red line indicates the
100K interactions threshold which is used by our method.
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Complex Observation

f(st,ar) =841

What is hard about this?
* High dimensionality

* Redundancy

* Partial observability

high-dimensional low-dimension
but not dynamic but dynamic

separately learn p(o¢|s;) and p(si+1|st, at)?

L

p(Si11lse, ay) p(st+1 Is¢, ay)

Alina Vereshchaka (UB)
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Learning in Latent Space

@ @ @ @ p(o¢[st) observation model
S1 \ So S3 p(Si+1/Se,a¢)  dynamics model

P(Tt \St, at) reward model

How to train? N T

1
standard (fully observed) model: m(?x N E 1 ; 1 log pe(St+1.ilSt.5, ari)
i= =

N T
1
latent space model: mgx N Z Z E [log ps(St+1,ilSt,i, at,i) + log pg(0s i[st.q)]

i=1 t=1 K
expectation w.r.t. (s, 8;11) ~ p(St,Ser1/0n.T,a1.T)

November 19, 2019
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Learning in Latent Space

. run base policy m(at|o;) (e.g., exploratory policy) to collect D = {(0,a,0’);}
. learn latent embedding of observation s; = g(o0:) and dynamics model s’ = f,(s, a)
. use model f4(s,a) to optimize policy mg(ay|s¢)

. run mp(a¢|g(o)), appending visited tuples (0,a,0") to D

= W N =

What is reward for optimizing policy?

reward signal: ’I“(O, a) = r(a) + ||g(0) - g(Ogoal)H

Alina Vereshchaka (UB)

CSE4/510 Reinforcement Learning, Lecture 25

November 19, 2019 52 /56



Challenges in Model Learning

m Under-modelling: we cannot represent complex dynamics, e.g., contact dynamics that are
not smooth
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Challenges in Model Learning

m Under-modelling: we cannot represent complex dynamics, e.g., contact dynamics that are
not smooth

m Over-fitting: If the model class is very expressive (e.g., neural networks) the model will
overfit, especially in the beginning of training, where we have few samples

m Errors compound through unrolling
m Need to capture different futures (stochasticity of the environment)

m Need to represent uncertainty outside of the training data
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Model-Based vs. Model-Free Algorithms

MODEL-BASED
m Pros:
m Easy to collect data in a scalable way
(self-supervised)
m Possibility to transfer across tasks
m Typically require a smaller quantity of
supervised data

m Cons:

m Models don't optimize for task m Cons:
performance m Require a lot of experience (slower)

m Sometimes harder to learn than a policy m Not transferable across tasks
m Often need assumptions to learn complex
skills (continuity,resets)

MODEL-FREE

m Pros:
m Makes little assumptions beyond a

reward function
m Effective for learning complex policies
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Model-based RL is an under-explored area of research
Two active, exciting areas:

m model-based approaches with high-dimensional observations

m combining elements of model-based planning & model-free policies
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Example: Learning Dexterous Manipulation

[cs.RO] 25 Sep 2019

Deep Dynamics Models
for Learning Dexterous Manipulation

Anusha Nagabandi, Kurt Konoglie, Sergey Levine, Vikash Kumar
Google Brain

Abstract: Dexterous multi-fingered hands can provide robots with the ability to
flexibly perform a wide range of manipulation skills. However, many of the more
complex behaviors are also notoriously difficult to control: Performing in-hand
object manipulation, executing finger gaits to move objects, and exhibiting pre-
cise fine motor skills such as writing, all require finely balancing contact forces,
breaking and reestablishing contacts repeatedly, and maintaining control of un-
actuated objects. Learning-based techniques provide the appealing possibility of
acquiring these skills directly from data, but current learning approaches either
require large amounts of data and produce task-specific policies, or they have not
yet been shown to scale up to more complex and realistic tasks requiring fine mo-
tor skills. In this work, we demonstrate that our method of online planning with
deep dynamics models (PDDM) addresses both of these limitations; we show that
improvements in learned dynamics models, together with improvements in on-
line model-predictive control, can indeed enable efficient and effective learning
of flexible contact-rich dexterous manipulation skills — and that too, on a 24-DoF
anthropomorphic hand in the real world, using just 4 hours of purely real-world
data to learn to simultaneously coordinate multiple free-floating objects. Videos
can be found at https://sites.google.com/view/pddm/

Keywords: Manipulation, Model-based learning, Robots
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