IMPLIMENTATION OF POLICY GRADIENT AND DEEP Q NETWORKS ON OPENAI

ENVIRONMENTS

Joseph Distefano

School of Engineering and Applied Sciences

Project Description

Goal 1:

Implement 3 deep q networks and 4 policy gradient methods on anon openai environment

- Deep Q Learning (DQN)
- Double Deep Q Learning (DDQN)
- Dueling Deep Q Learning (Dueling DQN)
- REINFORCE
- Advantage Actor Critic (A2C)
- Proximal Policy Optimization (PPO)
- Deep Deterministic Policy Gradient (DDPG)

Goal 2:

• Set up future work to continue pursuing reinforcement learning with Atari environment and original idea

3

Deep Q Learning vs Policy Gradient methods

	Deep Q Learning	Policy Gradient
Objective Function	The deep networks are used to predict Bellman's equation which gives the value function	The policy gradients try to maximize the expected return from the policy
On vs Off- policy	Off policy (value function)	On policy (policy)
Stability and Sample Efficiency	Not always optimal, more sample efficient (batch)	Sample inefficient but better behavior (stable)

4

DDPG algorithm

Algorithm 1 DDPG algorithm

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ . Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^Q$, $\theta^{\mu'} \leftarrow \theta^\mu$ Initialize replay buffer Rfor episode = 1, M do Initialize a random process \mathcal{N} for action exploration Receive initial observation state s_1 for t = 1, T do Select action $a_t = \mu(s_t|\theta^\mu) + \mathcal{N}_t$ according to the current policy and exploration noise Execute action a_t and observe reward r_t and observe new state s_{t+1} Store transition (s_t, a_t, r_t, s_{t+1}) in RSample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from RSet $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$ Update critic by minimizing the loss: $L = \frac{1}{N} \sum_i (y_i - Q(s_i, a_i|\theta^Q))^2$ Update the actor policy using the sampled policy gradient:

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_a Q(s, a | \theta^Q) |_{s=s_i, a=\mu(s_i)} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu}) |_{s_i}$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^Q + (1 - \tau) \theta^Q$$
$$\theta^{\mu'} \leftarrow \tau \theta^\mu + (1 - \tau) \theta^{\mu'}$$

end for

end for

Environments

LunarLander

Actions: Left or Right Rewards = +1 for every time step States = cart position, cart velocity, pole angle, tip velocity Goal: stay up for as long as possible

Actions: do nothing, fire left engine, fire down engine, fire right engine Rewards = land in designated area, legs on ground, rest at episode end States = horizontal and vertical position, horizontal and vertical velocity, angle and angular velocity, and left and right leg contact Goal: land softly in defined area

Results for Deep Q Learning Method

Double DQN LunarLander

Double DQN CartPole

Dueling DQN LunarLander

Dueling DQN CartPole

Results for Policy Gradient Methods

REINFORCE CartPole

A2C CartPole

DDPG pendulum

Discussion

- Policy Gradient Out performed Deep Q methods in general
- Deep Q methods often times converged but not to the optimal reward
- PPO performed the best
- From REINFORCE to PPO the stability of the results decreased
- Policy gradient trains much faster
- All algorithms are sufficient for solving these environments
- Hyper parameters could always use improvement (especially in Atari games)

Future work

- Finishing the MARL problem
- Implementing all algorithms with ATARI environments
- Augmenting RL with human behavior

Thank you so much!

 \cap