
‘-

1

Course: CSE 546: Introduction to Reinforcement Learning

Velivela Vamsi Krishna

vvelivel@buffalo.edu

Sudhir Yarram

sudhirya@buffalo.edu

COMPARISON OF REINFORCEMENT

LEARNING ALGORITHMS

‘-

2

 PROJECT DESCRIPTION

‘-

3

• DQN

• DoubleDQN

• A2C

• REINFORCE

• PPO (Proximal Policy Optimization)

• PPO with MultiProcessing

Algorithms Implemented

‘-

4

Environments

Cartpole Space Invaders Lunar Lander

‘-

5

• Uses experience replay to learn from all past policies.

• Freezes target Q-network to avoid the moving target issue

• Clip rewards or normalize network adaptive to sensible range

DQN

‘-

6

• Double DQN is a value based algorithm similar to DQN.

• Uses two networks to reduce this overoptimism, resulting in more stable and reliable

learning.

Double DQN

‘-

7

Advantage Actor-Critic algorithm

• Hybrid algorithm that combines both value based learning and policy gradients.

• Actor- Estimates action based on policy

• Critic – Estimates the Value function of the action taken by the actor and evaluates the

action

‘-

8

• Reinforce is a policy gradient algorithm.

• Actions with higher expected reward have a higher probability value for an observed state.

Reinforce Algorithm

‘-

9

• We maintain two networks, one with the current policy that we want to refine and second that

we use to collect samples

• We clip the objective and calculate the ratio between the new policy and old policy

PPO (Proximal Policy Optimization)

‘-

10

RESULTS

‘-

11

Algorithms on Cartpole

‘-

12

Training time on Cartpole
We trained each algorithm for 2500 episodes on NVIDIA K80 GPU

‘-

13

❖ Reinforce Algorithm converges in fewer steps when compared to other algorithms.

❖ Though PPO doesn’t give better results in the initial phase, it starts giving significantly

better results after sometime.

❖ Double DQN gives better result when compared to DQN

❖ A2C algorithms varies drastically with minor changes in hyperparameters.

❖ Conclusion : PPO is the best algorithm for solving this task. Even though PPO takes less

time to train, it gives better and stable results when compared to other algorithms.

Analysis/Insights

‘-

14

DQN

Cartpole

DQN Double DQN A2C

Reinforce PPO

We were able to reach the threshold of 500 reward points.

‘-

15

Algorithms on Lunar Lander

‘-

16

Training time on Lunar Lander
We trained each algorithm for 1500 episodes on NVIDIA K80 GPU

‘-

17

❖ Reinforce Algorithm, A2C and PPO gives significantly better results when compared to

DQN and Double DQN

❖ PPO takes the least amount of time as the complexity of the environment increases.

❖ Double DQN gives better result when compared to DQN.

❖ A2C algorithms varies drastically with minor changes in hyperparameters.

Analysis/Insights

‘-

18

Lunar Lander

DQN Double DQN A2C

Reinforce PPO

We were able to reach the threshold of 200 reward points in A2C,Reinforce and PPO after training for 1500 episodes

‘-

19

Multi Processing

‘-

20

Algorithm: PPO

Space Invaders

Episodes

‘-

21

Algorithm: PPO

Space Invaders

‘-

22

1 import torch.multiprocessing as mp

2 os.environ['OMP_NUM_THREADS'] = '1'

#Instantiate the processes
1 args_processes = 20

2 processes = []

3 for rank in range(args_processes):

4 p = mp.Process(target=train, args=(sharedagent, sharedoptimizer, rank, args, writer))

5 p.start() ; processes.append(p)

6 for p in processes: p.join()

Space Invaders

‘-

23

1 class SharedAdam(torch.optim.Adam): # extend a pytorch optimizer so it shares grads across processes

2 def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0):

3 super(SharedAdam, self).__init__(params, lr, betas, eps, weight_decay)

4 for group in self.param_groups:

5 for p in group['params']:

6 state = self.state[p]

7 state['shared_steps'], state['step'] = torch.zeros(1).share_memory_(), 0

8 state['exp_avg'] = p.data.new().resize_as_(p.data).zero_().share_memory_()

9 state['exp_avg_sq'] = p.data.new().resize_as_(p.data).zero_().share_memory_()

10 def step(self, closure=None):

11 for group in self.param_groups:

12 for p in group['params']:

13 if p.grad is None: continue

14 self.state[p]['shared_steps'] += 1

15 self.state[p]['step'] = self.state[p]['shared_steps'][0] - 1

16 super.step(closure)

Space Invaders

‘-

24

1 sharedoptimizer.zero_grad()

2 loss.backward()

3 nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)

4 for param, shared_param in zip(agent.parameters(), sharedagent.parameters()):

5 # sync gradients with shared model

6 if shared_param.grad is None: shared_param._grad = param.grad/args_processes

7 else : shared_param._grad += param.grad/args_processes

8 sharedoptimizer.step()

Space Invaders

‘-

25

Space Invaders

#Frames

R
ew

ar
d

PPO-MultiProcessing (CPU) PPO (GPU)

‘-

26

❖ Learning from diverse experiences is a key component to build efficient RL models.

Analysis/Insights

‘-

27

❖ PPO with Multi Processing on CPU

Space Invaders

‘-

28

❖ We experimented with multiple algorithms. PPO is the state of the art algorithm and by

far the best algorithm, it achieves the maximum reward in less steps and with very less

variance. It even takes less time to train.

❖ To incorporate learning from diverse experiences using multiprocessing is very

beneficial.

Summary

‘-

29

❖ Playing Atari with Deep Reinforcement Learning-

❖ https://spinningup.openai.com/en/latest/algorithms/ppo.html

❖ https://arxiv.org/abs/1707.06347

References

https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://arxiv.org/abs/1707.06347

‘-

30

THANK YOU

