MDP
MDP
MDP

TRUE / FALSE?

Markov Decision Process is defined as:

\[(s, a, O, P, \gamma)\]
Markov Decision Process is defined as:

\[(s, a, O, P, r, \gamma)\]
Policy

1. Deterministic

2. Stochastic

A. \(\pi(a|s) = P_\pi[A = a|S = s] \)

B. \(\pi(s) = a \)
<table>
<thead>
<tr>
<th>ENVIRONMENT</th>
<th>POLICY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic / Stochastic?</td>
<td>Deterministic / Stochastic?</td>
</tr>
</tbody>
</table>

- **Policy**
 - ENVIRONMENT: Deterministic / Stochastic?
 - POLICY: Deterministic / Stochastic?
RL agents goal?
Value Functions

Types of value functions?
Value Functions

Types of value functions:

State value function describes the value of a state when following a policy. It is the expected return when starting from state s acting according to our policy π:

$$V^\pi(s) = \mathbb{E}_\pi[R_t | S_t = s]$$

Action value function tells us the value of taking an action a in state s when following a certain policy π. It is the expected return given the state and action under π:

$$Q^\pi(s, a) = \mathbb{E}_\pi[R_t | S_t = s, A_t = a]$$
V(s) can also be interpreted, as the cumulative future reward

Are we missing something?
Value Functions

$V(s)$ can also be interpreted, as the expected cumulative future discounted reward.
Dynamic Programming

1. Evaluate
 A. \(V_\pi(s) = \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \ldots | S_t = s] \)

2. Improve
 B. \(\pi' = \text{greedy}(V_\pi) \)
Dynamic Programming

Evaluate

$$V_\pi(s) = \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \ldots | S_t = s]$$

Improve

$$\pi' = \text{greedy}(V_\pi)$$
Dynamic Programming

Given a policy \(\pi \)

- **Evaluate** the policy \(\pi \)
 \[
 V_\pi(s) = \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \ldots | S_t = s]
 \]

- **Improve** the policy by acting greedily with respect to \(v_\pi \)
 \[
 \pi' = \text{greedy}(V_\pi)
 \]

\[
\pi_0 \xrightarrow{E} V_{\pi_0} \xrightarrow{\text{I}} \pi_1 \xrightarrow{E} V_{\pi_1} \xrightarrow{\text{I}} \pi_2 \xrightarrow{E} V_{\pi_2} \xrightarrow{E} \ldots \xrightarrow{\text{I}} \pi_\ast \xrightarrow{E} V_\ast
\]
Dynamic Programming

\[V = V\pi \]

\[\pi = \text{greedy}(V) \]

starting

\[V \pi \]

\[V^* \]

\[\pi^* \]
Dynamic Programming

1. Distribution model
 A. Produce a single outcome taken according to its probability of occurring

2. Sample model
 B. List all possible outcomes and their probabilities
Overview
Overview

Planning (or model-based RL)
Overview

MC / DP / TD ?
Bootstrapping

MC

DP

TD
Bootstrapping

MC
☑ DP
☑ TD
Sampling

MC
DP
TD
Sampling

- MC
- DP
- TD
Value Based RL

Dynamic Programming

A. $V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$

Monte Carlo

B. $V(S_t) \leftarrow E_{\pi} [R_{t+1} + \gamma V(S_{t+1})] = \sum_a \pi(a|S_t) \sum_{s', r} p(s', r|S_t, a)[r + \gamma V(s')]$

Temporal Difference

C. $V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$
Value Based RL

Dynamic Programming

\[
V(S_t) \leftarrow E_\pi \left[R_{t+1} + \gamma V(S_{t+1}) \right] = \sum_a \pi(a|S_t) \sum_{s', r} p(s', r|S_t, a)[r + \gamma V(s')]
\]

Monte Carlo

\[
V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))
\]

Temporal Difference

\[
V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t))
\]
Dynamic Programming

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi^*_\pi$

1. Initialization
 $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation
 Loop:
 $\Delta \leftarrow 0$
 Loop for each $s \in \mathcal{S}$:
 $v \leftarrow V(s)$
 $V(s) \leftarrow \sum_{s', r} p(s', r | s, \pi(s))[r + \gamma V(s')]$
 $\Delta \leftarrow \max(\Delta, |v - V(s)|)$
 until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement
 $policy-stable \leftarrow true$
 For each $s \in \mathcal{S}$:
 $old-action \leftarrow \pi(s)$
 $\pi(s) \leftarrow \arg\max_a \sum_{s', r} p(s', r | s, a)[r + \gamma V(s')]$
 If $old-action \neq \pi(s)$, then $policy-stable \leftarrow false$
 If $policy-stable$, then stop and return $V \approx v^*$ and $\pi \approx \pi^*$; else go to 2
TD / MC

TD / Monte Carlo ?